Research on Insect Pest Identification in Rice Canopy Based on GA-Mask R-CNN
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of Pest Images
2.1.1. Collection of Pest Monitoring Equipment
2.1.2. Pest Trap Collection
2.1.3. Field Photography of Pests in Paddy Fields
2.2. Single Pest Sample Acquisition
2.2.1. Splitting of Pest Samples for Trapping Equipment
2.2.2. Canopy Plant Pest Sample Segmentation
2.3. Sample Image Amplification
2.3.1. General Data Enhancement
2.3.2. Deep Convolutional Generation Adversarial Network
2.4. Data Set Construction
3. GA-Mask R-CNN Model Construction
3.1. Identify the Basic Structure of the Model Network
3.2. Multi-Level Residual Connection
3.3. ECA Attention Module
4. Test Results and Analysis
4.1. Test Environment and Hyperparameter Setting
4.2. Test Evaluation Index
4.3. Analysis of Test Results
4.3.1. Analysis of Test Results in Laboratory Environment
4.3.2. Analysis of Test Results under Monitoring Equipment
4.3.3. Influence of Different Models on Detection Performance
5. Conclusions
- (1)
- The bug generator of generative adversarial network is utilized to enhance the sensitivity of the classification network to the insect body information, which improves the accuracy and robustness of the pest detection.
- (2)
- Multilevel residual connectivity and ECA attention module are used in the Mask R-CNN backbone network ResNet101 to improve the recognition accuracy of the model and to suppress the gradient vanishing and the gradient explosion problems in order to improve the stability and the convergence of the model.
- (3)
- The performance test of rice canopy pests was conducted on the pest monitoring equipment, and the results showed that the performance indexes of the improved model were all better than those of Faster-RCNN, SSD, YOLOv5, and other models, which proved the effectiveness and superiority of the scheme.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, J.; Chen, M.H.; Zhang, K.; Zou, Y.; Zhang, S.; Zhu, D. Plant segmentation model of crop seedling stage based on fusion of regional semantics and edge information. J. Agric. Mach. 2021, 12, 71–181. [Google Scholar]
- Vasseghian, Y.; Berkani, M.; Almomani, F.; Dragoi, E.N. Data Mining For Pesticide Decontamination Using Heterogeneous Photocatalytic Processes. Chemosphere 2021, 270, 129449. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, M.M.; Liu, J.D.; Chen, F. Strip surface defect identification based on lightweight convolutional neural network. Chin. J. Sci. Instrum. 2022, 3, 240–248. [Google Scholar]
- Wu, L.; Han, S.; Chen, A.; Salama, P.; Dunn, K.W.; Delp, E.J. RCNN-SliceNet: A Slice and Cluster Approach for Nuclei Centroid Detection in Three-Dimensional Fluorescence Microscopy Images. In Conference on Computer Vision and Pattern Recognition Workshops, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2021, Nashville, TN, USA, 20–25 June 2021; IEEE: Piscataway, NJ, USA, 2021; Volume 15753, pp. 3755–3765. [Google Scholar]
- Lin, T.L.; Chang, H.Y.; Chen, K.H. The Pest and Disease Identification in the Growth of Sweet Peppers Using Faster R-CNN and Mask R-CNN. J. Internet Technol. 2020, 2, 605–614. [Google Scholar]
- Rong, M.; Wang, Z.; Ban, B.; Guo, X. Pest Identification and Counting of Yellow Plate in Field Based on Improved Mask R-CNN. Discret. Dyn. Nat. Soc. 2022, 2022, 1913577. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, Y.; Feng, Q. Method of Locating the Strike Point on Pest for Laser Control Based on Mask R-CNN. In Proceedings of the 2022 International Conference on Guidance, Navigation and Control, Harbin, China, 5–7 August 2022; pp. 710–718. [Google Scholar]
