Effects of Deficit Irrigation on Spring Wheat Lignification Process, Yield Productivity and Stalk Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Site
2.2. Experimental Design
2.3. Measurement Items and Methods
2.3.1. Phenylalanine Ammonia-Lyase (PAL) Activity
2.3.2. Tyrosine Ammonia-Lyase (TAL) Activity
2.3.3. Cinnamyl Alcohol Dehydrogenase (CAD) Activity
2.3.4. Peroxidase (POD) Activity
2.3.5. Lignin Content
2.3.6. Lignin Monomer Content
2.3.7. Morphological Characteristics
2.3.8. Yield and Its Composition
2.4. Data Analysis
3. Results
3.1. Effects of Drought Stress on Lignin Metabolism of Basal Internodes of Spring Wheat Stalks Under Drip Irrigation
3.1.1. Key Enzymes of Lignin Metabolism
3.1.2. Lignin Content
3.1.3. Lignin Monomers
3.2. Effects of Drought Stress on Stalk Diameter and Wall Thickness of Basal Internode of Spring Wheat Under Drip Irrigation
Stalk Diameter and Wall Thickness
3.3. Effects of Drought Stress on Yield and Components of Spring Wheat Under Drip Irrigation
3.3.1. Changes in Yield and Its Components
3.3.2. Correlation Analysis of Yield and Its Components
3.4. Correlation and Path Analyses Between Stalk Lignin Metabolism, Stalk Diameter, Wall Thickness and Yield
4. Discussion
4.1. Effects of Drought Stress on Lignin Metabolism of Spring Wheat Stalks Under Drip Irrigation
4.2. Effects of Drought Stress on Stalk Diameter, Wall Thickness and Yield of Spring Wheat Under Drip Irrigation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4CL | 4-coumarate CoA ligase |
CAD | Cinnamyl alcohol dehydrogenase |
G | Guaiacyl lignin |
H | p-hydroxyphenyl lignin |
I2 | The second internode of stalk base |
LIG | Lignin |
PAL | Phenylalanine ammonia-lyase |
POD | Peroxidase |
S | Lilac-based lignin |
SC | Structural carbohydrate |
TAL | Tyrosine ammonia-lyase |
Appendix A
References
- Gao, X.; Liu, J.; Lin, H.; Wen, Y.; Chen, R.; Javed, T.; Wang, Z. Temperature increase may not necessarily penalize future yields of three major crops in Xinjiang, Northwest China. Agric. Water Manag. 2024, 304, 109085. [Google Scholar] [CrossRef]
- Feng, L.; Wan, S.; Zhang, Y.; Dong, H. Xinjiang cotton: Achieving super-high yield through efficient utilization of light, heat, water, and fertilizer by three generations of cultivation technology systems. Field Crops Res. 2024, 312, 109401. [Google Scholar] [CrossRef]
- Liu, Y. Xinjiang’s total summer grain production and area increment rank first in the country. China Food Safety Report, 4 August 2023. [Google Scholar]
- Li, Q.; Fu, C.; Liang, C.; Ni, X.; Zhao, X.; Chen, M.; Ou, L. Crop Lodging and The Roles of Lignin, Cellulose, and Hemicellulose in Lodging Resistance. Agronomy 2022, 12, 1795. [Google Scholar] [CrossRef]
- Li, C.; Chang, Y.; Luo, Y.; Li, W.; Jin, M.; Wang, Y.; Cui, H.; Sun, S.; Li, Y.; Wang, Z. Nitrogen regulates stem lodging resistance by breaking the balance of photosynthetic carbon allocation in wheat. Field Crops Res. 2023, 296, 108908. [Google Scholar] [CrossRef]
- Acreche, M.; Slafer, A. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Res. 2011, 122, 40–48. [Google Scholar] [CrossRef]
