Enhancing Cowpea Tolerance to Elevated Temperature: Achievements, Challenges and Future Directions
Abstract
:1. Introduction
2. Achievements in Improving Cowpea Resilience against Heat Stress
2.1. Impacts of Heat Stresses and Tolerance Mechanisms in Cowpea
2.2. Variability in Germplasm, Genetics, and Genomic Resources for the Improvement of Heat Stress Tolerance
2.3. Breeding and Selection Methods for Genetic Improvement of Cowpea for Heat Stress Tolerance
3. Challenges in Phenotyping Heat Stress Tolerance in Cowpea
3.1. Screening for Heat Stress Tolerance in Cowpea
3.2. Target Traits for Cowpea Heat Stress Tolerance Screening
3.2.1. Pollen Viability and Anther Dehiscence
3.2.2. Stigma Receptivity and Ovule Viability
3.2.3. Heat Shock Proteins and Reactive Oxygen Species
3.2.4. Proline Concentration in Anthers and Pollen Grains
3.2.5. Response to Elevated Carbon Dioxide Concentration
3.2.6. Leaf Electrolyte Leakage
3.2.7. Phenology and Yield Traits as Screening Criteria for Cowpea Heat Stress Tolerance
3.3. Trait Associations under Heat Stress Conditions
3.4. Crossing Barriers between Cultivated Cowpea and Wild Relatives
3.5. Limited Research on the Genetic Architecture of Heat Stress Tolerance in Cowpea
4. Future Directions for Assessing Heat Stress Tolerance in Cowpea
4.1. Physiological Traits to Improve Cowpea for Heat Stress Environments
4.1.1. Canopy Temperature
4.1.2. Stomatal Conductance
4.1.3. Chlorophyll Content, Fluorescence, and Net Photosynthesis
4.1.4. Spectral Reflectance Indices
4.2. Exploration of Cowpea Genetic Resources for the Improvement of Heat Stress Tolerance
4.3. Emerging Techniques for Heat-Resilient Improvements
4.3.1. Genomic Selection to Fast-Track Development of Heat-Tolerant Cowpea Lines
4.3.2. Speed-Breeding Cowpea to Achieve Rapid Generation Advance
4.3.3. Applications of Genome Editing in Cowpea
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Bita, C.E.; Gerats, T. Plant Tolerance to High Temperature in a Changing Environment: Scientific Fundamentals and Production of Heat Stress-Tolerant Crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat Tolerance in Plants: An Overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland; 151p.
- Porch, T.G.; Hall, A.E. Heat Tolerance. In Genomics and Breeding for Climate-Resilient Crops: Vol. 2 Target Traits; Springer: Berlin/Heidelberg, Germany, 2013; pp. 167–202. ISBN 9783642370489. [Google Scholar]
- Boonwichai, S.; Shrestha, S.; Babel, M.S.; Weesakul, S.; Datta, A. Climate Change Impacts on Irrigation Water Requirement, Crop Water Productivity and Rice Yield in the Songkhram River Basin, Thailand. J. Clean. Prod. 2018, 198, 1157–1164. [Google Scholar] [CrossRef]
- Hall, A.E. Breeding Cowpea for Future Climates. In Crop Adaptation to Climate Change; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 340–355. ISBN 9780813820163. [Google Scholar]
- Singh, S.; Kakani, V.; Surabhi, G.; Reddy, K. Cowpea (Vigna unguiculata [L.] Walp.) Genotypes Response to Multiple Abiotic Stresses. J. Photochem. Photobiol. B 2010, 100, 135–146. [Google Scholar] [CrossRef]
- Boukar, O.; Belko, N.; Chamarthi, S.; Togola, A.; Batieno, J.; Owusu, E.; Haruna, M.; Diallo, S.; Umar, M.L.; Olufajo, O.; et al. Cowpea (Vigna unguiculata): Genetics, Genomics and Breeding. Plant Breed. 2018, 138, 415–424. [Google Scholar] [CrossRef]
- Ehlers, J.D.; Hall, A.E. Cowpea (Vigna unguiculata L. Walp.). Field Crops Res. 1997, 53, 187–204. [Google Scholar] [CrossRef]
- Craufurd, P.Q.; Bojang, M.; Wheeler, T.R.; Summerfield, R.J. Heat Tolerance in Cowpea: Effect of Timing and Duration of Heat Stress. Ann. Appl. Biol. 1998, 133, 257–267. [Google Scholar] [CrossRef]
- Jha, U.C.; Nayyar, H.; Jha, R.; Paul, P.J.; Siddique, K.H.M. Heat Stress and Cowpea: Genetics, Breeding and Modern Tools for Improving Genetic Gains. Plant Physiol. Rep. 2020, 25, 645–653. [Google Scholar] [CrossRef]
- Hall, A.E. Breeding for Heat Tolerance—An Approach Based on Whole-Plant Physiology. HortScience 1990, 25, 17–19. [Google Scholar] [CrossRef]
- Warrag, M.O.A.; Hall, A.E. Reproductive Responses of Cowpea (Vigna unguiculata (L.) Walp.) to Heat Stress. II. Responses to Night Air Temperature. Field Crops Res. 1984, 8, 17–33. [Google Scholar] [CrossRef]
- Warrag, M.O.A.; Hall, A.E. Reproductive Responses of Cowpea to Heat Stress: Genotypic Differences in Tolerance to Heat at Flowering. Crop Sci. 1983, 23, 1088–1092. [Google Scholar] [CrossRef]
- Nunes, L.R.D.L.; Pinheiro, P.R.; Pinheiro, C.L.; Lima, K.A.P.; Dutra, A.S. Germination and Vigour in Seeds of the Cowpea in Response to Salt and Heat Stress. Rev. Caatinga 2019, 32, 143–151. [Google Scholar] [CrossRef]
