GWAS-Based Prediction of Genes Regulating the Weight of Mobilized Reserved Seeds in Sweet Corn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Phenotype Assessment
2.2. Phenotypic Data Analysis
2.3. Genome-Wide Association Analysis
2.4. Haplotype Analysis
2.5. Gene Function Annotation and Candidate Gene Prediction
3. Results
3.1. Phenotypic Analysis of Sweet Corn Inbred Lines
3.2. Genome-Wide Association Analysis of WMRS and KW
3.3. Analysis of Haplotypes and Allelic Variation Effects
3.4. Candidate Gene Analysis
3.5. Regulatory Network of Candidate Genes
4. Discussion
4.1. Analysis of the Positioning Results for WMRS and KW
4.2. Candidate Gene Analysis for WMRS and KW
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruanjaichon, V.; Khammona, K.; Thunnom, B.; Suriharn, K.; Kerdsri, C.; Aesomnuk, W.; Yongsuwan, A.; Chaomueang, N.; Thammapichai, P.; Arikit, S.; et al. Identification of Gene Associated with Sweetness in Corn (Zea mays L.) by Genome-Wide Association Study (GWAS) and Development of a Functional SNP Marker for Predicting Sweet Corn. Plants 2021, 10, 1239. [Google Scholar] [CrossRef] [PubMed]
- Tracy, W.F.; Shuler, S.L.; Dodson-Swenson, H. The Use of Endosperm Genes for Sweet Corn Improvement. In Plant Breeding Reviews; Wiley: Hoboken, NJ, USA, 2019; pp. 215–241. [Google Scholar]
- Huang, Y.; Lin, C.; He, F.; Li, Z.; Guan, Y.; Hu, Q.; Hu, J. Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2 and relevant gene expression. BMC Plant Biol. 2017, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-S.; Yun, H.S.; Seo, J.M. Optimum Harvest Time for High Quality Seed Production of Sweet and Super Sweet Corn Hybrids. Korean J. Crop Sci. 2004, 49, 373–380. [Google Scholar]
- Jiménez-López, S.; Mancera-Martínez, E.; Donayre-Torres, A.; Rangel, C.; Uribe, L.; March, S.; Jiménez-Sánchez, G.; Sánchez de Jiménez, E. Expression profile of maize (Zea mays L.) embryonic axes during germination: Translational regulation of ribosomal protein mRNAs. Plant Cell Physiol. 2011, 52, 1719–1733. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, S.L.; Charlton, W.L.; Baker, A.; Graham, I.A. Germination and storage reserve mobilization are regulated independently in Arabidopsis. Plant J. 2002, 31, 639–647. [Google Scholar] [CrossRef]
- Cheng, X.X.; He, S.; Geng, G.H. Dynamic QTL analysis of seed reserve utilization in sh(2) sweet corn germination stages. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, J.; Miao, X.; Lin, X.; Liu, W.; Ren, H. Effects of exogenous silicon on maize seed germination and seedling growth. Sci. Rep. 2021, 11, 1014. [Google Scholar] [CrossRef]
- Zhao, Y.; Yin, T.; Ran, X.; Liu, W.; Shen, Y.; Guo, H.; Peng, Y.; Zhang, C.; Ding, Y.; Tang, S. Stimulus-responsive proteins involved in multi-process regulation of storage substance accumulation during rice grain filling under elevated temperature. BMC Plant Biol. 2023, 23, 547. [Google Scholar] [CrossRef]
- Li, B.B.; Zhang, S.B.; Lv, Y.Y.; Wei, S.; Hu, Y.S. Reactive oxygen species-induced protein carbonylation promotes deterioration of physiological ac-tivity of wheat seeds. PLoS ONE 2022, 17, e0263553. [Google Scholar] [CrossRef]
