Fertilizer Management Strategies of Glycine max L. (Soybean) in Northcentral and North-Western North Dakota †
Abstract
:1. Introduction
2. Materials and Methods
Site | Parameter | Yield | ||
---|---|---|---|---|
Mg ha−1 | p-Value | Variance | ||
1 | Mean | 2.50 | 0.269 | 70.05 |
Range | 2.04–3.19 | |||
2 | Mean | 2.07 | 0.868 | 19.496 |
Range | 1.98–2.12 | |||
3 | Mean | 1.74 | 0.971 | 26.823 |
Range | 1.50–1.86 | |||
4 | Mean | 1.86 | 0.609 | 6.641 |
Range | 1.72–1.99 | |||
5 | Mean | 1.24 | 0.400 | 8.827 |
Range | 1.07–1.39 | |||
6 | Mean | 1.46 | 0.545 | 8.138 |
Range | 1.25–1.63 |
3. Results
4. Discussion
5. Conclusions
- Soil water content was likely the biggest factor affecting soybean yield in these experiments.
- Fields that have had soybeans within the past four years, are unlikely to show a yield response from an inoculation treatment (Table 5).
- Phosphorus applications will likely not cause a positive yield response in soils that have Olsen P values now considered in the ‘low’ and ‘medium’ categories (Table 5). However, P fertilization of soybean may result in an increase or maintenance of soil P levels for crops within the rotation that are more sensitive to low soil P, such as small grains or corn. With the lack of fertilizer P response, future research should identify locations with very low P values (2–3 ppm Olsen P) and establish a rate response for soybean and the soil test value where P fertilization is unlikely to be profitable.
- Lime application on soils with pH as low as 5.7 had no positive affect on yield.
- ad no positive affect on yield. H 5.7 to 6.5ive to low soil P, such as small grains or cornan 2018 with treatment. Use of Fe-EDDHA fertilizer had no effect on soybean yield in an environment that might be considered susceptible to IDC. However, “IDC tolerant” varieties were planted.
- Use of foliar fertilization at V5 or R2 did not impact soybean yield or quality at any site.
- This data suggests that foliar fertilization, starter P application, N application, inoculation on land previously grown to soybean with successful nodulation in northwest and northcentral North Dakota is not cost effective. Also, critical levels for P fertilization are could be 6 ppm or less, and critical levels for consideration of lime application are <5.7 [4].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Franzen, D.W. Soybean Soil Fertility SF1164; North Dakota State University Extension Service: Fargo, ND, USA, 2018. [Google Scholar]
- Jantzi, D.; Hagemeister, K.; Krupich, B. North Dakota Agricultural Statistics 2018 Ag Statistics No. 87 August 2018 [Online]; U.S. Department of Agriculture National Agriculture. Statistics Service. Northern Plains Regions N.D. Field Office: Fargo, ND, USA, 2018. Available online: https://www.nass.usda.gov/Statistics_by_State/North_Dakota/Publications/Annual_Statistical_Bulletin/2018/NDAnnual-Bulletin18.pdf (accessed on 3 January 2024).
- Kandel, H. Soybean Production Field Guide for North Dakota and Northwestern Minnesota A1172; North Dakota State Univ. Ext. Service, North Dakota State Climate Office, North Dakota State University: Fargo, ND, USA, 2016. [Google Scholar]
- Augustin, C.L. Fertilizer Management Strategies of Soybean (Glycine Max L.). Ph.D. Thesis, North Dakota State University, Fargo, ND, USA, 2020. [Google Scholar]
- Gage, D.J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbio. Molec. Bio. Rev. 2004, 68, 280–300. [Google Scholar] [CrossRef]
- Weber, C.R. Nodulating and nonnodulating soybean isolines: I agronomic and chemical attributes. Agron. J. 1966, 58, 43–46. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Kaur, G.; Orlowski, J.M.; Shapiro, C.A.; Lee, C.D.; Wortmann, C.; Holshouser, D.; Nafziger, E.D.; Kandel, H.; Niekamp, J.; et al. Soybean response to nitrogen application across the United States: A synthesis-analysis. Field Crops Res. 2018, 215, 74–82. [Google Scholar] [CrossRef]
- Popp, M.P.; Purcell, L.C.; Ross, W.J.; Norsworthy, J.S. Profitability of using nitrogen fertilizer or inoculating soybean seed. Agrosystems Geosci. Environ. 2020, 3, e20115. [Google Scholar] [CrossRef]
- Kandel, H. Soybean Production Field Guide for North Dakota and Northwestern Minnesota A-1172; North Dakota State University Extension Service: Fargo, ND, USA, 2010. [Google Scholar]
- Fleury, D. Pulse Nodulation—What Is Needed for Best Results? Saskatchewan Pulse Growers: Saskatoon, SK, Canada, 2017; [Online]; Available online: https://saskpulse.com/files/newsletters/170423_Pulse_Nodulation.pdf (accessed on 19 July 2019).
