Grapefruit Extracts and Black Chokeberry Juice as Potential Antioxidant and Antifungal Agents for Carrot Seed Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Govindaraj, M.; Masilamani, P.; Alex Albert, V.; Bhaskaran, M. Role of antioxidant in seed quality—A review. Agric. Rev. 2017, 38, 180–190. [Google Scholar] [CrossRef]
- Adetunji, A.E.; Adetunji, T.L.; Varghese, B.; Sershen; Pammenter, N.W. Oxidative stress, ageing and methods of seed invigoration: An overview and perspectives. Agronomy 2021, 11, 2369. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Agudelo, C.; Barros, L.; Santos-Buelga, C.; Martínez-Navarrete, N.; Ferreira, I.C.F.R. Phytochemical content and antioxidant activity of grapefruit (Star Ruby): A comparison between fresh freeze-dried fruits and different powder formulations. LWT 2017, 80, 106–112. [Google Scholar] [CrossRef]
- Sicari, V.; Pellicanò, T.M.; Giuffrè, A.M.; Zappia, C.; Capocasale, M.; Poiana, M. Physical chemical properties and antioxidant capacities of grapefruit juice (Citrus paradisi) extracted from two different varieties. Int. Food Res. J. 2018, 25, 1978–1984. [Google Scholar]
- Tolić, M.T.; Jurčević, I.L.; Krbavčić, I.P.; Marković, K.; Vahčić, N. Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol. Biotechnol. 2015, 53, 171–179. [Google Scholar] [CrossRef]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa Products and by-products for health and nutrition: A review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Farrar, J.J.; Pryor, B.M.; Davis, R.M. Alternaria diseases of carrot. Plant Dis. 2004, 88, 775–910. [Google Scholar] [CrossRef]
- Tylkowska, K. The influence of Alternaria alternata (Fr.) Keissler on carrot (Daucus carota L.) seed germination. Phytopathol. Pol. 1991, 1, 14–18. [Google Scholar]
- Tylkowska, K. Carrot seed-borne diseases caused by Alternaria species. In Alternaria, Biology, Plant Diseases and Metabolites; Chełkowski, J., Visconti, A., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1992; pp. 337–352. [Google Scholar]
- Logrieco, A.; Moretti, A.; Solfrizzo, M. Alternaria toxins and plant diseases: An overview of origin, occurrence and risks. World Mycotoxin J. 2009, 2, 129–140. [Google Scholar] [CrossRef]
- Tylkowska, K.; Grabarkiewicz-Szczęsna, J.; Iwanowska, H. Production of toxins by Alternaria alternata and A. radicina and their effects on germination of carrot. seeds. Seed Sci. Technol. 2003, 31, 309–316. [Google Scholar] [CrossRef]
- Szopińska, D.; Dorna, H.; Tylkowska, K. The effects of grapefruit extract on germination, vigour and health of cabbage, onion and zinnia seeds. Rocz. AR Pozn. CCCLXXXIII Ogrod. 2007, 41, 631–636. [Google Scholar]
- van der Wolf, J.M.; Birnbaum, Y.; van der Zouwen, P.S.; Groot, S.P.C. Disinfection of vegetable seed by treatment with essential oils, organic acids and plant extracts. Seed Sci. Technol. 2008, 36, 76–88. [Google Scholar] [CrossRef]
- Baturo, A. Effect of biopreparations on the health of grain of spring barley (Hordeum vulgare) in organic system. Phytopathol. 2009, 53, 19–30. [Google Scholar]
- Szopińska, D.; Jensen, B.; Knudsen, I.M.B.; Tylkowska, K.; Dorna, H. Non-chemical methods for controlling seedborne fungi in carrot with special reference to Alternaria radicina. J. Plant Prot. Res. 2010, 50, 184–192. [Google Scholar] [CrossRef]