- Ismail, A.M.; Hall, A.E. Positive and Potential Negative Effects of Heat-Tolerance Genes in Cowpea. Crop Sci. 1998, 38, 381–390. [Google Scholar] [CrossRef]
- Hall, A.E. Breeding for Adaptation to Drought and Heat in Cowpea. Eur. J. Agron. 2004, 21, 447–454. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hall, A.E.; DeMason, D.A. Heat Injury during Floral Development in Cowpea (Vigna unguiculata, Fabaceae). Am. J. Bot. 1992, 79, 784–791. [Google Scholar] [CrossRef]
- Barros, J.R.A.; Guimarães, M.J.M.; Silva, R.M.E.; Rêgo, M.T.C.; de Melo, N.F.; de Melo Chaves, A.R.; Angelotti, F. Selection of Cowpea Cultivars for High Temperature Tolerance: Physiological, Biochemical and Yield Aspects. Physiol. Mol. Biol. Plants 2021, 27, 29. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, C.L.; Hall, A.E. Responses of Cowpea (Vigna unguiculata (L.) Walp.) in the Field to High Night Air Temperature during Flowering. I. Thermal Regimes of Production Regions and Field Experimental System. Field Crops Res. 1985, 10, 167–179. [Google Scholar] [CrossRef]
- Warrag, M.O.A.; Hall, A.E. Reproductive Responses of Cowpea (Vigna unguiculata (L.) Walp.) to Heat Stress. I. Responses to Soil and Day Air Temperatures. Field Crops Res. 1984, 8, 3–16. [Google Scholar] [CrossRef]
- Hall, A.E. Plant Adaptation to Hot and Dry Stresses in Relation to Horticultural Plant Breeding. Adv. Hort. Sci. 1990, 1, 44–48. [Google Scholar]
- Hall, A.E. Phenotyping Cowpeas for Adaptation to Drought. Front. Physiol. 2012, 3, 155. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.N.; Hall, A.E. Genotypic Variation and Classification of Cowpea for Reproductive Responses to High Temperature under Long Photoperiods. Crop Sci. 1990, 30, 614–621. [Google Scholar] [CrossRef]
- Muñoz-Amatriaín, M.; Mirebrahim, H.; Xu, P.; Wanamaker, S.I.; Luo, M.C.; Alhakami, H.; Alpert, M.; Atokple, I.; Batieno, B.J.; Boukar, O.; et al. Genome Resources for Climate-Resilient Cowpea, an Essential Crop for Food Security. Plant J. 2017, 89, 1042–1054. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Roorkiwal, M.; Nguyen, H.T. Legume Genomics: From Genomic Resources to Molecular Breeding. Plant Genome 2013, 6, 1–7. [Google Scholar] [CrossRef]
- Lorenz, A.J.; Chao, S.; Asoro, F.G.; Heffner, E.L.; Hayashi, T.; Iwata, H.; Smith, K.P.; Sorrells, M.E.; Jannink, J.L. Genomic selection in plant breeding: Knowledge and prospects. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2011; Volume 110, pp. 77–123. ISBN 9780123855312. [Google Scholar]
- Hall, A.E.; Patel, P.N. Cowpea Breeding for resistance to drought and heat. In Cowpea Research, Production, and Utilization; Singh, S.R., Rachie, K.O., Eds.; John Wiley and Sons Ltd.: New York, NY, USA, 1985; pp. 137–151. [Google Scholar]
- Ehlers, J.D.; Hall, A.E. Heat Tolerance of Contrasting Cowpea Lines in Short and Long Days. Field Crops Res. 1998, 55, 11–21. [Google Scholar] [CrossRef]
- Lucas, M.R.; Ehlers, J.D.; Huynh, B.L.; Diop, N.N.; Roberts, P.A.; Close, T.J. Markers for Breeding Heat-Tolerant Cowpea. Mol. Breed. 2013, 31, 529–536. [Google Scholar] [CrossRef]
- Pottorff, M.; Roberts, P.A.; Close, T.J.; Lonardi, S.; Wanamaker, S.; Ehlers, J.D. Identification of Candidate Genes and Molecular Markers for Heat-Induced Brown Discoloration of Seed Coats in Cowpea [Vigna unguiculata (L.) Walp]. BMC Genom. 2014, 15, 328. [Google Scholar] [CrossRef]
- Ehlers, J.D.; Hall, A.E. Genotypic Classification of Cowpea Based on Responses to Heat and Photoperiod. Crop Sci. 1996, 36, 673–679. [Google Scholar] [CrossRef]
- Boukar, O.; Fatokun, C.A.; Huynh, B.-L.; Roberts, P.A.; Close, T.J. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives. Front. Plant Sci. 2016, 7, 757. [Google Scholar] [CrossRef] [PubMed]
- Huynh, B.-L.; Ehlers, J.D.; Huang, B.E.; Munoz-Amatria, M.; Lonardi, S.; Santos, J.R.P.; Ndeve, A.; Batieno, B.J.; Boukar, O.; Cisse, N.; et al. A Multi-Parent Advanced Generation Inter-Cross (MAGIC) Population for Genetic Analysis and Improvement of Cowpea (Vigna unguiculata L. Walp.). Plant J. 2018, 98, 1129–1142. [Google Scholar] [CrossRef]
- Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.-D.; Asyraf Md Hatta, M.; Hinchliffe, A.; Steed, A.; Reynolds, D.; et al. Speed Breeding: A Powerful Tool to Accelerate Crop Research and Breeding. Nat. Plants 2018, 4, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.E. Heat Stress. In Plant Stress Physiology; CABI: Egham, UK, 2012; pp. 118–131. [Google Scholar]
- Hall, A.E. Breeding for Heat Tolerance. In Plant Breed Reviews; John Wiley and Sons: Hoboken, NJ, USA, 1992; Volume 10, pp. 129–168. [Google Scholar] [CrossRef]