- Forster, S. 2015 BASF Soybean Double Inoculation Trial in a Long Term Crop Rotation. In Comprehensive 2015 Annual Research Report; North Dakota State University North Central Research Extension Center: Minot, ND, USA, 2015; p. 76. [Google Scholar]
- Manitoba Pulse Soybean Growers. Soybean Fertility Fact Sheet [Online]; Manitoba Pulse Soybean Growers: Carman, MB, USA, 2019; Available online: https://www.manitobapulse.ca/wp-content/uploads/2016/05/Soybean-Fertility-FactSheet-April-2017_WR.pdf (accessed on 19 July 2019).
- Endres, G.; Ostlie, M.; Indergaard, T. Seed inoculation strategies on fields with prior soybean production. In A Report of Agricultural Research and Extension in Central North Dakota; North Dakota State University Carrington Research Extension Center: Carrington, ND, USA, 2018; pp. 15–16. [Google Scholar]
- Henson, B. Soybean Inoculation Trial. In Carrington Research Extension Center 2003 Annual Report; North Dakota State University Carrington Research Extension Center: Carrington, ND, USA, 2003. [Google Scholar]
- Lamb, J.A.; Rehm, G.W.; Severson, R.K.; Cymbaluk, T.E. Impact of inoculation and use of fertilizer nitrogen on soybean production where growing seasons are short. J. Prod. Agric. 1990, 3, 241–245. [Google Scholar] [CrossRef]
- Voight, D.G., Jr. Soybean Good Inoculation Practices [Online]; Penn State Extension: State College, PA, USA, 2018; Available online: https://extension.psu.edu/soybean-good-inoculation-practices-gip (accessed on 19 July 2019).
- Afza, R.; Hardarson, G.; Zapata, F.; Danso, S.K.A. Effects of delayed soil and foliar N fertilization on yield and N2 fixation of soybean. Plant Soil. 1987, 97, 361–368. [Google Scholar] [CrossRef]
- Barker, D.W.; Sawyer, J.E. Nitrogen application to soybean at early reproductive development. Agron. J. 2005, 97, 615–619. [Google Scholar] [CrossRef]
- Garcia, R.L.; Hanway, J.J. Foliar fertilization of soybeans during the seed-filling period. Agron. J. 1976, 68, 653–657. [Google Scholar] [CrossRef]
- Schmitt, M.A.; Lamb, J.A.; Randall, G.W.; Orf, J.H.; Rehm, G.W. In-season fertilizer nitrogen application for soybean in Minnesota. Agron. J. 2001, 193, 983–988. [Google Scholar] [CrossRef]
- Wesley, T.L.; Lamond, R.E.; Martin, V.L.; Duncan, S.R. Effects of late-season nitrogen fertilizer on irrigated soybean yield and composition. J. Prod. Agric. 1998, 11, 331–336. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W. A review of the use of the basic cation saturation ratio and the “ideal” soil. Soil Sci. Soc. Am. J. 2007, 71, 259–265. [Google Scholar] [CrossRef]
- Seraj, R.; Sinclair, T.R.; Purcell, L.C. Symbiotic N2 fixation response to drought. J. Exp. Bot. 1999, 50, 143–155. [Google Scholar] [CrossRef]
- Yadav, D.V.; Khanna, S.S. Role of cobalt in nitrogen fixation: A review. Agric. Rev. 1988, 9, 180–182. [Google Scholar]
- Jayakumar, K.; Jaleel, C.A. Uptake and accumulation of cobalt in plants: A study based on exogenous cobalt in soybean. Bot. Res. Inter. 2009, 2, 310–314. [Google Scholar]
- Sims, J.L. Molybdenum and cobalt. In Methods of Soil Analysis. Part 3. Chemical Methods-SSSA Book Series No. 5; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 723–737. [Google Scholar]
- Jarvis, S.C. The association of cobalt with easily reducible manganese in some acidic permanent grassland soils. J. Soil. Sci. 1984, 35, 431–438. [Google Scholar] [CrossRef]
- Franzen, D.W.; Gerwing, J. Effectiveness of Using Low Rate of Plant Nutrients, North Central Regional Research Publication No. 341 [Online]; N.D.S.U. Ext. Service: Fargo, ND, USA, 1997; Available online: http://www.agronext.iastate.edu/soilfertility/info/LowRatePlantNutrients.pdf (accessed on 3 January 2024).
