Analysis of Mineral Composition and Isotope Ratio as Part of Chemical Profiles of Apples for Their Authentication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Determination of Mineral Content in Fruits
2.3. Statistics
Locality | P (±CI) | CV | K (±CI) | CV | Mg (±CI) | CV | Ca (±CI) | CV | Fe (±CI) | CV | Mn (±CI) | CV |
CR-CeB | 698 (558–837) | 9.67 | 7944 (6863–9024) | 6.60 | 364 (308–419) | 7.36 | 449 (341–558) | 11.71 | 8.29 (6.59–10.00) | 9.99 | 3.97 (2.05–5.90) | 23.48 |
CR-EaB | 677 (594–760) | 5.92 | 7743 (7098–8388) | 4.04 | 346 (314–379) | 4.54 | 460 (392–528) | 7.15 | 7.22 (6.31–8.13) | 6.11 | 2.68 (1.89–3.48) | 14.37 |
CR-SoM | 607 (486–728) | 9.67 | 7522 (6499–8546) | 6.59 | 372 (316–429) | 7.39 | 284 (215–352) | 11.69 | 6.74 (5.35–8.12) | 9.99 | 2.49 (1.29–3.70) | 23.49 |
PL-LoV | 570 (482–658) | 7.49 | 8187 (7325–9050) | 5.11 | 335 (295–374) | 5.70 | 351 (286–417) | 9.09 | 6.99 (5.87–8.10) | 7.73 | 2.86 (1.79–3.94) | 18.18 |
PL-LSV | 529 (460–598) | 6.33 | 7167 (6528–7805) | 4.31 | 308 (277–338) | 4.84 | 361 (304–418) | 7.65 | 6.25 (5.41–7.09) | 6.54 | 2.80 (1.91–3.68) | 15.32 |
PL-MaV | 680 (562–797) | 8.37 | 9020 (7957–10,082) | 5.71 | 357 (310–404) | 6.39 | 351 (278–425) | 10.14 | 7.11 (5.84–8.38) | 8.65 | 3.19 (1.85–4.52) | 20.31 |
Locality | Zn (±CI) | CV | B (±CI) | CV | Cu (±CI) | CV | 10B/11B (±CI) | CV | 87Sr/86Sr (±CI) | CV | ||
CR-CeB | 2.49 (1.62–3.36) | 16.95 | 15.7 (12.1–19.2) | 11.02 | 2.83 (1.99–3.66) | 14.31 | 0.193 (0.178–0.208) | 3.75 | 9.87 (3.47–16.3) | 31.41 | ||
CR-EaB | 1.66 (1.30–2.01) | 10.36 | 20.1 (17.3–22.9) | 6.77 | 1.99 (1.63–2.35) | 8.79 | 0.208 (0.198–0.218) | 2.29 | 10.76 (6.49–15.00) | 19.24 | ||
CR-SoM | 1.18 (0.77–1.59) | 16.95 | 17.5 (13.5–21.4) | 11.03 | 1.99 (1.40–2.58) | 14.32 | 0.201 (0.185–0.216) | 3.74 | 15.45 (5.44–25.50) | 31.39 | ||
PL-LoV | 1.75 (1.28–2.23) | 13.20 | 15.3 (12.6–18.0) | 8.56 | 1.33 (1.03–1.64) | 11.13 | 0.186 (0.175–0.198) | 2.90 | 12.47 (6.21–18.70) | 24.30 | ||
PL-LSV | 1.63 (1.26–2.01) | 11.17 | 19.2 (16.3–22.1) | 7.24 | 2.02 (1.63–2.42) | 9.41 | 0.200 (0.190–0.210) | 2.45 | 16.98 (9.77–24.20) | 20.55 | ||
PL-MaV | 1.94 (1.36–2.53) | 14.74 | 21.6 (17.3–25.8) | 9.58 | 2.31 (1.72–2.90) | 12.38 | 0.216 (0.202–0.230) | 3.24 | 24.21 (10.62–37.8) | 27.18 |
Locality | P (±CI) | CV | K (±CI) | CV | Mg (±CI) | CV | Ca (±CI) | CV | Fe (±CI) | CV | Mn (±CI) | CV |
CR-CeB | 703 (513–893) | 13.19 | 8485 (6889–10,080) | 9.18 | 338 (286–389) | 7.40 | 261 (214–308) | 8.77 | 7.75 (5.99–9.52) | 11.11 | 4.35 (2.51–6.19) | 20.64 |