- Dorna, H.; Tylkowska, K.; Shan, W.; Szopińska, D. Effects of plant origin preparations on onion (Allium cepa L.) seed health, germination, vigour and seedling emergence. Folia Univ. Agric. Stetin. 239 Agric. 2004, 95, 69–74. [Google Scholar]
- Kurzawińska, H.; Mazur, S. The application of some biotechnical preparations in potato protection against Phytophthora infestans. Phytopathol. 2012, 63, 31–37. [Google Scholar]
- Patkowska, E. Effect of Miedzian 50 WP and grapefruit extract on the healthiness and communities of soil microorganisms of pea (Pisum sativum L.). Acta Sci. Pol. Hortorum Cultus 2014, 13, 23–33. [Google Scholar]
- Liepiņa, I.; Nikolajeva, V.; Jākobsone, I. Antimicrobial activity of extracts from fruits of Aronia melanocarpa and Sorbus aucuparia . Environ. Exp. Biol. 2013, 11, 195–199. [Google Scholar]
- Kim, D.-H.; Lim, H.-W.; Kim, S.-H.; Lee, J.-M.; Chon, J.-W.; Song, K.-Y.; Bae, D.; Kim, J.; Kim, H.; Seo, K.-H. Antibacterial activity of crude Aronia melanocarpa (black chokeberry) extracts against Bacillus cereus, Staphylococcus aureus, Cronobacter sakazakii, and Salmonella enteritidis in various dairy foods: Preliminary study. J. Milk Sci. Biotechnol. 2018, 36, 155–163. [Google Scholar] [CrossRef]
- Valcheva-Kuzmanova, S.; Belcheva, A. Current knowledge of Aronia melanocarpa as a medicinal plant. Folia Med. 2006, 48, 11–17. [Google Scholar]
- International Rules for Seed Testing; International Seed Testing Association (ISTA): Bassersdorf, Switzerland, 2022.
- Jalink, H.; Van der Schoor, R. Seed Calculator 2.1; License Number: 100200122; Plant Research International: Wageningen, The Netherlands, 1999. [Google Scholar]
- International Rules for Seed Testing. Annexe to Chapter 7: Seed Health Testing Methods 7-001a: Blotter Method for the Detection of Alternaria dauci on Daucus carota (Carrot); International Seed Testing Association (ISTA): Bassersdorf, Switzerland, 2021; Available online: https://www.seedtest.org/en/international-rules-for-seed-testing/seed-health-methods-product-1014.html (accessed on 18 October 2024).
- International Rules for Seed Testing. Annexe to Chapter 7: Seed Health Testing Methods 7-002a: Blotter Method for the Detection of Alternaria radicina on Daucus carota (Carrot); International Seed Testing Association (ISTA): Bassersdorf, Switzerland, 2021; Available online: https://www.seedtest.org/en/international-rules-for-seed-testing/seed-health-methods-product-1014.html (accessed on 18 October 2024).
- Mathur, S.B.; Kongsdal, O. Common Laboratory Seed Health Testing Methods for Detecting Fungi; International Seed Testing Association: Bassersdorf, Switzerland, 2003. [Google Scholar]
- Machado, J.C.; Langerak, C.J.; Jaccoud-Filho, D.S. Seed-Borne Fungi: A Contribution to Routine Seed Health Analysis; International Seed Testing Association: Bassersdorf, Switzerland, 2002. [Google Scholar]