- Ambika, S.; Manonmani, V.; Somasundar, G. Review on Effect of Seed Size on Seedling Vigour and Seed Yield. Res. J. Seed Sci. 2014, 7, 31–38. [Google Scholar] [CrossRef]
- Soltani, A.; Gholipoor, M.; Zeinali, E. Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environ. Exp. Bot. 2006, 55, 195–200. [Google Scholar] [CrossRef]
- Garg, G. Response in germination and seedling growth in Phaseolus mungo under salt and drought stress. J. Environ. Biol. 2010, 31, 261–264. [Google Scholar] [PubMed]
- Steckel, L.E.; Sprague, C.L.; Stoller, E.W.; Wax, L.M. Temperature effects on germination of nine Amaranthus species. Weed Sci. 2004, 52, 217–221. [Google Scholar] [CrossRef]
- Hussain, S.; Yin, H.; Peng, S.; Khan, F.A.; Khan, F.; Sameeullah, M.; Hussain, H.A.; Huang, J.; Cui, K.; Nie, L. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Sub-mergence Stress. Front Plant Sci. 2016, 7, 1125. [Google Scholar] [CrossRef]
- Jin, Y.; Li, D.; Liu, M.; Cui, Z.; Sun, D.; Li, C.; Zhang, A.; Cao, H.; Ruan, Y. Genome-Wide Association Study Identified Novel SNPs Associated with Chlorophyll Content in Maize. Genes 2023, 14, 1010. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Xi, N.; Liu, H.; Liu, P.; Xiang, C.; Zhang, C.; Zou, C.; Cheng, X.; Yu, H.; Zhang, M.; et al. An Integration of Linkage Mapping and GWAS Reveals the Key Genes for Ear Shank Length in Maize. Int. J. Mol. Sci. 2022, 23, 15073. [Google Scholar] [CrossRef]
- Ramekar, R.V.; Sa, K.J.; Park, K.-C.; Park, J.Y.; Park, K.J.; Lee, J.K. Genetic differentiation of Mutator insertion polymorphisms and association with agronomic traits in waxy and common maize. Genes. Genom. 2020, 42, 631–638. [Google Scholar] [CrossRef]
- Baseggio, M.; Murray, M.; Wu, D.; Ziegler, G.; Kaczmar, N.; Chamness, J.; Hamilton, J.P.; Buell, C.R.; Vatamaniuk, O.K.; Buckler, E.S.; et al. Genome-wide association study suggests an independent genetic basis of zinc and cadmium concentrations in fresh sweet corn kernels. G3 Genes|Genomes|Genet. 2021, 11, jkab186. [Google Scholar] [CrossRef]
- Yang, L.; Li, T.; Tian, X.; Yang, B.; Lao, Y.; Wang, Y.; Zhang, X.; Xue, J.; Xu, S. Genome-wide association study (GWAS) reveals genetic basis of ear-related traits in maize. Euphytica 2020, 216, 172. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Lu, C.; Chang, H.; Chachar, Z.; Fan, L.; An, Y.; Li, X.; Qi, Y. Genome-wide association study of carotenoids in maize kernel. Plant Genome 2024, 17, e20495. [Google Scholar] [CrossRef]
- Yang, T.; Dong, J.; Zhao, J.; Zhang, L.; Zhou, L.; Yang, W.; Ma, Y.; Wang, J.; Fu, H.; Chen, J.; et al. Genome-wide association mapping combined with gene-based haplotype analysis identify a novel gene for shoot length in rice (Oryza sativa L.). Theor. Appl. Genet. 2023, 136, 251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Peng, C.; Xu, W.; Li, Y.; Qi, X.; Zhao, M. Genome-wide association study of agronomic traits related to nitrogen use efficiency in Henan wheat. BMC Genom. 2024, 25, 7. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Ibrahim, S.; Kuang, L.; Ze, T.; Wang, X.; Wang, H.; Dun, X. Integrating genome-wide association study with transcriptomic data to predict candidate genes influencing Brassica napus root and biomass-related traits under low phosphorus conditions. Biotechnol. Biofuels Bioprod. 2023, 16, 149. [Google Scholar] [CrossRef]