- Angelotti, F.; Barbosa, L.G.; Barros, J.R.A.; Dos Santos, C.A.F. Cowpea (Vigna unguiculata) Development under Different Temperatures and Carbon Dioxide Concentrations. Rev. Pesq. Agropec. Trop. 2020, 50, e59377. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hall, A.E. Heat Injury during Early Floral Bud Development in Cowpea. Crop Sci. 1993, 33, 764–767. [Google Scholar] [CrossRef]
- Mutters, R.G.; Ferreira, L.G.R.; Hall, A.E. Proline Content of the Anthers and Pollen of Heat-Tolerant and Heat-Sensitive Cowpea Subjected to Different Temperatures. Crop Sci. 1989, 29, 1497–1500. [Google Scholar] [CrossRef]
- Mutters, R.G.; Hall, A.E.; Patel, P.N. Photoperiod and Light Quality Effects on Cowpea Floral Development at High Temperatures. Crop Sci. 1989, 29, 1501–1505. [Google Scholar] [CrossRef]
- Hall, A.E. Sustainable Productivity, Heat Tolerance For. In Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2013; pp. 599–615. [Google Scholar]
- Nielsen, C.L.; Hall, A.E. Responses of Cowpea (Vigna unguiculata (L.) Walp.) in the Field to High Night Air Temperature during Flowering. II. Plant Responses. Field Crops Res. 1985, 10, 181–196. [Google Scholar] [CrossRef]
- Bagnall, D.J.; King, R.W. Temperature and Irradiance Effects on Yield in Cowpea (Vigna unguiculata). Field Crops Res. 1987, 16, 217–229. [Google Scholar] [CrossRef]
- Ismail, A.M.; Hall, A.E.; Ehlers, J.D. Delayed-Leaf-Senescence and Heat-Tolerance Traits Mainly Are Independently Expressed in Cowpea. Crop Sci. 2000, 40, 1049–1055. [Google Scholar] [CrossRef]
- El-Madina, I.M.D.; Hall, A.E. Flowering of Contrasting Cowpea (Vigna unguiculata (L.) Walp.) Genotypes under Different Temperatures and Photoperiods. Field Crops Res. 1986, 14, 87–104. [Google Scholar] [CrossRef]
- Timko, M.P.; Singh, B.B. Cowpea, a Multifunctional Legume. In Genomics of Tropical Crop Plants; Springer: New York, NY, USA, 2008; pp. 1–32. [Google Scholar]
- Cisse, N.; Ndiaye, M.; Thiaw, S.; Hall, A.E. Registration of ‘Mouride’ Cowpea. Crop Sci. 1995, 35, 1215–1216. [Google Scholar] [CrossRef]
- Selinga, T.I.; Maseko, S.T.; Gabier, H.; Rafudeen, M.S.; Muasya, A.M.; Crespo, O.; Ogola, J.B.O.; Valentine, A.J.; Ottosen, C.O.; Rosenqvist, E.; et al. Regulation and Physiological Function of Proteins for Heat Tolerance in Cowpea (Vigna unguiculata) Genotypes under Controlled and Field Conditions. Front. Plant Sci. 2022, 13, 954527. [Google Scholar] [CrossRef]
- Thiaw, S.; Hall, A.E. Comparison of Selection for Either Leaf-Electrolyte-Leakage or Pod Set in Enhancing Heat Tolerance and Grain Yield of Cowpea. Field Crops Res. 2004, 86, 239–253. [Google Scholar] [CrossRef]
- Singh, B.B.; Ehlers, J.D.; Sharma, B.; Freire Filho, F.R. Recent progress in cowpea breeding. In Proceedings of the Challenges and Opportunities for Enhancing Sustainable Cowpea Production (IITA), Ibadan, Nigeria, 4–8 September 2000; Fatokun, C., Tarawali, S., Singh, B., Kormawa, P., Tamo, M., Eds.; IITA: Ibadan, Nigeria, 2002; pp. 22–40. [Google Scholar]
- Ahmed, F.E.; Hall, A.E.; Madore, M.A. Interactive Effects of High Temperature and Elevated Carbon Dioxide Concentration on Cowpea [Vigna unguiculata (L.) Walp.]. Plant Cell Environ. 1993, 16, 835–842. [Google Scholar] [CrossRef]
- Ntare, B.R. Variation in Reproductive Efficiency and Yield of Cowpea under High Temperature Conditions in a Sahelian Environment. Euphytica 1991, 59, 27–32. [Google Scholar] [CrossRef]
- Ehlers, J.D.; Hall, A.E.; Patel, P.N.; Roberts, P.A.; Matthews, W.C. Registrations of CB 27 Cowpea Cultivars. Crop Sci. 2000, 40, 849–863. [Google Scholar] [CrossRef]
- Marfo, K.O.; Hall, A.E. Inheritance of Heat Tolerance during Pod Set in Cowpea. Crop Sci. 1992, 32, 912–918. [Google Scholar] [CrossRef]
- Angira, B. Genetic and Physiological Studies of Heat Tolerance in Cowpea. Ph.D. Dissertation, Texas A&M University, College Station, TX, USA, 2016. [Google Scholar]
- Ayenan, M.A.T.; Danquah, A.; Hanson, P.; Ampomah-Dwamena, C.; Sodedji, F.A.K.; Asante, I.K.; Danquah, E.Y. Accelerating Breeding for Heat Tolerance in Tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy 2019, 9, 720. [Google Scholar] [CrossRef]
- Patel, P.N.; Hall, A.E. Inheritance of Heat-Induced Brown Discoloration in Seed Coats of Cowpea. Crop Sci. 1988, 28, 929–932. [Google Scholar] [CrossRef]
- Hall, A.E. Physiology and breeding for heat tolerance in Cowpea, and comparisons with other crops. In Adaptation of Food Crops to Temperature and Water Stress, Proceedings of an International Symposium, Taipei, Taiwan, 13–18 August 1992, 1st ed.; Kuo, G., Ed.; AVRDC: Taipei, Taiwan, 1993; ISBN 929058081X. [Google Scholar]
