Water–Salt Migration Patterns among Cropland–Wasteland–Fishponds in the River-Loop Irrigation Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Test Layout and Data Acquisition
2.2.1. Groundwater Observation
2.2.2. Soil Monitoring
2.2.3. Water Sample Collection
2.2.4. Soil Water Potential
2.3. Research Methods
2.3.1. Sample Processing
2.3.2. Calculation of Groundwater Recharge
2.3.3. Calculation of Soil Salinity for Groundwater Recharge
2.3.4. Calculation of Osmotic Salts
2.3.5. Calculation of Soil Salt Accumulation Rate
2.3.6. Soil Desalinization Rate Calculation
2.3.7. Estimation of Groundwater Migration
3. Results
3.1. Statistical Characteristics of Soil Salinity
3.2. Salt Apparent Analysis
3.3. Groundwater Migration and Transformation in the Boundary of Cultivated Land–Wasteland–Fish Pond
3.4. The Variation Law of Groundwater EC in the Boundary of Cultivated Land–Wasteland–Fish Pond
3.5. Estimation of Water and Salt Migration in Wasteland
3.6. Effect of Fish Pond on Soil Salinity
3.7. Effect of Groundwater Depth on Soil Salinity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pereira, L.S.; Goncalves, J.M.; Dong, B.; Mao, Z.; Fang, S.X. Assessing basin irrigation and scheduling strategies for saving irrigation water and controlling salinity in the upper Yellow River Basin, China. Agric. Water Manag. 2007, 93, 109–122. [Google Scholar] [CrossRef]
- Ramos, T.B.; Liu, M.; Paredes, P.; Shi, H.; Feng, Z.; Lei, H.; Pereira, L.S. Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation. Agric. Water Manag. 2023, 283, 108306. [Google Scholar] [CrossRef]
- Zhou, L. Influences of deficit irrigation on soil water content distribution and spring wheat growth in Hetao Irrigation District, Inner Mongolia of China. Water Supply 2020, 20, 3722–3729. [Google Scholar] [CrossRef]
- Mousong, W.; Huang, J.; Xiao, T.; Jingwei, W. Water, salt and heat influences on carbon and nitrogen dynamics in seasonally frozen soils in Hetao Irrigation District, Inner Mongolia, China. Pedosphere 2019, 29, 632–641. [Google Scholar] [CrossRef]
- Haj-Amor, Z.; Hashemi, H.; Bouri, S. Soil salinization and critical shallow groundwater depth under saline irrigation condition in a Saharan irrigated land. Arab. J. Geosci. 2017, 10, 301. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Ahmad, W.; Ahmad, A.F.A. Optimum groundwater table depth and irrigation schedules for controlling soil salinity in central Iraq. Irrig. Drain. 2013, 62, 414–424. [Google Scholar] [CrossRef]
- Said, I.; Salman, S.A.; Elnazer, A.A. Salinization of groundwater during 20 years of agricultural irrigation, Luxor, Egypt. Environ. Geochem. Health 2022, 44, 3821–3835. [Google Scholar] [CrossRef]
- Sarrazin, B.; Wezel, A.; Guerin, M.; Robin, J. Pesticide contamination of fish ponds in relation to crop area in a mixed farmland-pond landscape (Dombes area, France). Environ. Sci. Pollut. Res. 2022, 29, 66858–66873. [Google Scholar] [CrossRef]
- Jia, Y.H.; Zheng, Y.H.; He, T.; Tang, H.Y. Effects of integrated rice-frog farming on soil bacterial community composition. Chil. J. Agric. Res. 2023, 83, 525–538. [Google Scholar] [CrossRef]