- Wan, W.; Li, L.; Diao, M.; Lv, Z.; Li, W.; Wang, J.; Li, Z.; Jiang, G.; Wang, X.; Jiang, D. Border effects enhance lodging resistance of spring wheat in narrowing-row-space enlarged-lateral-space drip irrigation patterns. Agric. Water Manag. 2023, 287, 108409. [Google Scholar] [CrossRef]
- Sapkota, A.R. Water reuse, food production and public health: Adopting transdisciplinary, systems-based approaches to achieve water and food security in a changing climate. Environ. Res. 2019, 171, 576–580. [Google Scholar] [CrossRef]
- Yin, L.; Tao, F.; Chen, Y.; Wang, Y. Reducing agriculture irrigation water consumption through reshaping cropping systems across China. Agric. For. Meteorol. 2022, 312, 108707. [Google Scholar] [CrossRef]
- Abou-Shady, A.; Siddique, M.S.; Yu, W. A Critical Review of Innovations and Perspectives for Providing Adequate Water for Sustainable Irrigation. Water 2023, 15, 3023. [Google Scholar] [CrossRef]
- Jha, S.K.; Ramatshaba, T.S.; Wang, G.; Liang, Y.; Liu, H.; Gao, Y.; Duan, A. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric. Water Manag. 2019, 217, 292–302. [Google Scholar]
- Piri, H.; Naserin, A. Effect of different levels of water, applied nitrogen and irrigation methods on yield, yield components and IWUE of onion. Sci. Hortic. 2020, 268, 109361. [Google Scholar] [CrossRef]
- Fan, J.; Lu, X.; Gu, S.; Guo, X. Improving nutrient and water use efficiencies using water-drip irrigation and fertilization technology in Northeast China. Agric. Water Manag. 2020, 241, 106352. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Jin, M.; Luo, Y.L.; Chang, Y.L.; Zhu, J.K.; Li, Y.; Wang, Z.L. Effects of irrigation on stem lignin and breaking strength of winter wheat with different planting densities. Field Crops Res. 2022, 282, 108518. [Google Scholar] [CrossRef]
- Khan, A.; Ahmad, A.; Ali, W. Optimization of plant density and nitrogen regimes to mitigate lodging risk in wheat. Agron. J. 2020, 112, 2535–2551. [Google Scholar] [CrossRef]
- Barros, J.; Serk, H.; Granlund, I.; Pesquet, E. The cell biology of lignification in higher plants. Ann. Bot. 2015, 115, 1053–1074. [Google Scholar] [CrossRef]
- Vanholme, R.; De Meester, B.; Ralph, J.; Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotech. 2019, 56, 230–239. [Google Scholar] [CrossRef]
- Cai, T.; Peng, D.; Wang, R.; Jia, X.; Qiao, D.; Liu, T.; Jia, Z.K.; Wang, Z.L.; Ren, X. Canintercropping or mixed cropping of two genotypes enhance wheat lodging resistance? Field Crops Res. 2019, 239, 10–18. [Google Scholar] [CrossRef]
- Li, B.; Gao, F.; Ren, B.Z.; Dong, S.T.; Liu, P.; Zhao, B.; Zhang, J.W. Lignin metabolism regulates lodging resistance of maize hybrids under varying planting density. J. Integr. Agric. 2021, 20, 2077–2089. [Google Scholar] [CrossRef]