- Mildner-Szkudlarz, S.; Siger, A.; Szwengiel, A.; Bajerska, J. Natural compounds from grape by-products enhance nutritive value and reduce formation of CML in model muffins. Food Chem. 2015, 172, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Juo, C.G.; Chen, C.L.; Lin, S.T.; Fu, S.H.; Chen, Y.T.; Chang, Y.S.; Yu, J.S. Mass accuracy improvement of reversed-phase liquid chromatography/electrospray ionization mass spectrometry based urinary metabolomic analysis by post-run calibration using sodium formate cluster ions. RCM 2014, 28, 1813–1820. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, M.S. Analysis of Variance and hypothesis testing. In Applied Statistics in Agricultural, Biological, and Environmental Sciences; Glaz, B., Yeater, K.M., Eds.; American Society of Agronomy, Soil Science Society of America, Crop Science Society of America: Madison, WI, USA, 2018; pp. 19–52. [Google Scholar] [CrossRef]
- Le, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Xi, W.; Zhang, G.; Jiang, D.; Zhou, Z. Phenolic compositions and antioxidant activities of grapefruit (Citrus paradisi Macfadyen) varieties cultivated in China. Int. J. Food. Sci. Nutr. 2015, 66, 858–866. [Google Scholar] [CrossRef]
- Dorna, H.; Qi, Y.; Szopińska, D. The effect of acetic acid, grapefruit extract and selected essential oils on germination, vigour and health of carrot (Daucus carota L.) seeds. Acta Sci. Pol. Hortorum Cultus 2018, 17, 27–38. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Girennavar, B.; Patil, B.S. Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems. Bioresour. Technol. 2008, 99, 4484–4494. [Google Scholar] [CrossRef]
- Stabrauskiene, J.; Marksa, M.; Ivanauskas, L.; Viskelis, P.; Viskelis, J.; Bernatoniene, J. Citrus paradisi L. fruit waste: The impact of eco-friendly extraction techniques on the phytochemical and antioxidant potential. Nutrients 2023, 15, 1276. [Google Scholar] [CrossRef]
- Ibrahim, F.M.; Abdelsalam, E.; Mohammed, R.S.; Ashour, W.E.S.; Vilas-Boas, A.A.; Pintado, M.; El Habbasha, E.S. Polyphenol-rich extracts and essential oil from Egyptian grapefruit peel as potential antioxidant, antimicrobial, and anti-inflammatory food additives. Appl. Sci. 2024, 14, 2776. [Google Scholar] [CrossRef]
- Tasinov, O.; Dincheva, I.; Badjakov, I.; Grupcheva, C.; Galunska, B. Comparative phytochemical analysis of Aronia melanocarpa L. Fruit juices on Bulgarian market. Plants 2022, 11, 1655. [Google Scholar] [CrossRef]
- Oziembłowski, M.; Trenka, M.; Czaplicka, M.; Maksimowski, D.; Nawirska-Olszańska, A. Selected properties of juices from black chokeberry (Aronia melanocarpa L.) fruits preserved using the PEF method. Appl. Sci. 2022, 12, 7008. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdylo, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Jurikova, T.; Mlcek, J.; Skrovankova, S.; Sumczynski, D.; Sochor, J.; Hlavacova, I.; Snopek, L.; Orsavová, J. Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules 2017, 22, 944. [Google Scholar] [CrossRef]
- Denev, P.; Číž, M.; Kratchanova, M.; Blazheva, D. Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Food Chem. 2019, 284, 108–117. [Google Scholar] [CrossRef]
- Skupien, K.; Oszmianski, J. The effect of mineral fertilization on nutritive value and biological activity of chokeberry fruit. Agric. Food Sci. 2007, 16, 46–55. [Google Scholar] [CrossRef]
- Nelson, E.B. The seed microbiome: Origins, interactions, and impacts. Plant Soil 2018, 422, 7–34. [Google Scholar] [CrossRef]