CR-EaB | 668 (574–762) | 6.89 | 8009 (7222–8796) | 4.79 | 310 (285–334) | 3.87 | 260 (235–284) | 4.58 | 6.98 (6.15–7.80) | 5.80 | 2.89 (2.25–3.53) | 10.80 |
CR-SoM | 605 (478–731) | 10.21 | 6808 (5816–7800) | 7.11 | 319 (281–356) | 5.74 | 205 (176–233) | 6.78 | 6.51 (5.37–7.66) | 8.60 | 3.47 (2.33–4.61) | 15.99 |
PL-LoV | 467 (369–564) | 10.21 | 7443 (6359–8527) | 7.11 | 279 (247–312) | 5.73 | 244 (210–278) | 6.80 | 6.45 (5.31–7.59) | 8.60 | 2.64 (1.78–3.51) | 16.02 |
PL-LSV | 457 (362–553) | 10.22 | 7254 (6198–8311) | 7.11 | 290 (256–324) | 5.72 | 260 (224–296) | 6.81 | 6.28 (5.18–7.39) | 8.61 | 3.78 (2.54–5.02) | 16.01 |
PL-MaV | 574 (454–695) | 10.23 | 6824 (5830–7819) | 7.11 | 315 (278–352) | 5.71 | 274 (235–312) | 6.79 | 6.88 (5.67–8.10) | 8.60 | 3.60 (2.42–4.78) | 16.00 |
Locality | Zn (±CI) | CV | B (±CI) | CV | Cu (±CI) | CV | 10B/11B (±CI) | CV | 87Sr/86Sr (±CI) | CV | ||
CR-CeB | 2.57 (1.38–3.76) | 22.57 | 17.4 (10.5–24.4) | 19.48 | 3.00 (1.89–4.11) | 18.07 | 0.193 (0.181–0.206) | 3.26 | 21.10 (6.29–36.00) | 34.36 | ||
CR-EaB | 1.58 (1.20–1.96) | 11.77 | 22.0 (17.4–26.6) | 10.18 | 2.16 (1.74–2.58) | 9.44 | 0.208 (0.201–0.215) | 1.70 | 13.10 (8.31–17.90) | 17.94 | ||
CR-SoM | 1.30 (0.83–1.76) | 17.46 | 21.7 (15.0–28.4) | 15.12 | 1.90 (1.36–2.45) | 14.05 | 0.200 (0.189–0.210) | 2.52 | 23.20 (10.59–35.90) | 26.59 | ||
PL-LoV | 1.53 (0.98–2.08) | 17.52 | 15.9 (11.0–20.8) | 15.09 | 1.17 (0.83–1.50) | 14.02 | 0.186 (0.176–0.195) | 2.52 | 11.70 (5.34–18.10) | 26.58 | ||
PL-LSV | 1.88 (1.21–2.55) | 17.45 | 19.2 (13.3–25.1) | 15.05 | 1.78 (1.27–2.29) | 13.99 | 0.191 (0.182–0.201) | 2.52 | 27.00 (12.31–41.70) | 26.56 | ||
PL-MaV | 1.52 (0.98–2.07) | 17.50 | 20.0 (13.8–26.1) | 15.05 | 1.93 (1.38–2.49) | 14.04 | 0.213 (0.202–0.224) | 2.52 | 18.70 (8.54–28.90) | 26.63 |
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
ICP-MS | Inductively Coupled Plasma Mass Spectrometer |
PCA | Principal Component Analysis |
LDA | Linear Discriminant Analysis |
LD | Linear Discriminant |
References
- Qu, R.; Chen, J.; Li, W.; Jin, S.; Jones, G.D.; Frewer, L.J. Consumers’ Preferences for Apple Production Attributes: Results of a Choice Experiment. Foods 2023, 12, 1917. [Google Scholar] [CrossRef] [PubMed]
- Asma, U.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Apples and Apple By-Products: Antioxidant Properties and Food Applications. Antioxidants 2023, 12, 1456. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT Statistical Database. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 30 August 2024).