- Liu, W.G.; Ren, M.L.; Liu, T.; Du, Y.L.; Zhou, T.; Liu, X.M.; Liu, J.; Hussain, S.; Yang, W.Y. Effect of shade stress on lignin biosynthesis in soybean stems. J. Integr. Agric. 2018, 17, 1594–1604. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, J.; Shi, Y.; Li, Y.; Yin, Y.; Yang, D.; Luo, Y.; Pang, D.; Xu, X.; Li, W.; et al. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. Sci. Rep. 2017, 7, 41805. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.L.; Ni, J.; Pang, D.W.; Jin, M.; Chen, J.; Kong, X.; Li, W.Q.; Chang, Y.L.; Li, Y.; Wang, Z.L. Regulation of lignin composition by nitrogen rate and density and its relationship with stem mechanical strength of wheat. Field Crops Res. 2019, 241, 07572. [Google Scholar] [CrossRef]
- Muhammad, A.; Hao, H.; Xue, Y.; Alam, A.; Bai, S.; Hu, W.; Sajid, M.; Hu, Z.; Samad, R.A.; Li, Z.; et al. Survey of wheat straw stem characteristics for enhance dresistance to lodging. Cellulose 2020, 27, 2469–2484. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, F.; Xing, H.; Mao, K.; Chen, G.; Guo, Q.; Chen, J. Correlation Analysis of Lignin Accumulation and Expression of Key Genes Involved in Lignin Biosynthesis of Ramie (Boehmeria nivea). Genes 2019, 10, 389. [Google Scholar] [CrossRef]
- Chen, C.; Chang, J.; Wang, S.; Lu, J.; Liu, Y.; Si, H.; Sun, G.; Ma, C. Cloning, expression analysis and molecular marker development of cinnamyl alcohol dehydrogenase gene in common wheat. Protoplasma 2021, 258, 881–889. [Google Scholar] [CrossRef]
- Yu, M.; Wang, M.; Gyalpo, T.; Basang, Y. Stem lodging resistance in hulless barley: Transcriptone and metabolome analysis of lignin biosynthesis pathways in contrasting genotypes. Genomics 2021, 113, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Javed, H.H.; Asghar, M.A.; Peng, X.; Brestic, M.; Skalický, M.; Ghafoor, A.Z.; Cheema, H.N.; Zhang, F.; Wu, Y. Enhancement of lodging resistance and lignin content by application of organic carbon and silicon fertilization in Brassica napus L. Front. Plant Sci. 2022, 13, 807048. [Google Scholar] [CrossRef]
- Li, W.Q.; Han, M.M.; Pang, D.W.; Chen, J.; Wang, Y.Y.; Dong, H.H.; Chang, Y.L.; Jin, M.; Luo, Y.L.; Li, Y.; et al. Characteristics of lodging resistance of high-yield winter wheat as affected by nitrogen rate and irrigation managements. J. Integr. Agric. 2022, 21, 1290–1309. [Google Scholar] [CrossRef]
- Nguyen, T.; Son, S.; Jordan, M.C.; Levin, D.B.; Ayele, B.T. Lignin biosynthesis in wheat (Triticum aestivum L.): Its response to water logging and association with hormonal levels. BMC Plant Biol. 2016, 16, 28. [Google Scholar] [CrossRef]
- Ma, S.C.; Duan, A.W.; Ma, S.T.; Yang, S.J. Effect of Early-Stage Regulated Deficit Irrigation on Stem Lodging Resistance, Leaf Photosynthesis, Root Respiration and Yield Stability of Winter Wheat Under Post-Anthesis Water Stress Conditions. Irrig. Drain. 2016, 65, 673–681. [Google Scholar] [CrossRef]
- Feng, S.; Shi, C.; Wang, P.; Ding, W.; Hu, T.; Ru, Z. Improving Stem Lodging Resistance, Yield, and Water Efficiency of Wheat by Adjusting Supplemental Irrigation Frequency. Agronomy 2012, 13, 2208. [Google Scholar] [CrossRef]
- Han, Z.; Yu, Z.; Wang, D.; Wang, X.; Xu, Z. Effects of regulated deficit irrigation on water consumption characteristics and water use efficiency of winter wheat. Chin. J. Appl. Ecol. 2009, 20, 2671–2677. [Google Scholar]
- Assis, J.S.; Maldonado, R.; Munoz, T.; Escribano, M.I.; Merodio, C. Effect of high carbon dioxide concentration on PAL activity and phenolic contents in ripening cherimoya fruit. Postharvest Biol. Technol. 2001, 23, 33–39. [Google Scholar] [CrossRef]