Germination Parameter (%) | Cultivar | Treatment | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Con ** | F | B | C | A5 | A25 | ||||||||
Gmax * | Berlikumer | 85.0 | a *** | 88.0 | a | 82.0 | a | 84.0 | a | 86.7 | a | 87.3 | a |
Karlena | 85.7 | a | 81.7 | a | 82.0 | a | 81.3 | a | 84.7 | a | 82.0 | a | |
Germination —1st count | Berlikumer | 51.3 | ab | 56.3 | a–c | 66.3 | cd | 61.7 | b–d | 47.7 | a | 56.0 | a–c |
Karlena | 67.0 | cd | 67.0 | cd | 70.7 | d | 68.3 | cd | 61.7 | b–d | 71.7 | d | |
Germination —final count | Berlikumer | 55.7 | ab | 71.0 | c–e | 70.0 | c–e | 64.3 | b–d | 49.0 | a | 62.0 | bc |
Karlena | 72.3 | c–e | 79.3 | e | 73.3 | c–e | 73.3 | c–e | 65.3 | b–d | 75.3 | de | |
Diseased seedlings | Berlikumer | 27.0 | e | 9.3 | ab | 14.0 | b–d | 19.7 | c–e | 30.7 | e | 22.0 | de |
Karlena | 11.3 | a–c | 5.3 | a | 7.7 | ab | 8.7 | ab | 13.0 | b–d | 6.7 | ab | |
Deformed seedlings | Berlikumer | 1.7 | a | 3.7 | a | 1.0 | a | 2.3 | a | 1.3 | a | 1.0 | a |
Karlena | 1.0 | a | 0.3 | a | 0.3 | a | 0.7 | a | 2.0 | a | 0.3 | a | |
Dead seeds | Berlikumer | 15.0 | d | 6.3 | c | 12.0 | d | 12.0 | d | 17.0 | d | 14.7 | d |
Karlena | 5.3 | c | 0.3 | a | 1.7 | ab | 4.0 | bc | 2.7 | bc | 3.7 | bc | |
Fresh seeds | Berlikumer | 0.7 | a | 9.7 | b | 3.0 | a | 1.7 | a | 0.3 | a | 0.3 | a |
Karlena | 10.0 | b | 14.7 | b | 17.0 | b | 13.7 | b | 17.0 | b | 14.0 | b |
Vigor Parameter (Days) | Cultivar | Treatment | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Con | F | B | C | A5 | A25 | ||||||||
T1 * | Berlikumer | 1.41 | a | 1.62 | a–c | 1.76 | bc | 1.71 | bc | 1.93 | c | 1.83 | bc |
Karlena | 1.54 | ab | 1.74 | bc | 1.76 | bc | 1.82 | bc | 1.87 | bc | 1.79 | bc | |
T75 | Berlikumer | 3.57 | cd | 4.73 | e | 3.83 | d | 3.67 | d | 3.50 | cd | 3.60 | cd |
Karlena | 2.73 | a | 3.68 | d | 3.04 | ab | 3.20 | bc | 2.93 | ab | 2.89 | ab | |
MGT | Berlikumer | 3.16 | cd | 4.07 | e | 3.45 | d | 3.28 | d | 3.32 | d | 3.47 | d |
Karlena | 2.52 | a | 3.35 | d | 2.84 | b | 2.93 | bc | 2.84 | b | 2.79 | b | |
U75-25 | Berlikumer | 1.31 | b | 1.80 | c | 1.23 | b | 1.10 | b | 1.00 | ab | 1.23 | b |
Karlena | 0.67 | a | 1.18 | b | 0.76 | a | 0.76 | a | 0.68 | a | 0.68 | a |
Infestation with (%) | Cultivar | Treatment | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Con | F | B | C | A5 | A25 | ||||||||
Alternaria alternata | Berlikumer | 99.0 | e | 41.5 | d | 94.5 | e | 96.5 | e | 99.0 | e | 97.0 | e |
Karlena | 17.0 | bc | 0.0 | a | 11.5 | b | 16.0 | bc | 25.0 | c | 18.0 | bc | |
Alternaria dauci | Berlikumer | 3.5 | c | 3.5 | c | 0.0 | a | 2.0 | bc | 0.5 | a | 1.0 | ab |
Karlena | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | |
Alternaria radicina | Berlikumer | 6.0 | d | 2.0 | bc | 2.0 | a–c | 2.5 | bc | 2.5 | bc | 4.5 | cd |
Karlena | 0.5 | ab | 0.0 | a | 1.0 | ab | 0.5 | ab | 0.0 | a | 0.0 | a | |
Cladosporium spp. | Berlikumer | 1.5 | a | 1.5 | a | 0.0 | a | 1.5 | a | 8.5 | b | 11.5 | b |
Karlena | 2.0 | a | 0.0 | a | 0.5 | a | 2.5 | a | 1.5 | a | 2.5 | a | |
Epicoccum nigrum | Berlikumer | 6.5 | b | 0.5 | a | 1.0 | a | 1.5 | a | 9.5 | bc | 14.5 | c |
Karlena | 0.0 | a | 0.0 | a | 0.0 | a | 2.5 | a | 0.5 | a | 0.5 | a | |
Fusarium spp. | Berlikumer | 4.0 | bc | 0.5 | a | 13.5 | d | 8.5 | cd | 10.5 | d | 4.0 | b |