- Lonardi, S.; Muñoz-Amatriaín, M.; Liang, Q.; Shu, S.; Wanamaker, S.I.; Lo, S.; Tanskanen, J.; Schulman, A.H.; Zhu, T.; Luo, M.; et al. The Genome of Cowpea (Vigna unguiculata [L.] Walp.). Plant J. 2019, 98, 767–782. [Google Scholar] [CrossRef] [PubMed]
- Jha, U.C.; Nayyar, H.; Palakurthi, R.; Jha, R.; Valluri, V.; Bajaj, P.; Chitikineni, A.; Singh, N.P.; Varshney, R.K.; Thudi, M. Major QTLs and Potential Candidate Genes for Heat Stress Tolerance Identified in Chickpea (Cicer arietinum L.). Front. Plant Sci. 2021, 12, 655103. [Google Scholar] [CrossRef]
- Wu, X.; Wu, X.; Xu, P.; Wang, B.; Lu, Z.; Li, G. Association Mapping for Fusarium Wilt Resistance in Chinese Asparagus Bean Germplasm. Plant Genome 2015, 8, 1–6. [Google Scholar] [CrossRef]
- Burridge, J.D.; Schneider, H.M.; Huynh, B.L.; Roberts, P.A.; Bucksch, A.; Lynch, J.P. Genome-Wide Association Mapping and Agronomic Impact of Cowpea Root Architecture. Theor. Appl. Genet. 2017, 130, 419–431. [Google Scholar] [CrossRef]
- Ravelombola, W.; Qin, J.; Shi, A.; Lu, W.; Weng, Y.; Xiong, H.; Yang, W.; Bhattarai, G.; Mahamane, S.; Payne, W.A.; et al. Association Mapping Revealed SNP Markers for Adaptation to Low Phosphorus Conditions and Rock Phosphate Response in USDA Cowpea (Vigna unguiculata (L.) Walp.) Germplasm. Euphytica 2017, 213, 183. [Google Scholar] [CrossRef]
- Huynh, B.-L.; Ehlers, J.D.; Close, T.J.; Roberts, P.A. Registration of a Cowpea [Vigna unguiculata (L.) Walp.] Multiparent Advanced Generation Intercross (MAGIC) Population. J. Plant Regist. 2019, 13, 281–286. [Google Scholar] [CrossRef]
- Muñoz-Amatriaín, M.; Lo, S.; Herniter, I.A.; Boukar, O.; Fatokun, C.; Carvalho, M.; Castro, I.; Guo, Y.N.; Huynh, B.L.; Roberts, P.A.; et al. The UCR Minicore: A Resource for Cowpea Research and Breeding. Legume Sci. 2021, 3, e95. [Google Scholar] [CrossRef]
- Arumuganathan, K.; Earle, E.D. Nuclear DNA Content of Some Important Plant Species. Plant Mol. Biol. Report. 1991, 9, 208–218. [Google Scholar] [CrossRef]
- Timko, M.P.; Rushton, P.J.; Laudeman, T.W.; Bokowiec, M.T.; Chipumuro, E.; Cheung, F.; Town, C.D.; Chen, X. Sequencing and Analysis of the Gene-Rich Space of Cowpea. BMC Genom. 2008, 9, 103. [Google Scholar] [CrossRef]
- Spriggs, A.; Henderson, S.T.; Hand, M.L.; Johnson, S.D.; Taylor, J.M.; Koltunow, A. Assembled Genomic and Tissue-Specific Transcriptomic Data Resources for Two Genetically Distinct Lines of Cowpea (Vigna unguiculata (L.) Walp). Gates Open Res. 2018, 2, 7. [Google Scholar] [CrossRef]
- Srivastava, R.; Kobayashi, Y.; Koyama, H.; Sahoo, L. Cowpea NAC1/NAC2 transcription factors improve growth and tolerance to drought and heat in transgenic cowpea through combined activation of photosynthetic and antioxidant mechanisms. J. Integr. Plant Biol. 2023, 65, 25–44. [Google Scholar] [CrossRef]
- Jha, U.C.; Bohra, A.; Singh, N.P. Heat Stress in Crop Plants: Its Nature, Impacts and Integrated Breeding Strategies to Improve Heat Tolerance. Plant Breed. 2014, 133, 679–701. [Google Scholar] [CrossRef]
- Hall, A.E.; Cisse, N.; Thiaw, S.; Elawad, H.O.A.; Ehlers, J.D.; Ismail, A.M.; Fery, R.L.; Roberts, P.A.; Kitch, L.W.; Murdock, L.L.; et al. Development of Cowpea Cultivars and Germplasm by the Bean/Cowpea CRSP. Field Crops Res. 2003, 82, 103–134. [Google Scholar] [CrossRef]
- Padi, F.K.; Denwar, N.N.; Kaleem, F.Z.; Salifu, A.B.; Clottey, V.A.; Kombiok, J.; Haruna, M.; Hall, A.E.; Marfo, K.O. Registration of ‘Apagbaala’ Cowpea. Crop Sci. 2004, 44, 1486. [Google Scholar] [CrossRef]
- Padi, F.K.; Denwar, N.N.; Kaleem, F.Z.; Salifu, A.B.; Clottey, V.A.; Kombiok, J.; Haruna, M.; Hall, A.E.; Marfo, K.O. Registration of ‘Marfo-Tuya’ Cowpea. Crop Sci. 2004, 44, 1486–1487. [Google Scholar] [CrossRef]
- Patel, P.N.; Hall, A.E. Registration of Snap-Cowpea Germplasms. Crop Sci. 1986, 26, 207–208. [Google Scholar] [CrossRef]
- Craufurd, P.Q.; Qi, A.; Summerfield, R.J.; Ellis, R.H.; Roberts, E.H. Development in Cowpea (Vigna unguiculata). III. Effects of Temperature and Photoperiod on Time to Flowering in Photoperiod-Sensitive Genotypes and Screening for Photothermal Responses. Exp. Agric. 1996, 32, 29–40. [Google Scholar] [CrossRef]
- Lucas, M.R.; Huynh, B.-L.; Ehlers, J.D.; Roberts, P.A.; Close, T.J. High-Resolution Single Nucleotide Polymorphism Genotyping Reveals a Significant Problem among Breeder Resources. Plant Genome 2013, 6, 1–5. [Google Scholar] [CrossRef]
- Pask, A.J.D.; Pietragalla, J.; Mullan, D.M.; Reynolds, M.P. (Eds.) Physiological Breeding II: A Field Guide to Wheat Phenotyping. Mexico, D.F.: CIMMYT. 2012. Available online: https://repository.cimmyt.org/xmlui/bitstream/handle/10883/1288/96144.pdf?sequence=3&isAllowed=y (accessed on 25 January 2024).