- Scott, W.O.; Aldrich, A.R. Modern Soybean Production; S & A Publication, Inc.: Champaign, IL, USA, 1983; pp. 45–82. [Google Scholar]
- Kumudini, S.; Hume, D.J.; Chu, G. Genetic improvement in short season soybeans: I. dry matter accumulation partitioning, and leaf area duration. Crop Sci. 2001, 41, 391–398. [Google Scholar] [CrossRef]
- Kovács, S.P.; Casteel, S.N. Changes in P uptake and partitioning in soybean cultivars released in the last 90 years. In Proceedings of the North Central Extension-Industry Soil Fertility Conference, Des Moines, IA, USA, 19–20 November 2014; Volume 30, pp. 148–153. [Google Scholar]
- Bardella, G.R. Phosphorus Management Practices for Soybean Production in Manitoba. Master’s Thesis, University of Manitoba, Winnipeg, MB, USA, 2016. [Google Scholar]
- Cihacek, L.J.; Lizotte, D.A.; Carcoana, R. Phosphorus placement for soybean production in reduced tillage systems. North Dak. Farm Res. 1991, 49, 22–25. [Google Scholar]
- Lauzon, J.D.; Miller, M.H. Comparative response of corn and soybean to seed-placed phosphorus over a range of soil test phosphorus. Commun. Soil Sci. Plant Anal. 1997, 28, 205–215. [Google Scholar] [CrossRef]
- Mallarino, A.P.; Borges, R. Grain yield, early growth, and nutrient uptake of no-till soybean as affected by phosphorus and potassium placement. Agron. J. 2000, 92, 380–388. [Google Scholar]
- Mallarino, A.P.; Haq, U.M. Response of soybean grain oil and protein concentrations to foliar and soil fertilization. Agron. J. 2005, 97, 910–918. [Google Scholar]
- Slaton, N.A.; DeLong, R.E.; Shafer, J.; Clark, S.; Golden, B.R. Soybean response to phosphorus and potassium fertilization rate and time. In Sabbe Arkansas Soil Fertility Studies 2010; Slaton, N.A., Wayne, E., Eds.; University of Arkansas Agricultural Experiment Station Research Series: Fayetteville, Arkansas, 2010; Volume 588, pp. 34–37. [Google Scholar]
- Rehm, G.W.; Lamb, J. Soybean response to fluid fertilizers placed near the seed at planting. Soil Sci. Soc. Am. J. 2010, 74, 2223–2229. [Google Scholar] [CrossRef]
- Schatz, B.G. Influence of starter fertilizer on soybean performance. In Carrington Research Extension Center Annual Report 2005; North Dakota State University-Carrington Research Extension Center: Carrington, ND, USA, 2005. [Google Scholar]
- Endres, G.; Hendrickson, P. Soybean Response to 10-34-0 Placement and Rates, Carrington Research Extension Center 2008 Annual Report; North Dakota State University-Carrington Research Extension Center: Carrington, ND, USA, 2008. [Google Scholar]
- Bullen, C.W.; Soper, R.J.; Bailey, L.D. Phosphorus nutrition of soybeans as affected by placement of fertilizer phosphorus. Can. J. Soil Sci. 1983, 63, 199–210. [Google Scholar] [CrossRef]
- Buah, S.S.J.; Polito, A.; Killorn, R. No-tillage soybean response to banded and broadcast and direct and residual fertilizer phosphorus and potassium applications. Agron. J. 2000, 92, 657–662. [Google Scholar] [CrossRef]
- Kalra, Y.P.; Soper, R.J. Efficiency of rape, oats, soybeans, and flax absorbing soil and fertilizer phosphorus at seven stages of growth. Agron. J. 1968, 60, 209–212. [Google Scholar] [CrossRef]