- Ogburn, D.M.; White, I. Integrating livestock production with crops and saline fish ponds to reduce greenhouse gas emissions. J. Integr. Environ. Sci. 2011, 8, 39–52. [Google Scholar] [CrossRef]
- Riley, W.D.; Potter, E.C.E.; Biggs, J.; Collins, A.L.; Jarvie, H.P.; Jones, J.I.; Kelly-Quinn, M.; Ormerod, S.J.; Sear, D.A.; Wilby, R.L.; et al. Small Water Bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action. Sci. Total Environ. 2018, 645, 1598–1616. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Liu, X.; Li, J.; Xia, Y. Dynamic analysis of water and salt in cropland—Saline alkali land—Sand dunes—Lake area based on SWAP model. J. Agric. Resour. Environ. 2018, 35, 540–549. [Google Scholar] [CrossRef]
- Wang, G.S.; Xu, B.; Tang, P.C.; Shi, H.B.; Tian, D.L.; Zhang, C.; Ren, J.; Li, Z.K. Modeling and Evaluating Soil Salt and Water Transport in a Cultivated Land-Wasteland-Lake System of Hetao, Yellow River Basin’s Upper Reaches. Sustainability 2022, 14, 14410. [Google Scholar] [CrossRef]
- Chughtai, M.I.; Mahmood, K. Semi-intensive Carp Culture in Saline Water-Logged Area: A Multi-Location Study in Shorkot (District Jhang), Pakistan. Pak. J. Zool. 2012, 44, 1065–1072. [Google Scholar]
- Oron, G.; Appelbaum, S.; Guy, O. Reuse of brine from inland desalination plants with duckweed, fish and halophytes toward increased food production and improved environmental control. Desalination 2023, 549, 116317. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Tran, D.H. Saline Soils and Crop Production in Coastal Zones of Vietnam: Features, Strategies for Amelioration and Management. Pak. J. Bot. 2020, 52, 1327–1333. [Google Scholar] [CrossRef]
- Mustafa, A.; Ratnawati, E.; Undu, M.C.; IOP. Characteristics and management of brackishwater pond soil in South Sulawesi Province, Indonesia. In Proceedings of the 3rd International Symposium on Marine and Fisheries (ISMF), South Sulawesi, Indonesia, 5–6 June 2020. [Google Scholar]
- Zhao, Y.; Shi, H.; Miao, Q.; Yang, S.; Hu, Z.; Hou, C.; Yu, C.; Yan, Y. Analysis of Spatial and Temporal Variability and Coupling Relationship of Soil Water and Salt in Cultivated and Wasteland at Branch Canal Scale in the Hetao Irrigation District. Agronomy 2023, 13, 2367. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Wang, J.; Pang, H.; Li, Y. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils. Soil Tillage Res. 2016, 155, 363–370. [Google Scholar] [CrossRef]
- Lei, Z. Soil Water Dynamics; Tsinghua University Press: Beijing, China, 1988. [Google Scholar]
- Yang, W.; Mao, W.; Yang, Y.; Zhu, Y.; Yang, J. Optimizing Conjunctive Use of Groundwater and Cannel Water in Hetao Irrigation District Aided by MODFLOW. J. Irrig. Drain. 2021, 40, 93–101. [Google Scholar] [CrossRef]
- Yuan, C. Monitoring Analysis and Numerical Simulation of Soil Water-Salt Dynamics under Irrigation Conditions in Arid Area of Northwest China. Ph.D. Thesis, Yangzhou University, Yangzhou, China, 2021. [Google Scholar]
- Guan, X.; Wang, S.; Gao, Z. Spatio-temporal variability of soil salinity and its relationship with the depth to groundwater in salinizationirrigation district. ACTA Ecol. Sin. 2012, 32, 198–206. [Google Scholar] [CrossRef]