Karlena | 2.0 | ab | 0.0 | a | 0.0 | a | 0.0 | a | 1.0 | a | 0.5 | a | |
Melanospora simplex | Berlikumer | 3.0 | b | 0.0 | a | 2.0 | ab | 0.5 | a | 6.5 | c | 1.5 | ab |
Karlena | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | |
Penicillium spp. | Berlikumer | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | 1.0 | b |
Karlena | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | 1.5 | b | 3.5 | c | |
Phoma sp. | Berlikumer | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | 1.0 | a |
Karlena | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | 16.0 | b | 0.0 | a | |
Stemphylium spp. | Berlikumer | 3.0 | bc | 1.0 | ab | 1.0 | ab | 6.5 | c | 5.0 | bc | 4.0 | bc |
Karlena | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | 0.5 | ab | 0.5 | ab | |
Ulocladium spp. | Berlikumer | 44.0 | cd | 2.5 | b | 35.5 | c | 40.5 | cd | 48.0 | de | 56.5 | e |
Karlena | 0.0 | a | 0.0 | a | 0.0 | a | 1.0 | ab | 0.5 | ab | 0.0 | a | |
Non-sporulating fungi | Berlikumer | 10.0 | cd | 5.5 | cd | 1.5 | ab | 5.0 | cd | 3.5 | bc | 3.5 | bc |
Karlena | 22.0 | e | 0.0 | a | 7.5 | cd | 13.0 | d | 12.0 | d | 3.0 | bc | |
Seeds free of fungi | Berlikumer | 0.5 | a | 48.5 | b | 0.5 | a | 1.0 | a | 0.0 | a | 1.5 | a |
Karlena | 55.5 | b | 100.0 | e | 78.5 | d | 66.0 | c | 46.0 | b | 71.0 | c |
Groups of Metabolites | Sub-Group | Compound | Mean Value Calculated as Chlorogenic Acid (μg mL−1) | Relative Standard Deviation RSD (%) | ||||
---|---|---|---|---|---|---|---|---|
Biosept Active | Citrogrep | Chokeberry Juice | Biosept Active | Citrogrep | Chokeberry Juice | |||
Coumarins | geranylcoumarin | - | 1.73 | - | - | 3.1 | - | |
Total | 1.73 | |||||||
Phenolic acids | caffeic acid | - | 80.65 | 467.32 | - | 1.3 | 6.1 | |
chlorogenic acid | - | - | 120.18 | - | - | 2.0 | ||
ferulic acid | - | 2.43 | 1.19 | - | 0.4 | 0.4 | ||
neochlorogenic acid | - | - | 64.59 | - | - | 16.8 | ||
p-coumaric acid | - | 0.78 | - | - | 9.0 | - | ||
Total | 83.87 | 653.29 | ||||||
Flavonoids | Anthocyanins | cyanidin 3-arabinoside | - | - | 98.96 | - | - | 1.7 |
cyanidin 3-galactoside/glucoside | - | - | 277.46 | - | - | 1.7 | ||
cyanidin 3-xyloside | - | - | 16.06 | - | - | 2.2 | ||
Total | 392.48 | |||||||
Flavanols | catechin | - | - | 5.09 | - | - | 2.7 | |
Total | 5.09 | |||||||
Flavanones | didymin-poncirin | 8.91 | 596.94 | - | 1.6 | 0.9 | - | |
hesperidin | - | 1227.78 | - | - | 1.6 | - | ||
naringenin | 466.73 | 1072.00 | - | 4.9 | 2.3 | - | ||
narirutin | 947.96 | 1669.02 | - | 7.1 | 0.8 | - | ||
Total | 1423.60 | 4565.73 | ||||||
Flavones | apigenin | 8.11 | 104.84 | - | 1.9 | 5.5 | - | |
heptamethoxyflavone | 11.11 | 299.74 | - | 8.0 | 1.1 | - | ||
nobiletin | 12.03 | 1783.07 | - | 1.2 | 2.8 | - | ||
sinensetin | 4.56 | 1387.31 | - | 5.3 | 5.2 | - | ||
Total | 35.82 | 3574.96 | ||||||
Flavonols | kaempferol | - | 3.06 | - | - | 7.6 | - | |
quercetin | - | - | 32.73 | - | - | 6.5 | ||
quercetin 3-galactoside/glucoside | - | - | 209.45 | - | - | 4.3 | ||
quercetin 3-rutinoside | - | - | 67.23 | - | - | 5.2 | ||
quercetin 3-vicianoside | - | - | 13.05 | - | - | 12.4 | ||
quercetin-glucoside | - | - | 208.13 | - | - | 5.3 | ||
Total | 3.06 | 530.60 | ||||||