- Mészáros, M.; Hnátková, H.; Čonka, P.; Náměstek, J. Linking Mineral Nutrition and Fruit Quality to Growth Intensity and Crop Load in Apple. Agronomy 2021, 11, 506. [Google Scholar] [CrossRef]
- Bechyňská, K.; Sedlák, J.; Uttl, L.; Kosek, V.; Vacková, P.; Kocourek, V.; Hajšlová, J. Metabolomics on Apple (Malus domestica) Cuticle—Search for Authenticity Markers. Foods 2024, 13, 1308. [Google Scholar] [CrossRef]
- Duan, N.; Bai, Y.; Sun, H.; Wang, N.; Ma, Y.; Li, M.; Wang, X.; Jiao, C.; Legall, N.; Mao, L.; et al. Genome Re-Sequencing Reveals the History of Apple and Supports a Two-Stage Model for Fruit Enlargement. Nat. Commun. 2017, 8, 249. [Google Scholar] [CrossRef]
- Dasenaki, M.E.; Thomaidis, N.S. Quality and Authenticity Control of Fruit Juices—A Review. Molecules 2019, 24, 1014. [Google Scholar] [CrossRef]
- Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the Geographical Origin of Food: The Application of Multi-Element and Multi-Isotope Analysis. Trends Food Sci. Technol. 2005, 16, 555–567. [Google Scholar] [CrossRef]
- Cristea, G.; Dehelean, A.; Voica, C.; Feher, I.; Puscas, R.; Magdas, D.A. Isotopic and Elemental Analysis of Apple and Orange Juice by Isotope Ratio Mass Spectrometry (IRMS) and Inductively Coupled Plasma—Mass Spectrometry (ICP-MS). Anal. Letters 2021, 54, 212–226. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Gašić, U.; Dojčinović, B.; Lončar, B.; Meland, M. Polyphenolics and Chemical Profiles of Domestic Norwegian Apple (Malus × domestica Borkh.) Cultivars. Front. Nutr. 2022, 9, 941487. [Google Scholar] [CrossRef]
- Matos-Reyes, M.N.; Simonot, J.; López-Salazar, O.; Cervera, M.L.; de la Guardia, M. Authentication of Alicante’s Mountain cherries protected designation of origin by their mineral profile. Food Chem. 2013, 141, 2191–2197. [Google Scholar] [CrossRef]
- Gaiad, J.E.; Hidalgo, M.J.; Villafañe, R.N.; Marchevsky, E.J.; Pellerano, R.G. Tracing the Geographical Origin of Argentinean Lemon Juices Based on Trace Element Profiles Using Advanced Chemometric Techniques. Microchem. J. 2016, 129, 243–248. [Google Scholar] [CrossRef]
- Ballabio, C.; Lugato, E.; Fernández-Ugalde, O.; Orgiazzi, A.; Jones, A.; Borrelli, P.; Montanarella, L.; Panagos, P. Mapping LUCAS Topsoil Chemical Properties at European Scale Using Gaussian Process Regression. Geoderma 2019, 355, 113912. [Google Scholar] [CrossRef]
- Mészáros, M.; Bělíková, H.; Čonka, P.; Náměstek, J. Effect of Hail Nets and Fertilization Management on the Nutritional Status, Growth and Production of Apple Trees. Sci. Hortic. 2019, 255, 134–144. [Google Scholar] [CrossRef]
- Kurešová, G.; Neumannová, A.; Raimanová, I. Differences in Macronutrient Uptake by Apple Rootstocks M9, M27 and MM106. Acta Hortic. 2018, 1217, 99–102. [Google Scholar] [CrossRef]
- Neilsen, G.H.; Neilsen, D.; Peryea, F. Response of Soil and Irrigated Fruit Trees to Fertigation or Broadcast Application of Nitrogen, Phosphorus, and Potassium. HortTechnology 1999, 9, 393–401. [Google Scholar] [CrossRef]
- Mourão Filho, F.A.A.; Azevedo, J.C. DRIS Norms for “Valencia” Sweet Orange on Three Rootstocks. Pesqui. Agropecuária Bras. 2003, 38, 85–93. [Google Scholar] [CrossRef]
- Kucukyumuk, Z.; Erdal, I. Rootstock and cultivar effect on mineral nutrition, seasonal nutrient variation and correlations among leaf, flower, and fruit nutrient concentrations in apple trees. Bulg. J. Agric. Sci. 2011, 17, 633–641. [Google Scholar]
- Wu, H.; Yue, T.; Yuan, Y. Authenticity Tracing of Apples According to Variety and Geographical Origin Based on Electronic Nose and Electronic Tongue. Food Anal. Methods 2018, 11, 522–532. [Google Scholar] [CrossRef]
- Dehelean, A.; Magdas, D.A. Analysis of mineral and heavy metal content of some commercial fruit juices by inductively coupled plasma mass spectrometry. Sci. World J. 2013, 2013, 215423. [Google Scholar] [CrossRef]
- Bizjak Bat, K.; Eler, K.; Mazej, D.; Mozetič Vodopivec, B.; Mulič, I.; Kump, P.; Ogrinc, N. Isotopic and Elemental Characterisation of Slovenian Apple Juice According to Geographical Origin: Preliminary Results. Food Chem. 2016, 203, 86–94. [Google Scholar] [CrossRef]
- Zbíral, J. Analýza Rostlinného Materiálu: Jednotné Pracovní Postupy, 3rd ed; ÚKZÚZ: Brno, Czech Republic, 2014.
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.8.8. 2023. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 30 August 2024).