- Barmakova, D.B.; Rodrigo-Ilarri, J.; Zavaley, V.A.; Rodrigo-Clavero, M.-E.; Capilla, J.E. Spatial analysis of the chemical regime of groundwater in the karatal irrigation Massif in South-Eastern Kazakhstan. Water 2022, 14, 285. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, F.; Ma, J.; Li, F.; Zhang, Q. Study on changes of fish pond water quality and soil physical and chemical properties during the improvement of saline alkali soil for fish culture in Embankments. Agric. Sci. J. Yanbian 2022, 44, 45–51. [Google Scholar]
- Karimov, A.K.; Simunek, J.; Hanjra, M.A.; Avliyakulov, M.; Forkutsa, I. Effects of the shallow water table on water use of winter wheat and ecosystem health: Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia). Agric. Water Manag. 2014, 131, 57–69. [Google Scholar] [CrossRef]
- Sharda, V.; Gowda, P.H.; Marek, G.; Kisekka, I.; Ray, C.; Adhikari, P. Simulating the impacts of irrigation levels on soybean production in Texas high plains to manage diminishing groundwater levels. JAWRA J. Am. Water Resour. Assoc. 2019, 55, 56–69. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, P. A Simulation-Based Optimization Model for Control of Soil Salinization in the Hetao Irrigation District, Northwest China. Sustainability 2023, 15, 4467. [Google Scholar] [CrossRef]
- Guo, S.; Ruan, B.; Chen, H.; Guan, X.; Wang, S.; Xu, N.; Li, Y. Characterizing the spatiotemporal evolution of soil salinization in Hetao Irrigation District (China) using a remote sensing approach. Int. J. Remote Sens. 2018, 39, 6805–6825. [Google Scholar] [CrossRef]
- Ren, D.; Xu, X.; Huang, Q.; Huo, Z.; Xiong, Y.; Huang, G. Analyzing the role of shallow groundwater systems in the water use of different land-use types in arid irrigated regions. Water 2018, 10, 634. [Google Scholar] [CrossRef]
- Panagopoulos, T.; Jesus, J.; Antunes, M.D.C.; Beltrão, J. Analysis of spatial interpolation for optimising management of a salinized field cultivated with lettuce. Eur. J. Agron. 2006, 24, 1–10. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Simakova, M.S.; Kulyanitsa, A.L.; Bryzzhev, A.V.; Koroleva, P.V.; Kalinina, N.V.; Chernousenko, G.I.; Vil’chevskaya, E.V.; Dolinina, E.A.; Rukhovich, S.V. The Influence of Soil Salinization on Land Use Changes in Azov District of Rostov Oblast. Eurasian Soil Sci. 2017, 50, 276–295. [Google Scholar] [CrossRef]
- Masoud, A.A.; Koike, K.; Atwia, M.G.; El-Horiny, M.M.; Gemail, K.S. Mapping soil salinity using spectral mixture analysis of landsat 8 OLI images to identify factors influencing salinization in an arid region. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101944. [Google Scholar] [CrossRef]
- Foster, S.; Pulido-Bosch, A.; Vallejos, Á.; Molina, L.; Llop, A.; MacDonald, A.M. Impact of irrigated agriculture on groundwater-recharge salinity: A major sustainability concern in semi-arid regions. Hydrogeol. J. 2018, 26, 2781–2791. [Google Scholar] [CrossRef]
- Khitrov, N.B.; Chernikov, E.A.; Popova, V.P.; Fomenko, T.G. Factors and mechanisms of soil salinization under vineyards of southern Taman. Eurasian Soil Sci. 2016, 49, 1228–1240. [Google Scholar] [CrossRef]