- Kochian, L.V. Molecular physiology of mineral nutrient acquisition, transport, and utilization. In Biochemistry; American Society of Plant Biologists (ASPB): Rockville, MD, USA, 2000; pp. 1204–1249. [Google Scholar]
- Warncke, D.; Brown, J.R. Potassium and other basic cations. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Pub. No. 221 (Revised); Missouri Agriculture Experiment Station: Columbia, MO, USA, 2015; pp. 7.1–7.3. [Google Scholar]
- Breker, J.S. Recalibration of Soil Potassium Test for Corn in North Dakota. Master’s Thesis, North Dakota State University, Fargo, ND, USA, 2017. [Google Scholar]
- Bourns, M.; Flaten, D.; Heard, J.; Bartley, G. 4R potassium management for soybean production in Manitoba–is it A-OK? In Proceedings of the Manitoba Soil Science Society 62nd Annual Meeting, Winnipeg, MB, USA, 7–8 February 2019. [Google Scholar]
- Helmke, P.A.; Sparks, D.L. Lithium, Sodium, Potassium, Rubidium, and Cesium. In Methods of Soil Analysis. Part 2. Chemical Methods-SSSA Book Series No 5; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 551–574. [Google Scholar]
- Franzen, D.W.; Bu, H. North Dakota Clay Mineralogy Impacts Crop Potassium Nutrition and Tillage Systems SF1881; North Dakota State University Extension: Fargo, ND, USA, 2018. [Google Scholar]
- Mallarino, A.P.; Haq, M.U.; Wittry, D.; Bermudez, M. Variation in soybean response to early season foliar fertilization among and within fields. Agron. J. 2001, 93, 1220–1226. [Google Scholar] [CrossRef]
- Matcham, E.G.; Wann, R.A.; Lendey, L.E.; Gaska, J.M.; Lilley, D.T.; Ross, W.J.; Wrights, D.L.; Knott, C.; Lee, C.D.; Moseley, D.; et al. Foliar fertilizers rarely increase yield in United States soybean. Agron. J. 2021, 113, 5245–5253. [Google Scholar] [CrossRef]
- Zocchi, G.; Nisi, P.D.; Dell’Orto, M.; Espen, L.; Gallina, P.M. Iron deficiency differently affects metabolic responses in soybean roots. J. Exper. Bot. 2007, 58, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.B. Diagnosis and correction of iron deficiency in field crops—An overview. J. Plant Nutr. 1982, 5, 785–795. [Google Scholar] [CrossRef]
- Lucena, J.J. Fe chelates for remediation of Fe chlorosis in strategy I plants. J. Plant Nutr. 2003, 26, 1969–1984. [Google Scholar] [CrossRef]
- Helms, T.C.; Scott, R.A.; Schapaugh, W.T.; Goos, R.J.; Franzen, D.W.; Schlegel, A.J. Soybean iron-chlorosis tolerance and yield decrease on calcareous soils. Agron. J. 2010, 102, 492–498. [Google Scholar] [CrossRef]
- Kaiser, D.E.; Lamb, J.A.; Bloom, P.R.; Hernandez, J.A. Comparison of field management strategies for preventing iron deficiency chlorosis in soybean. Soil Fert. Crop Nutri. 2014, 106, 1963–1974. [Google Scholar] [CrossRef]
- Goos, R.J.; Johnson, B.; Jackson, G.; Hargrove, G. Greenhouse evaluation of controlled-release iron fertilizers for soybean. J. Plant Nutr. 2004, 27, 43–55. [Google Scholar] [CrossRef]
- Schenkeveld, W.D.C.; Dijcker, R.; Reichwein, A.M.; Temminghoff, E.J.M.; van Reimsdijk, W.H. The effectiveness of soil-applied FeEDDHA treatments in preventing iron chlorosis in soybean as a function of the o,o-FeEDDHA content. Plant Soil. 2008, 303, 161–176. [Google Scholar] [CrossRef]