- Kassambra, A. Factoextra: Practical Guide to Principal Component Methods in R. R Package Version 1.0.7. 2017. Available online: https://cran.r-project.org/web/packages/factoextra/index.html (accessed on 30 August 2024).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016. [Google Scholar]
- Perez, A.L.; Smith, B.W.; Anderson, K.A. Stable Isotope and Trace Element Profiling Combined with Classification Models To Differentiate Geographic Growing Origin for Three Fruits: Effects of Subregion and Variety. J. Agric. Food Chem. 2006, 54, 4506–4516. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Nakashita, R. Chapter 18—Authentication and Traceability of Fruits and Vegetables. In Comprehensive Analytical Chemistry; de la Guardia, M., Gonzálvez, A., Eds.; Elsevier: Valencia, Spain, 2013; Volume 60, pp. 461–477. [Google Scholar] [CrossRef]
- Kochergina, Y.V.E.; Pavlosek, P.; Sanda, M.; Hora, J.M. 87Sr/86Sr isotopic composition of wine: Uses and limitations. OENO One 2024, 58, 1–15. [Google Scholar] [CrossRef]
- Jones, A.; Montanarella, L.; Jones, R. Soil Atlas of Europe; JRC: Luxembourg, 2005; p. 128. ISBN 92-894-8120-X. [Google Scholar]
- Tóth, G.; Montanarella, L.; Stolbovoy, V.; Máté, F.; Bódis, K.; Jones, A.; Panagos, P.; Van Liedekerke, M. Soil of the European Union; JRC: Luxembourg, 2008; p. 85. ISBN 978-92-79-09530-6. [Google Scholar]
- Plant, J.A.; Whittaker, A.; Demetriades, A.; De Vivo, B.; Lexa, J. The geological and tectonic framework of Europe. In FOREGS Geochemical Atlas of Europe, Part 1: Background Information, Methodology and Maps; Salminen, R., Batista, M.J., Bidovec, M., Demetriades, A., Eds.; Geological Survey of Finland: Espoo, Finland, 2005; pp. 23–42. ISBN 951-690-921-3. [Google Scholar]
- Grygar, R. Geology and Tectonic Development of the Czech Republic. In Landscapes and Landforms of the Czech Republic; Pánek, T., Hradecký, J., Eds.; World Geomorphological Landscapes; Springer International Publishing: Cham, Switzerland, 2016; pp. 7–18. ISBN 978-3-319-27536-9. [Google Scholar]
- Neilsen, G.H.; Neilsen, D.; Herbert, L.C.; Hogue, E.J. Response of Apple to Fertigation of N and K under Conditions Susceptible to the Development of K Deficiency. J. Am. Soc. Hortic. Sci. 2004, 129, 26–31. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Mutić, J.; Tešić, Ž.; Meland, M. Evaluation of Fruit Mineral Contents of Two Apple Cultivars Grown in Organic and Integrated Production Systems. Acta Hortic. 2020, 1281, 59–66. [Google Scholar] [CrossRef]
- Fazio, G.; Lordan, J.; Grusak, M.A.; Francescatto, P.; Robinson, T.L. I. Mineral Nutrient Profiles and Relationships of ‘Honeycrisp’ Grown on a Genetically Diverse Set of Rootstocks under Western New York Climatic Conditions. Sci. Hortic. 2020, 266, 108477. [Google Scholar] [CrossRef]
- Grzanka, M.; Sobiech, Ł.; Filipczak, A.; Danielewicz, J.; Jajor, E.; Horoszkiewicz, J.; Korbas, M. The Efficacy of Plant Pathogens Control by Complexed Forms of Copper. Agriculture 2024, 14, 139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krška, B.; Mészáros, M.; Bílek, T.; Vávra, A.; Náměstek, J.; Sedlák, J. Analysis of Mineral Composition and Isotope Ratio as Part of Chemical Profiles of Apples for Their Authentication. Agronomy 2024, 14, 2703. https://doi.org/10.3390/agronomy14112703
Krška B, Mészáros M, Bílek T, Vávra A, Náměstek J, Sedlák J. Analysis of Mineral Composition and Isotope Ratio as Part of Chemical Profiles of Apples for Their Authentication. Agronomy. 2024; 14(11):2703. https://doi.org/10.3390/agronomy14112703
Chicago/Turabian StyleKrška, Boris, Martin Mészáros, Tomáš Bílek, Aleš Vávra, Jan Náměstek, and Jiří Sedlák. 2024. "Analysis of Mineral Composition and Isotope Ratio as Part of Chemical Profiles of Apples for Their Authentication" Agronomy 14, no. 11: 2703. https://doi.org/10.3390/agronomy14112703
APA StyleKrška, B., Mészáros, M., Bílek, T., Vávra, A., Náměstek, J., & Sedlák, J. (2024). Analysis of Mineral Composition and Isotope Ratio as Part of Chemical Profiles of Apples for Their Authentication. Agronomy, 14(11), 2703. https://doi.org/10.3390/agronomy14112703