- Zeng, T.; Meng, Z.; Yue, R.; Lu, S.; Li, W.; Li, W.; Meng, H.; Sun, Q. Genome wide association analysis for yield related traits in maize. BMC Plant Biol. 2022, 22, 449. [Google Scholar] [CrossRef]
- Ma, J.; Cao, Y. Genetic Dissection of Grain Yield of Maize and Yield-Related Traits Through Association Map-ping and Genomic Prediction. Front Plant Sci. 2021, 12, 690059. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ge, Z.; Wang, M.; Zhao, M.; Pei, Y.; Song, X. Genome-wide association study of quality traits and starch pasting properties of maize kernels. BMC Genom. 2023, 24, 59. [Google Scholar] [CrossRef]
- Coles, N.D.; McMullen, M.D.; Balint-Kurti, P.J.; Pratt, R.C.; Holland, J.B. Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 2010, 184, 799–812. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, S.-S.; Xu, J.-Y.; He, W.-M.; Yang, T.-L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Alemu, A.; Batista, L.; Singh, P.K.; Ceplitis, A.; Chawade, A. Haplotype-tagged SNPs improve genomic prediction accuracy for Fusarium head blight resistance and yield-related traits in wheat. Theor. Appl. Genet. 2023, 136, 92. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, M.; Chen, J.; Qing, C.; He, S.; Zou, C.; Yuan, G.; Yang, C.; Peng, H.; Pan, G.; et al. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. Theor. Appl. Genet. 2021, 134, 3305–3318. [Google Scholar] [CrossRef]
- Bai, L.; Wu, C.; Lei, S.; Zou, M.; Wang, S.; Zhang, Z.; Bao, Z.; Ren, Z.; Liu, K.; Ma, Q.; et al. Potential anti-gout properties of Wuwei Shexiang pills based on network pharmacology and pharmacological verification. J. Ethnopharmacol. 2023, 305, 116147. [Google Scholar] [CrossRef]
- Stelpflug, S.C.; Sekhon, R.S.; Vaillancourt, B.; Hirsch, C.N.; Buell, C.R.; De Leon, N.; Kaeppler, S.M. An Expanded Maize Gene Expression Atlas based on RNA Sequencing and its Use to Explore Root Development. Plant Genome 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Sharifi Alishah, M.; Darvishzadeh, R.; Ahmadabadi, M.; Piri Kashtiban, Y.; Hasanpur, K. Identification of differentially expressed genes in salt-tolerant oilseed sunflower (Helianthus annuus L.) genotype by RNA sequencing. Mol. Biol. Rep. 2022, 49, 3583–3596. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Gao, K.; Yang, H.; Ju, T.; Zhu, J.; Tang, Z.; Zhao, L.; Chen, Q. Genome-wide analysis of metallothionein gene family in maize to reveal its role in development and stress resistance to heavy metal. Biol. Res. 2022, 55, 1. [Google Scholar] [CrossRef]
- Wan, W.; Wu, Y.; Hu, D.; Ye, F.; Wu, X.; Qi, X.; Liang, H.; Zhou, H.; Xue, J.; Xu, S.; et al. Genome-wide association analysis of kernel nutritional quality in two natural maize populations. Mol. Breed. 2023, 43, 18. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guo, W.; Le, L.; Yu, J.; Wu, Y.; Li, D.; Wang, Y.; Wang, H.; Lu, X.; Qiao, H.; et al. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize. Mol. Plant 2023, 16, 354–373. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, Y.; Shaw, R.K.; Zhang, X.; Li, J.; Li, L.; Li, S.; Adnan, M.; Jiang, F.; Bi, Y.; et al. Genome-Wide Association Study and Prediction of Tassel Weight of Tropical Maize Germplasm in Multi-Parent Population. Int. J. Mol. Sci. 2024, 25, 1756. [Google Scholar] [CrossRef]