- Reynolds, M.P.; Pask, A.J.D.; Mullan, D.M. (Eds.) Physiological Breeding I: Interdisciplinary Approaches to Improve Crop Adaptation. Mexico, D.F.: CIMMYT. 2012. Available online: https://repository.cimmyt.org/xmlui/bitstream/handle/10883/1287/96140.pdf (accessed on 25 January 2024).
- Mutters, R.G.; Hall, A.E. Reproductive Responses of Cowpea to High Temperature during Different Night Periods. Crop Sci. 1992, 32, 202–206. [Google Scholar] [CrossRef]
- Dreccer, M.F.; Molero, G.; Rivera-Amado, C.; John-Bejai, C.; Wilson, Z. Yielding to the Image: How Phenotyping Reproductive Growth Can Assist Crop Improvement and Production. Plant Sci. 2019, 282, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Heidmann, I.; Schade-Kampmann, G.; Lambalk, J.; Ottiger, M.; Di Berardino, M. Impedance Flow Cytometry: A Novel Technique in Pollen Analysis. PLoS ONE 2016, 11, e0165531. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.W.; Lin, T.H.; Yee, C.K.M.; Chen, J.; Wang, Y.W.; Nalla, M.K.; Barchenger, D.W. Impedance Flow Cytometry for Selection of Pollen Traits Under High Temperature Stress in Pepper. HortScience 2022, 57, 181–190. [Google Scholar] [CrossRef]
- Luria, G.; Rutley, N.; Lazar, I.; Harper, J.F.; Miller, G. Direct Analysis of Pollen Fitness by Flow Cytometry: Implications for Pollen Response to Stress. Plant J. 2019, 98, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Ohama, N.; Sato, H.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Transcriptional Regulatory Network of Plant Heat Stress Response. Trends Plant Sci. 2017, 22, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Simoes-Araujo, J.L.; Alves-Ferreira, M.; Rumjanek, N.G.; Margis-Pinheiro, M. VuNIP1 (NOD26-like) and VuHSP17.7 Gene Expression are Regulated in Response to Heat Stress in Cowpea Nodule. Environ. Exp. Bot. 2008, 63, 256–265. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Hall, A.E.; Schulze, E.-D. Stomatal Response to Environment and a Possible Interrelation between Stomatal Effects on Transpiration and CO2 Assimilation. Plant Cell Environ. 1980, 3, 467–474. [Google Scholar] [CrossRef]
- Ismail, A.M.; Hall, A.E. Reproductive-Stage Heat Tolerance, Leaf Membrane Thermostability and Plant Morphology in Cowpea. Crop Sci. 1999, 39, 1762–1768. [Google Scholar] [CrossRef]
- Ismail, A.M.; Hall, A.E. Semidwarf and Standard-Height Cowpea Responses to Row Spacing in Different Environments. Crop Sci. 2000, 40, 1618–1623. [Google Scholar] [CrossRef]
- Kapazoglou, A.; Gerakari, M.; Lazaridi, E.; Kleftogianni, K.; Sarri, E.; Tani, E.; Bebeli, P.J. Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. Plants 2023, 12, 328. [Google Scholar] [CrossRef]
- Harouna, D.V.; Venkataramana, P.B.; Ndakidemi, P.A.; Matemu, A.O. Under-Exploited Wild Vigna Species Potentials in Human and Animal Nutrition: A Review. Glob. Food Sec. 2018, 18, 1–11. [Google Scholar] [CrossRef]
- van Zonneveld, M.; Rakha, M.; Tan, S.Y.; Chou, Y.Y.; Chang, C.H.; Yen, J.Y.; Schafleitner, R.; Nair, R.; Naito, K.; Solberg, S. Mapping Patterns of Abiotic and Biotic Stress Resilience Uncovers Conservation Gaps and Breeding Potential of Vigna Wild Relatives. Sci. Rep. 2020, 10, 2111. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.S.; Russom, Z.; Abdul, S.D. Inheritance of Hairiness and Pod Shattering, Heritability and Correlation Studies in Crosses between Cultivated Cowpea (Vigna unguiculata (L.) Walp.) and Its Wild (Var. pubescens) Relative. Euphytica 2010, 171, 397–407. [Google Scholar] [CrossRef]
- Lelou, B.; Diatewa, M.; Van Damme, P. A Study of Intraspecific Hybrid Lines Derived from the Reciprocal Crosses between Wild Accessions and Cultivated Cowpeas. Afr. J. Plant Sci. 2011, 5, 337–348. [Google Scholar]
- Cooper, H.D.; Spillane, C.; Hodgkin, T. Broadening the genetic base of crops: An overview. In Broadening the Genetic Base of Crop Production; CABI: Egham, UK, 2000; pp. 1–23. [Google Scholar] [CrossRef]
- Reynolds, M.; Manes, Y.; Izanloo, A.; Langridge, P. Phenotyping Approaches for Physiological Breeding and Gene Discovery in Wheat. Ann. Appl. Biol. 2009, 155, 309–320. [Google Scholar] [CrossRef]
- Reynolds, M.; Chapman, S.; Crespo-Herrera, L.; Molero, G.; Mondal, S.; Pequeno, D.N.L.; Pinto, F.; Pinera-Chavez, F.J.; Poland, J.; Rivera-Amado, C.; et al. Breeder Friendly Phenotyping. Plant Sci. 2020, 295, 110396. [Google Scholar] [CrossRef]
- Cossani, C.M.; Reynolds, M.P. Physiological Traits for Improving Heat Tolerance in Wheat. Plant Physiol. 2012, 160, 1710–1718. [Google Scholar] [CrossRef]
- Hamidou, F.; Zombre, G.; Braconnier, S. Physiological and Biochemical Responses of Cowpea Genotypes to Water Stress Under Glasshouse and Field Conditions. J. Agron. Crop Sci. 2007, 193, 229–237. [Google Scholar] [CrossRef]