- Fan, F.; Zang, Q.; Ma, Y.; Hou, M. Improving biological traits by soda alkali-saline land diking for fish. Trans. Chin. Soc. Agric. Eng. 2018, 34, 142–146. [Google Scholar] [CrossRef]
- Mandal, U.K.; Burman, D.; Bhardwaj, A.K.; Nayak, D.B.; Samui, A.; Mullick, S.; Mahanta, K.K.; Lama, T.D.; Maji, B.; Mandal, S.; et al. Waterlogging and coastal salinity management through land shaping and cropping intensification in climatically vulnerable Indian Sundarbans. Agric. Water Manag. 2019, 216, 12–26. [Google Scholar] [CrossRef]
- Batukaev, A.-M.A.; Endovitsky, A.P.; Andreev, A.G.; Kalinichenko, V.P.; Minkina, T.M.; Dikaev, Z.S.; Mandzhieva, S.S.; Sushkova, S.N. Ion association in water solution of soil and vadose zone of chestnut saline solonetz as a driver of terrestrial carbon sink. Solid Earth 2016, 7, 415–423. [Google Scholar] [CrossRef]
- Narjary, B.; Kumar, S.; Meena, M.D.; Kamra, S.K.; Sharma, D.K. Effects of Shallow Saline Groundwater Table Depth and Evaporative Flux on Soil Salinity Dynamics using Hydrus-1D. Agric. Res. 2021, 10, 105–115. [Google Scholar] [CrossRef]
- Khasanov, S.; Li, F.D.; Kulmatov, R.; Zhang, Q.Y.; Qiao, Y.F.; Odilov, S.; Yu, P.; Leng, P.F.; Hirwa, H.; Tian, C.; et al. Evaluation of the perennial spatio-temporal changes in the groundwater level and mineralization, and soil salinity in irrigated lands of arid zone: As an example of Syrdarya Province, Uzbekistan. Agric. Water Manag. 2022, 263, 107444. [Google Scholar] [CrossRef]
- Malik, M.S.; Shukla, J.P.; Mishra, S. Effect of Groundwater Level on Soil Moisture, Soil Temperature and Surface Temperature. J. Indian Soc. Remote Sens. 2021, 49, 2143–2161. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Liu, H.; Wei, Z.; Miao, H. Quantitative Analysis of Temporal and Spatial Variations of Soil Salinization and Groundwater Depth along the Yellow River Saline–Alkali Land. Sustainability 2022, 14, 6967. [Google Scholar] [CrossRef]
Land Type | Soil Depth (cm) | Soil Physical Properties | VG Parameter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | Bulk Density (g.cm−3) | θr | θs | α | n | Ks | l | ||
Cultivated land | 0–10 | 5.48 | 67.54 | 26.98 | 1.63 | 0.036 | 0.3291 | 0.0105 | 1.5013 | 20.31 | 0.5 |
10–20 | 5.67 | 65.5 | 28.83 | 1.61 | 0.0359 | 0.3299 | 0.0103 | 1.5048 | 21.22 | 0.5 | |
20–40 | 5.87 | 65.6 | 28.53 | 1.59 | 0.0369 | 0.3342 | 0.0096 | 1.5217 | 22.65 | 0.5 | |
40–60 | 4.81 | 72.64 | 22.55 | 1.57 | 0.0391 | 0.3487 | 0.0085 | 1.5636 | 27.7 | 0.5 | |
60–80 | 7.59 | 79.58 | 12.83 | 1.57 | 0.0482 | 0.3766 | 0.0072 | 1.5978 | 21.5 | 0.5 | |
80–100 | 4.70 | 64.4 | 30.9 | 1.55 | 0.0353 | 0.3362 | 0.0097 | 1.5279 | 28.74 | 0.5 | |
Wasteland | 0–10 | 5.54 | 63.31 | 31.15 | 1.58 | 0.0355 | 0.3317 | 0.0102 | 1.51 | 23.6 | 0.5 |
10–20 | 7.64 | 68.36 | 24.00 | 1.57 | 0.0421 | 0.3484 | 0.0078 | 1.5688 | 21.18 | 0.5 | |
20–40 | 8.60 | 71.08 | 20.32 | 1.56 | 0.0458 | 0.3595 | 0.007 | 1.5939 | 20.51 | 0.5 | |
40–60 | 9.63 | 77.9 | 12.47 | 1.55 | 0.0521 | 0.3832 | 0.0065 | 1.6144 | 19.83 | 0.5 | |