- Chen, W.; Cui, F.; Zhu, H.; Zhang, X.; Lu, S.; Lu, C.; Chang, H.; Fan, L.; Lin, H.; Fang, J.; et al. Genome-wide association study of kernel colour traits and mining of elite alleles from the major loci in maize. BMC Plant Biol. 2024, 24, 25. [Google Scholar] [CrossRef]
- Wang, B.; Yang, M.; Guo, H.; Wang, J.; Wang, Z.; Lu, H.; Qin, G.; Chen, J. Genome-wide association study for stalk lodging resistance related traits in maize (Zea mays L.). BMC Genom. 2024, 25, 19. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Y.; Liu, M.; Zhang, Q.; Wang, Z.; Fan, J.; Ruan, Y.; Zhang, A.; Dong, X.; Yue, J.; et al. Genome-Wide Association Studies Provide Insights into the Genetic Architecture of Seed Germination Traits in Maize. Front. Plant Sci. 2022, 13, 930438. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yu, Y.; Wang, L.; Luo, Y.; Peng, Y.; Xu, Y.; Liu, X.; Wu, S.; Jian, L.; Xu, J.; et al. The genetic architecture of the dynamic changes in grain moisture in maize. Plant Biotechnol. J. 2021, 19, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Adu, G.B.; Badu-Apraku, B.; Akromah, R.; Garcia-Oliveira, A.L.; Awuku, F.J.; Gedil, M. Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS ONE 2019, 14, e0214810. [Google Scholar] [CrossRef]
- Xu, Y.; Fang, H.; Zhou, B.; Yi, Y.; Wang, C.; Cheng, X.; Yu, H. Genome-wide association study of grain traits of sweet maize germplasm resources. Jiangsu J. Agric. Sci. 2021, 37, 289–295. [Google Scholar]
- Wang, C.; Xu, Y.; Cheng, X.; Zhou, Y.; Yu, H. Genome-wide association study of seed nutritional quality in sweet corn. Acta Agric. Zhejiangensis 2020, 32, 383–389. [Google Scholar]
- Chen, J.; Zhang, H.; Wang, T.; Li, X.; Wu, Z.; Lu, G. Genetic Diversity and Population Genetic Structure Analysis of Sweet Corn Inbred Lines. Mol. Plant Breed. 2022, 20, 6559–6565. [Google Scholar]
- Wu, Z.; Wang, T.; Chen, J.; Zhang, Y.; Lv, G. Sweet corn association panel and genome-wide association analysis reveal loci for chilling-tolerant germination. Sci. Rep. 2024, 14, 10791. [Google Scholar] [CrossRef]
- Dang, D.; Guan, Y.; Zheng, H.; Zhang, X.; Zhang, A.; Wang, H.; Ruan, Y.; Qin, L. Genome-Wide Association Study and Genomic Prediction on Plant Architecture Traits in Sweet Corn and Waxy Corn. Plants 2023, 12, 303. [Google Scholar] [CrossRef]
- Qu, Z.; Wu, Y.; Hu, D.; Li, T.; Liang, H.; Ye, F.; Xue, J.; Xu, S. Genome-Wide Association Analysis for Candidate Genes Contributing to Kernel-Related Traits in Maize. Front. Plant Sci. 2022, 13, 872292. [Google Scholar] [CrossRef]
- Zhang, K.; Dong, C.; Chang, J. Genome-Wide Association Study of 100-kernel Weight in Maize. J. Maize Sci. 2022, 32, 39–47. [Google Scholar]
- Wang, C.; Li, H.; Long, Y.; Dong, Z.; Wang, J.; Liu, C.; Wei, X.; Wan, X. A Systemic Investigation of Genetic Architecture and Gene Resources Controlling Kernel Size-Related Traits in Maize. Int. J. Mol. Sci. 2023, 24, 1025. [Google Scholar] [CrossRef] [PubMed]
- Legris, M.; Ince, Y.; Fankhauser, C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat. Commun. 2019, 10, 5219. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.; Yamaguchi, S.; Kamiya, Y.; Bae, G.; Chung, W.; Choi, G. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J. 2006, 47, 124–139. [Google Scholar] [CrossRef]