- Munjonji, L.; Ayisi, K.K.; Boeckx, P.; Haesaert, G. Stomatal Behavior of Cowpea Genotypes Grown Under Varying Moisture Levels. Sustainability 2018, 10, 12. [Google Scholar] [CrossRef]
- Ismail, A.M.; Hall, A.E. Carbon Isotope Discrimination and Gas Exchange of Cowpea Accessions and Hybrids. Crop Sci. 1993, 33, 788–793. [Google Scholar] [CrossRef]
- Kirchhoff, W.R.; Hall, A.E.; Isom, W.H. Phenotypic Expression of a Chlorophyll Mutant in Cowpea (Vigna unguiculata): Environmental Influences and Effects on Productivity. Field Crops Res. 1989, 21, 19–28. [Google Scholar] [CrossRef]
- Ben-Jabeur, M.; Gracia-Romero, A.; López-Cristoffanini, C.; Vicente, R.; Kthiri, Z.; Kefauver, S.C.; López-Carbonell, M.; Serret, M.D.; Araus, J.L.; Hamada, W. The promising MultispeQ device for tracing the effect of seed coating with biostimulants on growth promotion, photosynthetic state and water–nutrient stress tolerance in durum wheat. Euro-Mediterr. J. Environ. Integr. 2021, 6, 8. [Google Scholar] [CrossRef]
- Weber, V.S.; Araus, J.L.; Cairns, J.E.; Sanchez, C.; Melchinger, A.E.; Orsini, E. Prediction of Grain Yield Using Reflectance Spectra of Canopy and Leaves in Maize Plants Grown under Different Water Regimes. Field Crops Res. 2012, 128, 82–90. [Google Scholar] [CrossRef]
- Mahalakshmi, V.; Ng, Q.; Lawson, M.; Ortiz, R. Cowpea [Vigna unguiculata (L.) Walp.] Core Collection Defined by Geographical, Agronomical and Botanical Descriptors. Plant Genet. Resour. 2007, 5, 113–119. [Google Scholar] [CrossRef]
- Pandey, S.; Singh, A.; Parida, S.K.; Prasad, M. Combining Speed Breeding with Traditional and Genomics-Assisted Breeding for Crop Improvement. Plant Breed. 2022, 141, 301–313. [Google Scholar] [CrossRef]
- Kole, C.; Muthamilarasan, M.; Henry, R.; Edwards, D.; Sharma, R.; Abberton, M.; Batley, J.; Bentley, A.; Blakeney, M.; Bryant, J.; et al. Application of Genomics-Assisted Breeding for Generation of Climate Resilient Crops: Progress and Prospects. Front. Plant Sci. 2015, 6, 563. [Google Scholar] [CrossRef] [PubMed]
- Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An Introduction to Markers, Quantitative Trait Loci (QTL) Mapping and Marker-Assisted Selection for Crop Improvement: The Basic Concepts. Euphytica 2005, 142, 169–196. [Google Scholar] [CrossRef]
- Wü, T. Mapping QTL for agronomic traits in breeding populations. Theor. Appl. Genet. 2012, 125, 201–210. [Google Scholar] [CrossRef]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Jannink, J.-L.; Lorenz, A.J.; Iwata, H. Genomic Selection in Plant Breeding: From Theory to Practice. Brief Funct. Genom. 2010, 9, 166–177. [Google Scholar] [CrossRef]
- Meuwissen, T. Genomic Selection: The Future of Marker Assisted Selection and Animal Breeding. In Marker Assisted Selection: A Fast Track to Increase Genetic Gain in Plant and Animal Breeding? Session II: MAS in Animals Genomic Selection: The Future of Marker Assisted Selection and Animal Breeding; 2003; pp. 54–59. Available online: https://www.iaea.org/sites/default/files/21/06/nafa-aph-training-meuwissen.pdf (accessed on 16 October 2017).
- Meuwissen, T.; Hayes, B.; Goddard, M. Genomic Selection: A Paradigm Shift in Animal Breeding. Anim. Front. 2016, 6, 6–14. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Fu, J.; Wang, H.; Wang, J.; Huang, C.; Prasanna, B.M.; Olsen, M.S.; Wang, G.; Zhang, A. Enhancing Genetic Gain through Genomic Selection: From Livestock to Plants. Plant Commun. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Asoro, F.G.; Newell, M.A.; Beavis, W.D.; Scott, M.P.; Tinker, N.A.; Jannink, J.L. Genomic, Marker-Assisted, and Pedigree-BLUP Selection Methods for β-Glucan Concentration in Elite Oat. Crop Sci. 2013, 53, 1894–1906. [Google Scholar] [CrossRef]
- Voss-Fels, K.P.; Cooper, M.; Hayes, B.J. Accelerating Crop Genetic Gains with Genomic Selection. Theor. Appl. Genet. 2019, 132, 669–686. [Google Scholar] [CrossRef]
- Céron-Rojas, J.J.; Crossa, J. Linear genomic selection indices. In Linear Selection Indices in Modern Plant Breeding; Springer International Publishing: Cham, Switzerland, 2018; pp. 99–120. ISBN 9783319912233. [Google Scholar]
- Olatoye, M.O.; Hu, Z.; Aikpokpodion, P.O. Epistasis Detection and Modeling for Genomic Selection in Cowpea (Vigna unguiculata L. Walp.). Front. Genet. 2019, 10, 677. [Google Scholar] [CrossRef]
- Wanga, M.A.; Shimelis, H.; Mashilo, J.; Laing, M.D. Opportunities and Challenges of Speed Breeding: A Review. Plant Breed. 2021, 140, 185–194. [Google Scholar] [CrossRef]
- Nagatoshi, Y.; Fujita, Y. Accelerating Soybean Breeding in a CO2-Supplemented Growth Chamber. Plant Cell. Physiol. 2019, 60, 77–84. [Google Scholar] [CrossRef]