- Khan, W.; Prithiviraj, B.; Smith, D.L. Chitosan and chitin oligomers increase phenylalanine ammonialyase and tyrosine ammonia-lyase activities in soybean leaves. Plant Physiol. 2003, 160, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Morrison, T.A.; Kessler, J.R. Activity of two lignin biosynthesis enzymes during development of a maize internode. J Sci Food Agric. 1994, 65, 133–139. [Google Scholar] [CrossRef]
- Moerschbacher, B.M.; Noll, U.M.; Flott, B.E.; Reisener, H.J. Lignin biosynthetic enzyme in stem rust infected resistant and susceptible near-isogenic wheat lines. Physiol. Mol. Plant Pathol. 1988, 33, 33–46. [Google Scholar] [CrossRef]
- Cheng, B.; Ali, R.; Wang, L.; Xu, M.; Lu, J.J.; Gao, Y.; Qin, S.S.; Zhang, Y.; Irshan, A.; Zhou, T.; et al. Effects of multiple planting densities on lignin metabolism and lodging resistance of the strip intercropped soybean stem. Agronomy 2020, 10, 1177. [Google Scholar] [CrossRef]
- Zheng, M.; Gu, S.; Chen, J.; Luo, Y.; Li, W.; Ni, J.; Li, Y.; Wang, Z. Development and validation of a sensitive UPLC–MS/MS instrumentation and alkaline nitrobenzene oxidation method for the determination of lignin monomers in wheat straw. Biomed. Chromatogr. 2017, 1055, 178–184. [Google Scholar] [CrossRef]
- Wang, C.; Hu, D.; Liu, X.; She, H.; Ruan, R.; Yang, H.; Yi, Z.; Wu, D. Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buck wheat (Fagopyrum esculentum M.). Field Crops Res. 2015, 180, 46–53. [Google Scholar] [CrossRef]
- Choi, S.J.; Lee, Z.; Kim, S.; Jeong, E.; Shim, J.S. Modulation of lignin biosynthesis for drought tolerance in plants. Front. Plant Sci. 2023, 14, 1116426. [Google Scholar] [CrossRef]
- Zhang, L.; Larsson, A.; Moldin, A.; Edlund, U. Comparison of lignin distribution, structure, and morphology in wheat straw and wood. Ind. Crops Prod. 2022, 187, 115432. [Google Scholar] [CrossRef]
- Zhan, X.; Kong, F.; Liu, Q.; Lan, T.; Liu, Y.; Xu, J.; Yuan, J. Maize basal internode development significantly affects stalk lodging resistance. Field Crops Res. 2022, 286, 108611. [Google Scholar] [CrossRef]
- Zhao, X.; Bai, Y.; Yao, Y.; An, L.; Wu, K. Research progress on the relationship between stem characteristics and crop stem lodging. J. Plant Physiol. 2021, 57, 257–264. [Google Scholar]
- Hu, D.; Liu, X.B.; She, H.Z.; Gao, Z.; Ruan, R.W.; Wu, D.Q.; Yi, Z.L. The lignin synthesis related genes and lodging resistance of Fagopyrum esculentum. Biol. Plant. 2017, 61, 138–146. [Google Scholar] [CrossRef]
- Niu, Y.; Chen, T.; Zhao, C.; Zhou, M. Lodging prevention in cereals: Morphological, biochemical, anatomical traits and their molecular mechanisms, management and breeding strategies. Field Crops Res. 2022, 289, 108733. [Google Scholar] [CrossRef]
- Piñera-Chávez, F.J.; Berry, P.M.; Foulkes, M.J.; Molero, G.; Reynolds, M.P. Avoiding lodging in irrigated spring wheat. II. Geneticvariation of stem and root structural properties. Field Crops Res. 2016, 196, 64–74. [Google Scholar] [CrossRef]