- Li, Z.; Sheerin, D.J.; von Roepenack-Lahaye, E.; Stahl, M.; Hiltbrunner, A. The phytochrome interacting proteins ERF55 and ERF58 repress light-induced seed germination in Arabidopsis thaliana. Nat. Commun. 2022, 13, 1656. [Google Scholar] [CrossRef]
- Naito, T.; Yamashino, T.; Kiba, T.; Koizumi, N.; Kojima, M.; Sakakibara, H.; Mizuno, T. A link between cytokinin and ASL9 (ASYMMETRIC LEAVES 2 LIKE 9) that belongs to the AS2/LOB (LATERAL ORGAN BOUNDARIES) family genes in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 2007, 71, 1269–1278. [Google Scholar] [CrossRef]
- Laplaze, L.; Benkova, E.; Casimiro, I.; Maes, L.; Vanneste, S.; Swarup, R.; Weijers, D.; Calvo, V.; Parizot, B.; Herrera-Rodriguez, M.B.; et al. Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 2007, 19, 3889–3900. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Roux, M.E.; Chevalier, J.R.; Dagdas, Y.F.; Yamashino, T.; Højgaard, S.D.; Knight, E.; Østergaard, L.; Rodriguez, E.; Petersen, M. The mRNA decapping machinery targets LBD3/ASL9 to mediate apical hook and lateral root development. Life Sci. Alliance 2023, 6, e202302090. [Google Scholar] [CrossRef]
- Aghdasi, M. Analysis of Trehalose-6-Phosphate Control over Carbon Allocation and Growth in Plants; Utrecht University: Utrecht, The Netherlands, 2006. [Google Scholar]
- Wingler, A.; Delatte, T.L.; O’hara, L.E.; Primavesi, L.F.; Jhurreea, D.; Paul, M.J.; Schluepmann, H. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol. 2012, 158, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Rezapoor, H.; Aghdasi, M.; Sadeghipoor, H.R. The Impacts of TRR14-Overexpression on Arabidopsis thaliana Growth and Photosynthetic Parameters. Iran J. Biotechnol. 2017, 15, 33–41. [Google Scholar] [CrossRef]
- Zhang, M.; Henquet, M.; Chen, Z.; Zhang, H.; Zhang, Y.; Ren, X.; Van Der Krol, S.; Gonneau, M.; Bosch, D.; Gong, Z. LEW3, encoding a putative alpha-1,2-mannosyltransferase (ALG11) in N-linked glycoprotein, plays vital roles in cell-wall biosynthesis and the abiotic stress response in Arabidopsis thaliana. Plant J. 2009, 60, 983–999. [Google Scholar] [CrossRef]
- Manzano, C.; Pallero-Baena, M.; Silva-Navas, J.; Neila, S.N.; Casimiro, I.; Casero, P.; Garcia-Mina, J.M.; Baigorri, R.; Rubio, L.; A Fernandez, J.; et al. A light-sensitive mutation in Arabidopsis LEW3 reveals the important role of N-glycosylation in root growth and development. J. Exp. Bot. 2017, 68, 5103–5116. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Nebenführ, A. Myosin XIK of Arabidopsis thaliana accumulates at the root hair tip and is required for fast root hair growth. PLoS ONE 2013, 8, e76745. [Google Scholar] [CrossRef] [PubMed]
- Madison, S.L.; Nebenführ, A. Understanding myosin functions in plants: Are we there yet? Curr. Opin. Plant Biol. 2013, 16, 710–717. [Google Scholar] [CrossRef] [PubMed]
Trait | Average ± SD | Skewness | Kurtosis | Range | CV (%) | h2 |
---|---|---|---|---|---|---|
WMRS | 0.049 ± 0.033 | 1.818 | 4.724 | 0.002–0.210 | 68.18 | 0.87 |
KW | 0.101 ± 0.045 | 1.702 | 4.584 | 0.039–0.298 | 44.63 | 0.95 |