Tannins | Proanthocyanidins | procyanidin B2 | - | - | 1.19 | - | - | 0.4 |
procyanidin B5 | - | - | 6.95 | - | - | 9.1 | ||
Total | 8.14 | |||||||
Triterpenoids | Limonoids | deacetyl-nomilin | - | 33.47 | - | - | 3.7 | |
nomilin | - | 8.46 | - | - | 2.7 | - | ||
Total | 41.93 |
Compound | Gmax | Germination 1st Count | Germination Final Count | Diseased Seedlings | Fresh Seeds | Dead Seeds | T1 | Cladosporium spp. | Epicoccum nigrum | Fusarium spp. | Melanospora simplex | Penicillium spp. | Ulocladium spp. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
geranylcoumarin | - * | - | - | - | - | - | - | - | −0.479 ** | - | −0.412 | - | - |
Total Coumarins | - | - | - | - | - | - | - | - | −0.479 | - | −0.412 | - | - |
caffeic acid | 0.452 | - | - | - | −0.406 | - | 0.530 | 0.742 | 0.610 | - | - | 0.428 | 0.587 |
chlorogenic acid | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
ferulic acid | 0.452 | - | - | - | −0.406 | - | 0.530 | 0.742 | 0.610 | - | - | 0.428 | 0.587 |
neochlorogenic acid | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
p-coumaric acid | - | - | - | - | - | - | - | - | −0.479 | - | −0.412 | - | - |
Total Phenolic Acids | 0.452 | - | - | - | −0.406 | - | 0.530 | 0.742 | 0.610 | - | - | 0.428 | 0.587 |
cyanidin 3-arabinoside | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
cyanidin 3-galactoside/glucoside | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
cyanidin 3-xyloside | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
Total Anthocyanins | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
catechin | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
Total Flavanols | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
didymin-poncirin | - | 0.573 | 0.530 | −0.495 | - | −0.420 | - | −0.513 | −0.797 | 0.403 | −0.493 | - | −0.515 |
hesperidin | - | - | - | - | - | - | - | −0.479 | - | −0.412 | - | - | |
naringenin | - | 0.573 | 0.530 | −0.495 | - | −0.420 | - | −0.513 | −0.797 | 0.403 | −0.493 | - | −0.515 |
narirutin | - | 0.573 | 0.530 | −0.495 | - | −0.420 | - | −0.513 | −0.797 | 0.403 | −0.493 | - | −0.515 |
Total Flavanones | - | 0.573 | 0.530 | −0.495 | - | −0.420 | - | −0.513 | −0.797 | 0.403 | −0.493 | - | −0.515 |
apigenin | - | 0.573 | 0.530 | −0.495 | - | −0.420 | - | −0.513 | −0.797 | 0.403 | −0.493 | - | −0.515 |
heptamethoxyflavone | - | 0.573 | 0.530 | −0.495 | - | −0.420 | - | −0.513 | −0.797 | 0.403 | −0.493 | - | −0.515 |
nobiletin | - | 0.573 | 0.530 | −0.495 | - | −0.420 | - | −0.513 | −0.797 | 0.403 | −0.493 | - | −0.515 |
sinensetin | - | 0.573 | 0.530 | −0.495 | - | −0.420 | - | −0.513 | −0.797 | 0.403 | −0.493 | - | −0.515 |
Total Flavones | - | 0.573 | 0.530 | −0.495 | - | −0.420 | - | −0.513 | −0.797 | 0.403 | −0.493 | - | −0.515 |
kaempferol | - | - | - | - | - | - | - | - | −0.479 | - | −0.412 | - | - |
quercetin | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
quercetin 3-galactoside/glucoside | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
quercetin 3-rutinoside | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
quercetin 3-vicianoside | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
quercetin-glucoside | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