- Chang, Y.; Cui, H.; Wang, Y.; Li, C.; Wang, J.; Jin, M.; Luo, Y.; Li, Y.; Wang, Z. Silicon Spraying Enhances Wheat Stem Resistance to Lodging under Light Stress. Agronomy 2023, 13, 2565. [Google Scholar] [CrossRef]
- Guo, X.; Huang, S.; Wang, C.; Wang, P.; Chen, B. Experimental study on the effect of different irrigation modes on the lodging resistance of rice. J. Irrig. Drain. 2017, 36, 1–5. [Google Scholar]
- Bao, X.; Hou, X.; Duan, W.; Yin, B.; Ren, J.; Wang, Y.; Liu, X.; Gu, L.; Zhen, W. Screening and evaluation of drought resistance traits of winter wheat in the North China Plain. Front. Plant Sci. 2023, 14, 1194759. [Google Scholar] [CrossRef]
- Langridge, P.; Reynolds, M. Breeding for drought and heat tolerance in wheat. Theor. Appl. Genet. 2021, 134, 1753–1769. [Google Scholar] [CrossRef]
- Xu, Z.; Lai, X.; Ren, Y.; Yang, H.; Wang, H.; Wang, C.; Xia, J.; Wang, Z.; Yang, Z.; Geng, H.; et al. Impact of Drought Stress on Yield-Related Agronomic Traits of Different Genotypes in Spring Wheat. Agronomy 2023, 13, 2968. [Google Scholar] [CrossRef]
- Wang, X.; Vignjevic, M.; Liu, F.; Jacobsen, S.; Jiang, D.; Wollenweber, B. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat. Plant Growth Regul. 2015, 75, 677–687. [Google Scholar] [CrossRef]
- Lv, Z.; Diao, M.; Li, W.; Cai, J.; Zhou, Q.; Wang, X.; Dai, T.; Cao, W.; Jiang, D. Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system. Agric. Water Manag. 2019, 212, 252–261. [Google Scholar] [CrossRef]
- De Domínguez, A.; Juan, J.A.; Tarjuelo, J.M.; Martínez, R.S.; Martínez-Romero, A. Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment. Agric. Water Manag. 2012, 110, 67–77. [Google Scholar]
- Zou, Y.; Saddique, Q.; Ali, A.; Xu, J.; Khan, M.I.; Qing, M.; Siddique, K.H. Deficit irrigation improves maize yield and water use efficiency in a semi-arid environment. Agric. Water Manag. 2021, 243, 106483. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, S.; Lin, X.; Gu, S.; Wang, D. Supplemental irrigation at jointing improves spike formation of wheat tillers by regulating sugar distribution in ear and stem. Agric. Water Manag. 2023, 279, 108160. [Google Scholar] [CrossRef]
- Ma, J.; Huang, G.; Yang, D.; Chai, Q. Dry matter remobilization and compensatory effects in various internodes of spring wheat under water stress. Crop Sci. 2014, 54, 331–339. [Google Scholar] [CrossRef]
- Ntshidi, Z.; Dzikiti, S.; Mazvimavi, D.; Mobe, N.T. Effect of different irrigation systems on water use partitioning and plant water relations of apple trees growing on deep sandy soils in the Mediterranean climatic conditions, South Africa. Sci. Hortic. 2023, 317, 112066. [Google Scholar] [CrossRef]
- Flohr, B.M.; Meier, E.A.; Hunt, J.R.; McBeath, T.M.; Llewellyn, R.S. A modelled quantification of reduced nitrogen fertiliser requirement and associated trade-offs from inclusion of legumes and fallows in wheat-based crop sequences. Field Crops Res. 2024, 307, 109236. [Google Scholar] [CrossRef]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Tari, A.F. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agric. Water Manag. 2016, 167, 1–10. [Google Scholar] [CrossRef]