Trait | SV | SS | DF | MS | F-Value | p-Value |
---|---|---|---|---|---|---|
WMRS | Between-group | 0.0014 | 2 | 0.0007 | 0.5821 | 0.5594 |
Within-group | 0.3640 | 297 | 0.0012 | |||
KW | Between-group | 0.0012 | 2 | 0.0006 | 0.2746 | 0.7600 |
Within-group | 0.6403 | 297 | 0.0022 |
Trait | SNP Marker | Chr. | p-Value | Candidate Gene | Position (bp) | Gene Annotation | Module |
---|---|---|---|---|---|---|---|
WMRS | Affx-90862117 | 3 | 1.01 × 10−4 | GRMZM2G413857 | 6, 520, 899 | Pollen-specific protein | - |
GRMZM2G132116 | 6, 793, 085 | Aurora kinase | M6 | ||||
GRMZM2G132069 | 6, 802, 222 | ATP-6-phosphofructokinase | M7 | ||||
Affx-90566108 | 3 | 1.35 × 10−4 | GRMZM2G015596 | 177, 063, 991 | Transcription initiation factor TFIID | M8 | |
Affx-91161218 | 3 | 1.93 × 10−4 | GRMZM2G400604 | 174, 411, 027 | Amino acid transferase protein | M10 | |
Affx-90276180 | 4 | 1.71 × 10−6 | GRMZM2G300924 | 146, 313, 370 | AP2/EREBP transcription factor protein | M1 | |
Affx-91208890 | 6 | 2.10 × 10−6 | GRMZM2G463462 | 55, 754, 693 | ER body-like protein | M2 | |
Affx-91281675 | 8 | 6.64 × 10−6 | GRMZM2G160556 | 97, 911, 333 | Arginyl-tRNA-protein transferase | - | |
GRMZM2G114954 | 98, 106, 249 | Arge ribosomal subunit protein | M4 | ||||
Affx-90828720 | 8 | 1.35 × 10−4 | GRMZM2G141725 | 105, 568, 098 | Topless-related2 | M9 | |
Affx-90065309 | 10 | 1.58 × 10−8 | GRMZM2G346839 | 138, 182, 296 | High mobility group (HMG) proteins | M11 | |
GRMZM2G096695 | 138, 182, 296 | RmlC-like cupins protein | M12 | ||||
KW | Affx-90802176 | 1 | 5.05 × 10−7 | GRMZM2G546081 | 162, 442, 378 | Alpha-1,2-mannosyltransferase | M19 |
GRMZM2G476637 | 162, 478, 675 | BTB/POZ domain-containing protein | M20 | ||||
Affx-115331806 | 7 | 2.08 × 10−4 | GRMZM2G059225 | 135, 547, 700 | PH domain-containing protein | - | |
Affx-91208575 | 7 | 2.31 × 10−4 | GRMZM2G406746 | 9, 799, 668 | PPR protein | - | |
GRMZM2G071294 | 9, 910, 307 | Cytidyltransferase-like protein | - | ||||
GRMZM2G161035 | 10, 113, 380 | Luminal binding protein BiP | M18 | ||||
Affx-90522187 | 8 | 3.32 × 10−8 | GRMZM5G852338 | 138, 182, 296 | Myosin-11 | M13 | |
GRMZM2G409343 | 138, 179, 969 | Myosin-11 | M14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Rizwan, A.; Sun, T.; Wang, D.; Cui, N.; Chen, L.; Yu, H.; Cheng, X. GWAS-Based Prediction of Genes Regulating the Weight of Mobilized Reserved Seeds in Sweet Corn. Agronomy 2024, 14, 2648. https://doi.org/10.3390/agronomy14112648
Yu Y, Rizwan A, Sun T, Wang D, Cui N, Chen L, Yu H, Cheng X. GWAS-Based Prediction of Genes Regulating the Weight of Mobilized Reserved Seeds in Sweet Corn. Agronomy. 2024; 14(11):2648. https://doi.org/10.3390/agronomy14112648
Chicago/Turabian StyleYu, Yulin, Ahmad Rizwan, Tao Sun, Dongxing Wang, Nini Cui, Lei Chen, Haibing Yu, and Xinxin Cheng. 2024. "GWAS-Based Prediction of Genes Regulating the Weight of Mobilized Reserved Seeds in Sweet Corn" Agronomy 14, no. 11: 2648. https://doi.org/10.3390/agronomy14112648
APA StyleYu, Y., Rizwan, A., Sun, T., Wang, D., Cui, N., Chen, L., Yu, H., & Cheng, X. (2024). GWAS-Based Prediction of Genes Regulating the Weight of Mobilized Reserved Seeds in Sweet Corn. Agronomy, 14(11), 2648. https://doi.org/10.3390/agronomy14112648