Total Flavonols | 0.452 | - | - | - | −0.406 | - | 0.530 | 0.742 | 0.610 | - | - | 0.428 | 0.587 |
Total Flavonoids | - | - | - | - | - | - | 0.597 | 0.687 | 0.500 | - | - | 0.417 | 0.518 |
procyanidin B2 | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
procyanidin B5 | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
Total Proanthocyanidins | 0.465 | - | - | - | −0.420 | - | 0.480 | 0.768 | 0.751 | - | - | 0.466 | 0.641 |
deacetyl-nomilin | - | - | - | - | - | - | - | - | −0.479 | - | −0.412 | - | - |
nomilin | - | - | - | - | - | - | - | - | −0.479 | - | −0.412 | - | - |
Total Limonoids | - | - | - | - | - | - | - | - | −0.479 | - | −0.412 | - | - |
Compound | Fusarium spp. | Penicillium spp. | Non-Sporulating Fungi |
---|---|---|---|
geranylcoumarin | - * | - | - |
Total Coumarins | - | - | - |
caffeic acid | - | - | −0.507 ** |
chlorogenic acid | - | - | −0.538 |
ferulic acid | - | - | −0.507 |
neochlorogenic acid | - | - | −0.538 |
p-coumaric acid | - | - | - |
Total Phenolic Acids | - | - | −0.507 |
cyanidin 3-arabinoside | - | - | −0.538 |
cyanidin 3-galactoside/glucoside | - | - | −0.538 |
cyanidin 3-xyloside | - | - | −0.538 |
Total Anthocyanins | - | - | −0.538 |
catechin | - | - | −0.538 |
Total Flavanols | - | - | −0.538 |
didymin-poncirin | −0.402 | −0.487 | - |
hesperidin | - | - | - |
naringenin | −0.402 | −0.487 | - |
narirutin | −0.402 | −0.487 | - |
Total Flavanones | −0.402 | −0.487 | - |
apigenin | −0.402 | −0.487 | - |
heptamethoxyflavone | −0.402 | −0.487 | - |
nobiletin | −0.402 | −0.487 | - |
sinensetin | −0.402 | −0.487 | - |
Total Flavones | −0.402 | −0.487 | - |
kaempferol | - | - | - |
quercetin | - | - | −0.538 |
quercetin 3-galactoside/glucoside | - | - | −0.538 |
quercetin 3-rutinoside | - | - | −0.538 |
quercetin 3-vicianoside | - | - | −0.538 |
quercetin-glucoside | - | - | −0.538 |
Total Flavonols | - | - | −0.507 |
Total Flavonoids | - | - | −0.624 |
procyanidin B2 | - | - | −0.538 |
procyanidin B5 | - | - | −0.538 |
Total Proanthocyanidins | - | - | −0.538 |
deacetyl-nomilin | - | - | - |
nomilin | - | - | - |
Total Limonoids | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarosz, M.; Dorna, H.; Szopińska, D.; Krzesiński, W.; Szwengiel, A. Grapefruit Extracts and Black Chokeberry Juice as Potential Antioxidant and Antifungal Agents for Carrot Seed Treatment. Agronomy 2024, 14, 2764. https://doi.org/10.3390/agronomy14122764
Jarosz M, Dorna H, Szopińska D, Krzesiński W, Szwengiel A. Grapefruit Extracts and Black Chokeberry Juice as Potential Antioxidant and Antifungal Agents for Carrot Seed Treatment. Agronomy. 2024; 14(12):2764. https://doi.org/10.3390/agronomy14122764
Chicago/Turabian StyleJarosz, Magdalena, Hanna Dorna, Dorota Szopińska, Włodzimierz Krzesiński, and Artur Szwengiel. 2024. "Grapefruit Extracts and Black Chokeberry Juice as Potential Antioxidant and Antifungal Agents for Carrot Seed Treatment" Agronomy 14, no. 12: 2764. https://doi.org/10.3390/agronomy14122764
APA StyleJarosz, M., Dorna, H., Szopińska, D., Krzesiński, W., & Szwengiel, A. (2024). Grapefruit Extracts and Black Chokeberry Juice as Potential Antioxidant and Antifungal Agents for Carrot Seed Treatment. Agronomy, 14(12), 2764. https://doi.org/10.3390/agronomy14122764