- Perra, M.; Leyva-Jiménez, F.J.; Manca, M.L.; Manconi, M.; Rajha, H.N.; Borrás-Linares, I.; Segura-Carretero, A.; Lozano-Sánchez, J. Application of pressurized liquid extraction to grape by-products as a circular economy model to provide phenolic compounds enriched ingredient. J. Clean. Prod. 2023, 402, 136712. [Google Scholar] [CrossRef]
- Shen, X.; Liu, J.; Liu, L.; Zeleke, K.; Yi, R.; Zhang, X.; Liang, Y. Effects of irrigation and nitrogen topdressing on water and nitrogen use efficiency for winter wheat with micro-sprinkling hose irrigation in North China. Agric. Water Manag. 2024, 302, 109005. [Google Scholar] [CrossRef]
Year | Total N (g·kg−1) | Avail. N (mg·kg−1) | Avail. P (mg·kg−1) | Avail. K (mg·kg−1) | Organic (g·kg−1) | Soil Capacity (g·cm−3) | Electrical Conductivity (ds·m−1) | PH |
---|---|---|---|---|---|---|---|---|
2022 | 1.26 | 53.34 | 16.39 | 147.05 | 14.72 | 1.27 | 0.44 | 7.6 |
2023 | 1.31 | 56.27 | 16.25 | 138.63 | 16.21 | 1.28 | 0.44 | 7.8 |
Treatment | Tillering Stage | Jointing Stage |
---|---|---|
CK | 75–80% FC | 75–80% FC |
T1 | 60–65% FC | 75–80% FC |
T2 | 45–50% FC | 75–80% FC |
J1 | 75–80% FC | 60–65% FC |
J2 | 75–80% FC | 45–50% FC |
Trait | PAL | TAL | CAD | POD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FS | MS | MA | FS | MS | MA | FS | MS | MA | FS | MS | MA | |
C | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
T | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
C*T | ** | ** | ** | ** | ** | ** | ** | ** | ns | ** | ns | ** |
Trait | H | G | S | LIG | ||||||||
FS | MS | MA | FS | MS | MA | FS | MS | MA | FS | MS | MA | |
C | ** | ** | ** | ** | ** | ns | ** | ** | ** | ns | ** | ** |
T | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
C*T | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Year | Cultivar | Treatment | The Diameter of Internode (mm) | Wall Thickness (mm) | ||||
---|---|---|---|---|---|---|---|---|
Flowering Stage | Milk Maturity Stage | Maturity Stage | Flowering Stage | Milk Maturity Stage | Maturity Stage | |||
2022 | XC22 | CK | 3.01 a | 2.81 b | 2.71 b | 1.26 ab | 1.32 b | 1.02 b |
T1 | 3.31 a | 3.31 a | 2.99 ab | 1.42 ab | 1.51 a | 1.14 ab | ||
T2 | 3.14 a | 3.02 ab | 2.87 ab | 1.23 b | 1.52 a | 1.12 ab | ||
J1 | 3.39 a | 3.36 a | 3.16 a | 1.46 a | 1.64 a | 1.21 a | ||
J2 | 3.18 a | 3.07 ab | 2.86 ab | 1.31 ab | 1.53 a | 1.11 ab | ||
XC6 | CK | 3.11 b | 3.07 b | 2.85 b | 1.31 b | 1.53 b | 1.11 b | |
T1 | 3.41 ab | 3.37 ab | 3.11 ab | 1.48 ab | 1.66 ab | 1.24 ab | ||
T2 | 3.23 b | 3.32 ab | 2.97 b | 1.36 ab | 1.61 ab | 1.22 b | ||
J1 | 3.77 a | 3.72 a | 3.51 a | 1.56 a | 1.78 a | 1.31 a | ||
J2 | 3.51 ab | 3.68 a | 3.48 a | 1.47 ab | 1.70 ab | 1.23 a | ||
2023 | XC22 | CK | 3.11 b | 2.89 b | 2.79 b | 1.21 c | 1.28 b | 0.95 b |
T1 | 3.31 ab | 3.38 a | 3.18 a | 1.43 ab | 1.55 ab | 1.16 a | ||
T2 | 3.18 ab | 3.12 ab | 3.01 ab | 1.33 abc | 1.31 ab | 1.07 ab | ||
J1 | 3.58 a | 3.45 a | 3.23 a | 1.49 a | 1.58 a | 1.18 a | ||
J2 | 3.23 ab | 3.16 ab | 3.04 ab | 1.28 bc | 1.38 ab | 1.09 a | ||
XC6 | CK | 3.15 c | 3.09 b | 2.93 b | 1.23 b | 1.47 b | 1.02 c | |
T1 | 3.50 b | 3.49 ab | 3.22 ab | 1.43 ab | 1.65 ab | 1.18 ab | ||