- Mallarino, A.P.; Camberato, J.J.; Kaiser, D.E.; Laboski, C.A.M.; Ruiz-Diaz, D.A.; Vyn, T.J. Micronutrients fertilization for corn and soybean:A research update. In Proceedings of the 45th North Central Extension-Industry Soil Fertility Conference, Des Moines, IA, USA, 4–5 November 2015; pp. 44–57. [Google Scholar]
- Sutrahar, A.K.; Kaiser, D.E.; Behnken, L.M. Soybean response to broadcast application of boron, chlorine, manganese, and zinc. Agron. J. 2017, 109, 1048–1059. [Google Scholar] [CrossRef]
- Augustin, C.L. Soybean response to micro-nutrient. In 2017 Annual Research Report No. 35; North Dakota State University, North Central Research Extension Center: Minot, ND, USA, 2017; p. 63. [Google Scholar]
- Endres, G.; Indergaard, T.; Ostlie, M.; Gerhardt, S.; Shaunaman, C. Soybean response to sulfur, Wishek 2018. In Carrington Research Extension Center 2018 Annual Report; North Dakota State University-Carrington Research Extension Center: Carrington, ND, USA, 2018. [Google Scholar]
- Kaiser, D.E.; Kim, K.I. Soybean response to sulfur fertilizer applied as a broadcast or starter using replicated strip trials. Agron. J. 2013, 105, 1189–1198. [Google Scholar] [CrossRef]
- De Borja Reia, A.F.; Rosso, L.H.M.; Davidson, D.; Kovacs, P.; Purcell, L.C.; Below, F.E.; Casteel, S.N.; Knott, C.; Kandel, H.; Naeve, S.L.; et al. Sulfur fertilization in soybean: A meta-analysis on yield on seed composition. Eur. J. Agron. 2021, 127, 126285. [Google Scholar] [CrossRef]
- Peters, J.B.; Nathan, M.V.; Laboski, C.A.M. pH and lime requirement. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Pub. No. 221 (Revised); Missouri Agriculture Experiment Station: Columbia, MO, USA, 2015; pp. 4.1–4.7. [Google Scholar]
- Gelderman, R.H.; Beegle, D. Nitrate-nitrogen. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Pub. No. 221 (Revised); Missouri Agriculture Experiment Station: Columbia, MO, USA, 2015; pp. 5.1–5.4. [Google Scholar]
- Frank, K.; Beehle, D.; Denning, J. Phosphorus. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Pub. No. 221 (Revised); Missouri Agriculture Experiment Station: Columbia, MO, USA, 2015; pp. 6.1–6.9. [Google Scholar]
- Whitney, D.A. Micronutrients: Zinc, iron, manganese, and copper. In Recommended chemical soil test procedures for the North Central Region; North Central Regional Research Pub. No. 221 (Revised); Missouri Agriculture Experiment Station: Columbia, MO, USA, 2015; pp. 9.1–9.4. [Google Scholar]
- Franzen, D.W. Sulfate-sulfur. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Pub. No. 221 (Revised); Missouri Agriculture Experiment Station: Columbia, MO, USA, 2015; pp. 8.1–8.6. [Google Scholar]
- Whitney, D.A. Soil salinity. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Pub. No. 221 (Revised); Missouri Agriculture Experiment Station: Columbia, MO, USA, 2015; pp. 13.1–13.2. [Google Scholar]
- Loeppert, R.H.; Duarez, D.L. Carbonate and gypsum. In Methods of Soil Analysis. Part 3. Chemical Methods-SSSA Book Series No. 5; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 437–474. [Google Scholar]
- United States Department of Agriculture, Natural Resources Conservation Service. Web Soil Survey [Online]; U.S. Dept. Ag.: Washington, DC, USA, 2019. Available online: http://websoilsurvey.nrcs.gov/app/WebSoilSurvey.aspx (accessed on 3 January 2024).