- Ghosh, S.; Watson, A.; Gonzalez-Navarro, O.E.; Ramirez-Gonzalez, R.H.; Yanes, L.; Mendoza-Suárez, M.; Simmonds, J.; Wells, R.; Rayner, T.; Green, P.; et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 2018, 13, 2944–2963. [Google Scholar] [CrossRef] [PubMed]
- Alahmad, S.; Dinglasan, E.; Leung, K.M.; Riaz, A.; Derbal, N.; Voss-Fels, K.P.; Able, J.A.; Bassi, F.M.; Christopher, J.; Hickey, L.T. Speed Breeding for Multiple Quantitative Traits in Durum Wheat. Plant Methods 2018, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Samineni, S.; Sen, M.; Sajja, S.B.; Gaur, P.M. Rapid Generation Advance (RGA) in Chickpea to Produce up to Seven Generations per Year and Enable Speed Breeding. Crop J. 2020, 8, 164–169. [Google Scholar] [CrossRef]
- Jähne, F.; Hahn, V.; Würschum, T.; Leiser, W.L. Speed Breeding Short-Day Crops by LED-Controlled Light Schemes. Theor. Appl. Genet. 2020, 133, 2335–2342. [Google Scholar] [CrossRef]
- O’Connor, D.J.; Wright, G.C.; Dieters, M.J.; George, D.L.; Hunter, M.N.; Tatnell, J.R.; Fleischfresser, D.B. Development and Application of Speed Breeding Technologies in a Commercial Peanut Breeding Program. Peanut Sci. 2013, 40, 107–114. [Google Scholar] [CrossRef]
- Saxena, K.B.; Saxena, R.K.; Hickey, L.T.; Varshney, R.K. Can a Speed Breeding Approach Accelerate Genetic Gain in Pigeonpea? Euphytica 2019, 215, 202. [Google Scholar] [CrossRef]
- Edet, O.U.; Ishii, T. Cowpea Speed Breeding Using Regulated Growth Chamber Conditions and Seeds of Oven-Dried Immature Pods Potentially Accommodates Eight Generations per Year. Plant Methods 2022, 18, 106. [Google Scholar] [CrossRef]
- Biswas, S.; Zhang, D.; Shi, J. CRISPR/Cas Systems: Opportunities and Challenges for Crop Breeding. Plant Cell Rep. 2021, 40, 979–998. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Zhang, B.; Ding, W.; Liu, X.; Yang, D.L.; Wei, P.; Cao, F.; Zhu, S.; Zhang, F.; Mao, Y.; et al. Efficient Genome Editing in Plants Using a CRISPR/Cas System. Cell Res. 2013, 23, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Doudna, J.A.; Charpentier, E. The New Frontier of Genome Engineering with CRISPR-Cas9. Science 2014, 346, 6213. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, A.; Barqawi, A.A.; Mahmood, A.; Nawaz, M.; Shah, A.N.; Bay, D.H.; Alahdal, M.A.; Hassan, M.U.; Qari, S.H. CRISPR/Cas9 Is a Powerful Tool for Precise Genome Editing of Legume Crops: A Review. Mol. Biol. Rep. 2022, 49, 5595–5609. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, P.; Konkin, D.; Polowick, P.; Hodgins, C.L.; Subedi, M.; Xiang, D.; Yu, B.; Patterson, N.; Rajagopalan, N.; Babic, V.; et al. CRISPR/Cas9 Gene Editing in Legume Crops: Opportunities and Challenges. Legume Sci. 2021, 3, e96. [Google Scholar] [CrossRef]
- Che, P.; Chang, S.; Simon, M.K.; Zhang, Z.; Shaharyar, A.; Ourada, J.; O’Neill, D.; Torres-Mendoza, M.; Guo, Y.; Marasigan, K.M.; et al. Developing a Rapid and Highly Efficient Cowpea Regeneration, Transformation and Genome Editing System Using Embryonic Axis Explants. Plant J. 2021, 106, 817–830. [Google Scholar] [CrossRef]
- Popelka, J.C.; Gollasch, S.; Moore, A.; Molvig, L.; Higgins, T.J.V. Genetic Transformation of Cowpea (Vigna unguiculata L.) and Stable Transmission of the Transgenes to Progeny. Plant Cell Rep. 2006, 25, 304–312. [Google Scholar] [CrossRef]
- Bridgeland, A.; Biswas, S.; Tsakirpaloglou, N.; Thomson, M.J.; Septiningsih, E.M. Optimization of Gene Editing in Cowpea through Protoplast Transformation and Agroinfiltration by Targeting the Phytoene Desaturase Gene. PLoS ONE 2023, 18, e0283837. [Google Scholar] [CrossRef] [PubMed]
- Juranić, M.; Nagahatenna, D.S.K.; Salinas-Gamboa, R.; Hand, M.L.; Sánchez-León, N.; Leong, W.H.; How, T.; Bazanova, N.; Spriggs, A.; Vielle-Calzada, J.P.; et al. A Detached Leaf Assay for Testing Transient Gene Expression and Gene Editing in Cowpea (Vigna unguiculata [L.] Walp.). Plant Methods 2020, 16, 88. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Zhang, C.; Sun, Z.; Wang, L.; Duanmu, D.; Fan, Q. Genome Editing in Cowpea Vigna unguiculata Using CRISPR-Cas9. Int. J. Mol. Sci. 2019, 20, 2471. [Google Scholar] [CrossRef] [PubMed]
No. | Tolerant Lines | Key Traits Assessed 1 | Screening Environments | References |
---|---|---|---|---|
1 | Prima | DTF, DTM, NOB, NPB, FP, NPP, PS, PP, and PDW | Growth cabinets | [12] |
2 | TVu 4552, Prima, PI 204647 | DTF, NFA, pollen viability, PCA, SR, ovule viability, NFDA, NFIA, IA, FPSB; NP SPP and other yield components | Hot, long-day field and growth chambers | [15] |