T2 | 3.42 c | 3.28 ab | 3.01 ab | 1.37 ab | 1.61 ab | 1.11 bc | ||
J1 | 3.89 a | 3.79 a | 3.55 a | 1.52 a | 1.73 a | 1.25 a | ||
J2 | 3.63 b | 3.54 ab | 3.42 ab | 1.42 ab | 1.68 ab | 1.20 ab | ||
F | C | ** | ** | ** | ** | ** | ** | |
T | ** | ** | ** | ** | ** | ** | ||
C*T | ns | ns | * | ns | ns | ns |
Year | Cultivar | Treatment | Spike Number /(×104·ha−1) | Grain Number per Spikes | 1000-Grain Weight (g) | Actual Yield /(kg·ha−1) |
---|---|---|---|---|---|---|
2022 | XC22 | CK | 417.95 a | 36.21 a | 45.82 a | 6728.54 a |
T1 | 411.47 ab | 37.28 a | 46.37 a | 6920.70 a | ||
T2 | 376.87 b | 33.42 b | 44.36 a | 5283.62 b | ||
J1 | 413.20 a | 35.93 a | 45.17 a | 6453.69 a | ||
J2 | 408.74 a | 31.85 b | 39.82 b | 4663.67 c | ||
XC6 | CK | 420.29 a | 36.73 ab | 46.25 ab | 6947.80 a | |
T1 | 417.72 a | 38.40 a | 47.08 a | 7155.05 a | ||
T2 | 410.71 a | 35.60 b | 44.14 b | 6522.98 a | ||
J1 | 423.94 a | 37.59 ab | 46.49 ab | 6990.89 a | ||
J2 | 416.53 a | 32.93 c | 41.78 c | 5707.83 b | ||
2023 | XC22 | CK | 424.38 a | 39.05 a | 46.42 ab | 7250.39 a |
T1 | 420.43 a | 39.06 a | 48.48 a | 7340.39 a | ||
T2 | 400.14 a | 36.64 b | 43.41 b | 6410.48 b | ||
J1 | 421.40 a | 38.13 ab | 46.01 bc | 6975.22 a | ||
J2 | 416.14 a | 34.32 c | 40.66 c | 5870.91 c | ||
XC6 | CK | 430.13 a | 38.68 ab | 47.34 ab | 7149.28 a | |
T1 | 425.73 a | 40.73 a | 48.44 a | 7577.03 a | ||
T2 | 414.21 a | 37.98 ab | 46.84 ab | 6649.24 b | ||
J1 | 428.82 a | 39.85 a | 47.49 a | 7231.34 a | ||
J2 | 419.08 a | 35.83 b | 43.12 b | 6162.95 c | ||
C | ns | * | * | ** | ||
T | ns | ** | ** | ** | ||
C*T | ns | ns | ns | ns |
Dependent Variable | Action Factor | Correlation Coefficient | Path Coefficient | Indirect Path Coefficients | Total | |||
---|---|---|---|---|---|---|---|---|
X1 | X5 | X7 | X9 | |||||
Y1 | X5 | −0.314 | −0.314 | |||||
Y2 | X1 | −0.054 | −0.398 | −0.054 | 0.129 | 0.183 | ||
X7 | −0.135 | −0.318 | −0.043 | 0.142 | 0.185 | |||
X9 | 0.325 | 0.719 | 0.234 | 0.321 | 0.555 | |||
Y3 | X5 | −0.269 | −0.296 | 0.032 | 0.032 | |||
X9 | 0.219 | 0.251 | 0.027 | 0.027 | ||||
Y4 | X5 | −0.312 | −0.312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yin, H.; Wang, R.; He, F.; Jiang, G. Effects of Deficit Irrigation on Spring Wheat Lignification Process, Yield Productivity and Stalk Strength. Agronomy 2024, 14, 2647. https://doi.org/10.3390/agronomy14112647
Zhang Y, Yin H, Wang R, He F, Jiang G. Effects of Deficit Irrigation on Spring Wheat Lignification Process, Yield Productivity and Stalk Strength. Agronomy. 2024; 14(11):2647. https://doi.org/10.3390/agronomy14112647
Chicago/Turabian StyleZhang, Yaoyuan, Haojie Yin, Rongrong Wang, Fangfang He, and Guiying Jiang. 2024. "Effects of Deficit Irrigation on Spring Wheat Lignification Process, Yield Productivity and Stalk Strength" Agronomy 14, no. 11: 2647. https://doi.org/10.3390/agronomy14112647
APA StyleZhang, Y., Yin, H., Wang, R., He, F., & Jiang, G. (2024). Effects of Deficit Irrigation on Spring Wheat Lignification Process, Yield Productivity and Stalk Strength. Agronomy, 14(11), 2647. https://doi.org/10.3390/agronomy14112647