- Kandel, H.; Helms, T.; Markell, S.; Ostlie, M.; Schatz, B.; Endres, G.; Aberle, E.; Indergaard, T.; VandeHoven, C.; Zwinger, S.; et al. North Dakota Soybean Variety Trial Results for 2017 and Selection Guide A843-17; North Dakota State Univ. Ext. Service, North Dakota State Univ. North Dakota Ag. Experiment Station: Fargo, ND, USA, 2017. [Google Scholar]
- Kandel, H.; Helms, T.; Markell, S.; Ostlie, M.; Schatz, B.; Endres, G.; Aberle, E.; Indergaard, T.; Zwinger, S.; Nielsen, J.; et al. North Dakota Soybean Variety Trial Results for 2016 and Selection Guide A843-16; North Dakota State Univ. Ext. Service, North Dakota State Univ. North Dakota Ag. Experiment Station: Fargo, ND, USA, 2016. [Google Scholar]
- Kandel, H.; Helms, T.; Markell, S.; Ostlie, M.; Schatz, B.; Aberle, E.; Indergaard, T.; Zwinger, S.; Nielsen, J.; Schaubert, S.; et al. North Dakota Soybean Variety Trial Results for 2015 and Selection Guide A843-15; North Dakota State Univ. Ext. Service, North Dakota State Univ. North Dakota Ag. Experiment Station: Fargo, ND, USA, 2015. [Google Scholar]
- Google Incorporated. Google Earth Pro, Version 7.3.6.9750; Google Incorporated: Mountain View, CA, USA, 2024. [Google Scholar]
- Koch Agronomic Services. Agrotain Advanced 1.0®; Koch Agronomic Services: Wichita, KS, USA, 2018. [Google Scholar]
- West Central Inc. Soygreen®; West Central Inc.: Wilmar, MN, USA, 2018. [Google Scholar]
- West Central Inc. Levesol®; West Central Inc.: Wilmar, MN, USA, 2018. [Google Scholar]
- Fehr, W.R.; Caviness, C.E. Stages of Soybean Development; Spec. Rep. 80. Iowa State Univ. Ext. Serv.: Ames, IA, USA, 1977. [Google Scholar]
- Akyuz, A. North Dakota Climate Bulletin Summer 2016 [Online]; North Dakota State Climate Office, North Dakota State University: Fargo, ND, USA, 2016; Available online: https://www.ndsu.edu/ndsco/climatesummaries/quarterlyclimatebulletin/2016/ (accessed on 3 January 2024).
- Akyuz, A. North Dakota Climate Bulletin Summer 2017 [Online]; North Dakota State Climate Office, North Dakota State University: Fargo, ND, USA, 2017; Available online: https://www.ndsu.edu/ndsco/climatesummaries/quarterlyclimatebulletin/2017/ (accessed on 3 January 2024).
- Akyuz, A. North Dakota Climate Bulletin Summer 2018 [Online]; North Dakota State Climate Office, North Dakota State University: Fargo, ND, USA, 2018; Available online: https://www.ndsu.edu/ndsco/climatesummaries/quarterlyclimatebulletin/2018/ (accessed on 3 January 2024).
- Kindaid Equipment Manufacturing. Kincaid 8-XP; Kindaid Equipment Manufacturing: Haven, KS, USA, 2024. [Google Scholar]
- SeedTech Systems, LLC. Stratified Air Vacuum STS-MW; SeedTech Systems, LLC: Wilton, CA, USA, 2024. [Google Scholar]
- Perten Instruments Incorporated. DA 7200 NIR Analyzer; Perten Instruments Incorporated: Cincinnati, OH, USA, 2017. [Google Scholar]
- SAS Institute Incorporated. Statistical Analysis Software, Version 9.4.; SAS Institute Incorporated: Cary, NC, USA, 2012. [Google Scholar]
- Meckel, L.; Egli, D.B.; Phillips, R.E.; Radcliffe, D.; Leggett, J.E. Effect of moisture stress on seed growth in soybeans. Agron. J. 1984, 76, 647–650. [Google Scholar] [CrossRef]