60–80 | 6.94 | 79.89 | 13.17 | 1.53 | 0.0485 | 0.3835 | 0.0068 | 1.6164 | 26.63 | 0.5 | |
80–100 | 5.35 | 85.79 | 8.86 | 1.51 | 0.0495 | 0.4005 | 0.0071 | 1.6195 | 30.36 | 0.5 | |
Fish pond boundary | 0–10 | 5.21 | 68.09 | 26.7 | 1.54 | 0.0383 | 0.3458 | 0.0083 | 1.5632 | 29.82 | 0.5 |
10–20 | 6.16 | 66.54 | 27.3 | 1.53 | 0.0395 | 0.3477 | 0.0079 | 1.5708 | 28.27 | 0.5 | |
20–40 | 9.65 | 75.44 | 14.91 | 1.53 | 0.0514 | 0.3805 | 0.0063 | 1.6245 | 21.65 | 0.5 | |
40–60 | 6.68 | 76.61 | 16.71 | 1.52 | 0.0464 | 0.375 | 0.0068 | 1.6177 | 28.71 | 0.5 | |
60–80 | 7.03 | 73.36 | 19.61 | 1.51 | 0.0455 | 0.3695 | 0.0066 | 1.619 | 28.96 | 0.5 | |
80–100 | 3.40 | 74.28 | 22.32 | 1.49 | 0.0396 | 0.3631 | 0.0075 | 1.605 | 42.55 | 0.5 |
Land Type | Soil Depth (cm) | Min | Max | Mean Vale | Standard Deviation | Coefficient of Variation | Bias Angle | Kurtosis |
---|---|---|---|---|---|---|---|---|
Cultivated land | 0–10 | 1.68 | 3.07 | 2.31 | 0.50 | 0.22 | 0.64 | 1.52 |
10–20 | 1.57 | 2.84 | 2.11 | 0.49 | 0.23 | 0.69 | 0.35 | |
20–40 | 1.27 | 2.23 | 1.87 | 0.40 | 0.21 | −0.96 | −0.55 | |
40–60 | 1.11 | 2.15 | 1.64 | 0.49 | 0.30 | −0.40 | −2.96 | |
60–80 | 0.84 | 1.85 | 1.42 | 0.49 | 0.35 | −0.59 | −3.17 | |
80–100 | 0.78 | 1.54 | 1.20 | 0.35 | 0.29 | −0.55 | −2.95 | |
Wasteland | 0–10 | 14.61 | 21.72 | 19.57 | 2.898 | 0.15 | −1.779 | 3.381 |
10–20 | 5.20 | 9.97 | 8.19 | 1.859 | 0.23 | −1.270 | 1.626 | |
20–40 | 4.44 | 8.47 | 6.87 | 1.775 | 0.26 | −0.745 | −2.038 | |
40–60 | 4.11 | 8.13 | 6.46 | 1.900 | 0.29 | −0.572 | −2.902 | |
60–80 | 3.78 | 6.33 | 5.28 | 1.288 | 0.24 | −0.598 | −3.238 | |
80–100 | 3.20 | 5.75 | 4.58 | 1.128 | 0.25 | −0.434 | −2.656 | |
Fish pond boundary | 0–10 | 10.08 | 11.46 | 10.92 | 0.580 | 0.05 | −0.689 | −0.650 |
10–20 | 4.14 | 8.26 | 6.21 | 1.638 | 0.26 | −0.139 | −1.310 | |
20–40 | 3.38 | 5.00 | 4.23 | 0.777 | 0.18 | −0.444 | −3.080 | |
40–60 | 2.48 | 4.44 | 3.75 | 0.885 | 0.24 | −0.899 | −1.408 | |
60–80 | 2.83 | 5.41 | 3.88 | 1.046 | 0.27 | 0.685 | −0.475 | |
80–100 | 2.46 | 4.35 | 3.64 | 0.854 | 0.23 | −0.796 | −2.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Shi, H.; Miao, Q.; Gonçalves, J.M.; Yan, Y.; Hu, Z.; Hou, C.; Zhao, Y. Water–Salt Migration Patterns among Cropland–Wasteland–Fishponds in the River-Loop Irrigation Area. Agronomy 2024, 14, 107. https://doi.org/10.3390/agronomy14010107
Yu C, Shi H, Miao Q, Gonçalves JM, Yan Y, Hu Z, Hou C, Zhao Y. Water–Salt Migration Patterns among Cropland–Wasteland–Fishponds in the River-Loop Irrigation Area. Agronomy. 2024; 14(1):107. https://doi.org/10.3390/agronomy14010107
Chicago/Turabian StyleYu, Cuicui, Haibin Shi, Qingfeng Miao, José Manuel Gonçalves, Yan Yan, Zhiyuan Hu, Cong Hou, and Yi Zhao. 2024. "Water–Salt Migration Patterns among Cropland–Wasteland–Fishponds in the River-Loop Irrigation Area" Agronomy 14, no. 1: 107. https://doi.org/10.3390/agronomy14010107
APA StyleYu, C., Shi, H., Miao, Q., Gonçalves, J. M., Yan, Y., Hu, Z., Hou, C., & Zhao, Y. (2024). Water–Salt Migration Patterns among Cropland–Wasteland–Fishponds in the River-Loop Irrigation Area. Agronomy, 14(1), 107. https://doi.org/10.3390/agronomy14010107