3 | Prima, TVu 4552, UCR 204, PI 204647, 750-1, IT84D-448, IT84D-449, IT84S-2127, 7964 | Days to first macroscopic floral bud, DTF, the extent of floral bud abortion, PDL, and PS | Hot field and growth chambers | [26] |
4 | IT93K-452-1, IT98K-1111-1, IT93K-693-2, IT97K-472-12, IT97K-472-25 | Pod and grain yield traits | Hot field | [49] |
5 | Epace 10 and Marataoã | Germination, shoot and root length, and seedling dry weight | Germination chamber | [17] |
6 | TVu4552 and Prima | Flower abscission (%), PP, SDWT, NSPP, and GYD | Field supplemented with thermostats | [45] |
7 | Itaim | DTF, DTM, physiological and biochemical traits, SDW, RDW, GYD, PDWT, PDL, PL, NPP, and NSP | Growth chambers | [21] |
8 | Tapaihum | PP, SPD, SDWT, SFW, and SDW | Growth chambers | [40] |
9 | IT96D-610 | Heat-shock proteins and other stress-protective proteins | Glasshouse and field | [51] |
10 | Genotype H36 | Leaf electrolyte leakage, NPP, PP, PHT, HI, GYD, and SDW | Growth chambers, glasshouse, and hot field | [52] |
11 | IT97K-472-12, IT97K-472-25, IT97K-819-43, & IT97K-499-38 | NF, PS, and GYD | Field | [53] |
12 | Genotype 7964 | Phenology, floral, pollen, pod, and other reproductive traits | Greenhouses and growth chambers | [20] |
13 | NA * | Phenology, floral, pollen, NPD, PDL and PS traits | Growth chambers with supplemented lighting system | [41] |
14 | Genotypes 518 and 7964 | Phenology; flower traits; PS; carbohydrate contents of the peduncle; starch in leaves, stems and peduncles; photosynthesis rate; leaf area; and shoot biomass yield | Growth chambers | [54] |
15 | TN88-63, A73-2-1 and TVx 3236 | NF, PS, and GYD | Hot field | [55] |
16 | H36, 1393-2-1, H8-8-27, H8-14-12, H14-10-1N, and H35-5-10 | PHT, SDW, NPP, SPP, SDWi, and HI | Field | [18] |
17 | CB27 | Flower production, and PP | Hot field | [56] |
18 | TVu4552, Prima, H14-10-27, H14-10-23, H8-14-13, H8-8-4, H8-9-3, 518-2, B89-600, TN88-63 etc. | DFF, NPP, NP, and GYD | Greenhouses | [31] |
19 | Prima and TVu4552 | NPP | Field | [57] |
20 | 518-22, Prima, TVu4552, H8-9-3, H8-8-4, H8-14-13, H14-10-23, H14-10-27 etc. | Photoperiod response, DTF, PS, and GYD per plant | Field and glasshouses | [34] |
21 | IAR-48, GEC, IT98K-277-2, Yacine, and IT98K-1092-1 | DTF, Visual heat ratings, SDWTPP, PDWT, and Weight of 100 seeds. | Field and glasshouse | [58] |
No | Mapping Population and Size | Parent-1 | Parent-2 | Marker System | Trait Assessed | Study Environment | Number of QTLs Mapped | Chr | PVE (%) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
1 | F8-RIL with 141 lines | CB27 (Heat tolerant) | IT82E-18 (Heat sensitive) | SNPs | Number of pods and peduncles | Greenhouse and field environments | Five | 2, 7, 6, 10, and 3 | 18.1, 17.1, 16.2, 16, and 11.5 | [32] |
2 | F10-RIL with 113 lines | IT93K-503-1 (Hbs positive) | CB46 (Hbs negative) | SNPs | Visual inspection of dried seeds for brown discolouration of seed coat | Greenhouse | Two | 8 and 3 | 28.3–77.3, and 9.5–12.3 | [33] |
3 | F8-RIL with 136 lines | IT84S-2246 (Hbs positive) | TVu14676 (Hbs negative) | SNPs | Visual inspection of dried seeds for brown discolouration of seed coat | Greenhouse | One | 1 | 6.2–6.8 | [33] |
4 | F8-RIL with 175 lines | GEC (Heat tolerant) | IT98K- 476-8 (Heat susceptible) | SNPs | Heat-tolerance visual ratings | Field and greenhouse environments | Two | 1 and 10 | 7.66 and 10.64 | [58] |
5 | F8-RIL with 175 lines | GEC (Heat tolerant) | IT98K- 476-8 (Heat susceptible) | SNPs | Seed weight per plant | Field and greenhouse environments | Two | 3 and 10 | 17.05 and 11.37 | [58] |
6 | F8-RIL with 175 lines | GEC (Heat tolerant) | IT98K- 476-8 (Heat susceptible) | SNPs | Number of pods per plant | Field and greenhouse environments | Three | 3 and 10 | 22.93, 5.93, and 7.62 | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, S.B.; Ongom, P.O.; Togola, A.; Boukar, O. Enhancing Cowpea Tolerance to Elevated Temperature: Achievements, Challenges and Future Directions. Agronomy 2024, 14, 513. https://doi.org/10.3390/agronomy14030513
Mohammed SB, Ongom PO, Togola A, Boukar O. Enhancing Cowpea Tolerance to Elevated Temperature: Achievements, Challenges and Future Directions. Agronomy. 2024; 14(3):513. https://doi.org/10.3390/agronomy14030513
Chicago/Turabian StyleMohammed, Saba Baba, Patrick Obia Ongom, Abou Togola, and Ousmane Boukar. 2024. "Enhancing Cowpea Tolerance to Elevated Temperature: Achievements, Challenges and Future Directions" Agronomy 14, no. 3: 513. https://doi.org/10.3390/agronomy14030513
APA StyleMohammed, S. B., Ongom, P. O., Togola, A., & Boukar, O. (2024). Enhancing Cowpea Tolerance to Elevated Temperature: Achievements, Challenges and Future Directions. Agronomy, 14(3), 513. https://doi.org/10.3390/agronomy14030513