- Rotundo, J.L.; Westgate, M.E. Meta-analysis of environmental effects on soybean seed composition. Field Crops Res. 2009, 110, 147–156. [Google Scholar] [CrossRef]
- Klocke, N.L.; Eisenhauer, D.E.; Spect, J.E.; Elmore, R.W.; Hergert, G.W. Irrigation soybeans by growth stages in Nebraska. Biolog. Syst. Eng Pap. Pub. 1989, 5, 361–366. [Google Scholar]
- Bauder, J.W.; Ennen, M.J. Water use of field crops in eastern North Dakota. North Dak. Farm Res. 1981, 38, 3–5. [Google Scholar]
- Kadhem, F.A.; Specht, J.E.; Williams, J.H. Soybean irrigation serially timed during stages R1 to R6. I. agronomic responses. Agon. J. 1985, 77, 291–298. [Google Scholar]
- Deibert, E.J.; French, E.; Hoag, B. Water storage and use by spring wheat under conventional tillage and no-till in continuous and alternate crop-fallow systems in the northern Great Plains. J. Soil Water Cons. 1986, 41, 53–58. [Google Scholar]
- Dick, W.A.; Roseberg, R.J.; McCoy, E.L.; Edwards, W.M.; Haghiri, F. Surface hydrologic response of soils to no-tillage. Soil Sci. Soc. Am. J. 1989, 53, 1520–1526. [Google Scholar] [CrossRef]
- Brun, L.J.; Enz, J.W.; Larsen, J.K. Water use by soybeans in stubble and on bare soil. North Dak. Farm Res. 1985, 42, 32–35. [Google Scholar]
- Edwards, C.L. Evaluation of Long-Term Phosphorus Fertilizer Placement, Rate, and Source, and Research in the U.S. Midwest. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2017. [Google Scholar]
- Haq, M.U.; Mallarino, A.P. Soybean yield and nutrient composition as affected by early season foliar fertilization. Agron. J. 2000, 92, 16–24. [Google Scholar] [CrossRef]
- Haq, M.U.; Mallarino, A.P. Foliar fertilization of soybean at early vegetative stages. Agronomy Journal 1998, 90, 763–769. [Google Scholar] [CrossRef]
- Bloom, P.R.; Rehm, G.W.; Lamb, J.A.; Scobbie, A.J. Soil nitrate is a causative factor in iron deficiency chlorosis in soybeans. Soil Sci. Soc. Am. J. 2011, 75, 2233–2241. [Google Scholar] [CrossRef]
- Hansen, N.C.; Schmitt, M.A.; Anderson, J.E.; Strock, J.S. Iron deficiency of soybean in the upper Midwest and associated soil properties. Agron. J. 2003, 95, 1595–1601. [Google Scholar] [CrossRef]
Site | Location | Year | NO3-N | P | K | Zn | Fe | E.C. * | pH | ||
---|---|---|---|---|---|---|---|---|---|---|---|
0–15 cm Depth | 15–60 cm Depth | 0–15 cm Depth | |||||||||
Latitude, Longitude | kg ha−1 | g kg−1 | dS m−1 | ||||||||
1 | Minot | 48.179167° N, 101.316367° W | 2016 | 8 | 30 | 8 | 316 | 0.29 | 48 | 0.47 | 6.2 |
2 | Columbus | 48.795444° N, 102.853044° W | 2016 | 30 | 73 | 6 | 224 | 0.29 | 11 | 0.35 | 7.6 |
3 | Columbus | 48.8891° N, 102.8701° W | 2017 | 27 | 43 | 5 | 276 | 0.48 | 7 | 0.2 | 7.2 |
4 | Riverdale | 47.5018° N, 101.2781° W | 2017 | 30 | 40 | 7 | 223 | 0.69 | 56 | 0.31 | 5.8 |
5 | Minot | 48.169111° N, 101.316320° W | 2018 | 17 | 7 | 7 | 315 | 1.01 | 54 | 0.28 | 5.8 |
6 | Noonan | 48.866667° N, 103.114722° W | 2018 | 20 | 40 | 14 | 338 | 0.67 | 14 | 0.46 | 7.3 |
Site | Seed Company * | Soybean Cultivar | Planting | V5 Fertilizer Application | R2 Fertilizer Application | Harvest |
---|---|---|---|---|---|---|
Date | ||||||
1 | Pr | 20–30 | 29 May 2016 | 8 July 2016 | 28 July 2016 | 25 September 2016 |
2 | NSG | NS0081NR2 | 30 May 2016 | 8 July 2016 | 27 July 2016 | 23 September 2016 |
3 | L | 009R20 | 22 May 2017 | 6 July 2017 | 4 August 2017 | 29 September 2017 |
4 | H | H009R3 | 24 May 2017 | 8 July 2017 | 5 August 2017 | 1 October 2017 |
5 | NDSU | ND17009GT | 25 May 2018 | 3 July 2018 | 19 July 2018 | 6 October 2018 |
6 | Pe | 17x009 | 24 May 2018 | 3 July 2018 | 18 July 2018 | 26 September 2018 |
Treatment | Rate | N | P2O5 | K2O | S | Fe | Co |
---|---|---|---|---|---|---|---|
kg ha−1 | |||||||
46-0-0 | 56 kg ha−1 | 25.4 | - | - | - | - | - |
11-52-0 | 112 kg ha−1 | 12.1 | 57.3 | - | - | - | - |
10-34-0 | 28 L ha−1 | 3.9 | 13.1 | - | - | - | - |
6-24-6 | 28 L ha−1 | 2.2 | 8.9 | 2.2 | - | - | - |
Beet lime * | 4000 kg ha−1 | 12.8 | 44.3 | 4.4 | - | 15.1 | - |
Beet lime * | 8000 kg ha−1 | 25.5 | 88.6 | 8.8 | - | 30.2 | - |
Foliar 3-18-18 | 28 L ha−1 | 1.2 | 7 | 7 | - | - | - |
Foliar 3-18-18 +AMS | 28 L ha−1 + 1.1 kg ha−1 | 2.1 | 7.7 | 7 | 1.1 | - | - |
Soygreen | 7.1 L ha−1 | - | - | - | - | 0.5 | - |
Levesol | 7.1 L ha−1 | 0.1 | - | - | - | - | - |
Cobalt | 2.9 kg ha−1 | - | - | - | 1.8 | - | 1.1 |
Year | pH | EC * | Nitrate–N | P | K | Zn | Fe | Cu | Mn | Moisture | CCE ** |
---|---|---|---|---|---|---|---|---|---|---|---|
dS m−1 | g kg−1 | ||||||||||
2016 | 7.8 | 2.2 | 3000 | 6400 | 1300 | 27 | 2128 | 10 | 123 | 200 | 550 |
2017 | 8.1 | 2.3 | 2638 | 3679 | 520 | 110 | 4500 | 136 | 340 | 270 | 610 |
2018 | 8.3 | 1.7 | 3032 | 3065 | 660 | 35 | 3650 | 17 | 143 | 350 | 730 |
Mean | 8.0 | 2.1 | 2890 | 4381 | 827 | 57 | 3426 | 54 | 202 | 270 | 630 |
Site | Parameter | Oil | ||
---|---|---|---|---|
% | p-Value | Variance | ||
1 | Mean | 14.8 | 0.439 | 0.134 |
Range | 14.6–15.2 | |||
2 | Mean | 14.8 | 0.502 | 0.125 |
Range | 14.4–14.9 | |||
3 | Mean | 15.8 | 0.677 | 0.106 |
Range | 15.6–16.1 | |||
4 | Mean | 14.7 | 0.975 | 0.485 |
Range | 14.4–14.9 | |||
5 | Mean | 16 | 0.276 | 0.165 |
Range | 15.8–16.5 | |||
6 | Mean | 16.3 | 0.148 | 0.509 |
Range | 16.0–16.6 |
Site | Parameter | Protein | ||
---|---|---|---|---|
% | p-Value | Variance | ||
1 | Mean | 34.5 | 0.336 | 0.387 |
Range | 33.9–34.9 | |||
2 | Mean | 33.6 | 0.675 | 0.338 |
Range | 33.2–34.0 | |||
3 | Mean | 31.7 | 0.170 | 0.373 |
Range | 31.0–32.2 | |||
4 | Mean | 34.9 | 0.888 | 0.158 |
Range | 34.6–35.2 | |||
5 | Mean | 35 | 0.281 | 0.991 |
Range | 33.7–35.7 | |||
6 | Mean | 31.4 | 0.471 | 0.821 |
Range | 30.7–31.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustin, C.L.; Franzen, D.W. Fertilizer Management Strategies of Glycine max L. (Soybean) in Northcentral and North-Western North Dakota. Agronomy 2024, 14, 545. https://doi.org/10.3390/agronomy14030545
Augustin CL, Franzen DW. Fertilizer Management Strategies of Glycine max L. (Soybean) in Northcentral and North-Western North Dakota. Agronomy. 2024; 14(3):545. https://doi.org/10.3390/agronomy14030545
Chicago/Turabian StyleAugustin, Christopher Lee, and David W. Franzen. 2024. "Fertilizer Management Strategies of Glycine max L. (Soybean) in Northcentral and North-Western North Dakota" Agronomy 14, no. 3: 545. https://doi.org/10.3390/agronomy14030545
APA StyleAugustin, C. L., & Franzen, D. W. (2024). Fertilizer Management Strategies of Glycine max L. (Soybean) in Northcentral and North-Western North Dakota. Agronomy, 14(3), 545. https://doi.org/10.3390/agronomy14030545