- Lyu, S.; Ke, Z.; Li, Z.; Xie, J.; Zhou, X.; Liu, Y. Accurate Detection Algorithm of Citrus Psyllid Using the YOLOv5s-BC Model. Agronomy 2023, 13, 896. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, X.; Wu, R.; Wang, J.; Hou, Q.; Cheng, M.M. YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection. Comput. Vis. Pattern Recognit. 2023, 2308, 5480. [Google Scholar]
- Jia, L.; Wang, T.; Chen, Y.; Zang, Y.; Li, X.; Shi, H.; Gao, L. MobileNet-CA-YOLO: An Improved YOLOv7 Based on the MobileNetV3 and Attention Mechanism for Rice Pests and Diseases Detection. Agriculture 2023, 13, 1285. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhao, M. A Lightweight Crop Pest Detection Algorithm Based on Improved Yolov5s. Agronomy 2023, 13, 1779. [Google Scholar] [CrossRef]
- Wang, L.; Shi, W.; Tang, Y.; Liu, Z.; He, X.; Xiao, H.; Yang, Y. Transfer Learning-Based Lightweight SSD Model for Detection of Pests in Citrus. Agronomy 2023, 13, 1710. [Google Scholar] [CrossRef]
- Zheng, W.; Tang, W.; Jiang, L.; Fu, C.W. SE-SSD: Self-Ensembling Single-Stage Object Detector from Point Cloud. Comput. Vis. Pattern Recognit. 2021, 9804, 14494–14503. [Google Scholar]
- Chen, J.; Han, M.; Lian, Y.; Zhang, S. Image segmentation of hybrid rice kernel based on U-Net model. Trans. Chin. Soc. Agric. Eng. 2019, 10, 174–180. [Google Scholar]
- Prakruti, V.B.; Sarangi, S.; Pappula, S. Detection of diseases and pests on images captured in uncontrolled conditions from tea plantations. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV; SPIE: Bellingham, WA, USA, 2019; Volume 11008. [Google Scholar]
- Lin, C.H.; Chen, P.H.; Lin, C.; Chen, Y.C.; Huang, M.J.; Liu, W.M. Automatic Detection and Counting of Small Yellow thrips on Lotus Leaf Back Based on YOLO Combined with VDSR and DPSR Network. In Proceedings of the Thirteenth International Conference on Digital Image Processing, Virtual, 20–23 May 2021; p. 11878. [Google Scholar]
- Khalid, S.; Oqaibi, H.M.; Aqib, M.; Hafeez, Y. Small Pests Detection in Field Crops Using Deep Learning Object Detection. Sustainability 2023, 15, 6815. [Google Scholar] [CrossRef]
- Arshaghi, A.; Ashourian, M.; Ghabeli, L. Potato diseases detection and classification using deep learning methods. Multimed. Tools Appl. 2023, 82, 5725–5742. [Google Scholar] [CrossRef]
- Lippi, M.; Carpio, R.F.; Contarini, M.; Speranza, S.; Gasparri, A. A Data-Driven Monitoring System for the Early Pest Detection in the Precision Agriculture of Hazelnut Orchards. IFAC-PapersOnLine 2022, 55, 32. [Google Scholar] [CrossRef]
- Kasinathan, T.; Uyyala, S.R. Detection of fall armyworm (Spodoptera frugiperda) in field crops based on mask R-CNN. Signal Image Video Process. 2023, 17, 2689. [Google Scholar] [CrossRef]
- Kaur, P.; Harnal, S.; Gautam, V.; Singh, M.P.; Singh, S.P. Hybrid deep learning model for multi biotic lesions detection in solanum lycopersicum leaves. Multimed. Tools Appl. 2023, 1, 25. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Kamperidou, V.; Stathaki, T. Estimation of extent of trees and biomass infestation of the suburban forest of Thessaloniki (Seich Sou) using UAV imagery and combining R-CNNs and multichannel texture analysis. Mach. Vis. Appl. 2020, 11433, 114333C. [Google Scholar]
- Lin, X.Z.; Zhang, J.Y.; Xu, X.; Zhu, S.H.; Liu, D.Y. Recognition and classification of Rice planthopper based on incomplete insect images based on dictionary learning and SSD. Trans. Chin. Soc. Agric. Mach. 2021, 52, 165–171. [Google Scholar]
- Gonçalves, J.; Silva, E.; Faria, P.; Nogueira, T.; Ferreira, A.; Carlos, C.; Rosado, L. Edge-Compatible Deep Learning Models for Detection of Pest Outbreaks in Viticulture. Agronomy 2022, 12, 3052. [Google Scholar] [CrossRef]
- Liang, Y.; Qiu, R.Z.; Li, Z.P.; Chen, S.X.; Chen, Z.; Zhao, J. Identification method of rice major pests based on YOLOv5 and multi-source data set. Trans. Chin. Soc. Agric. Mach. 2002, 53, 250–258. [Google Scholar]
- Wang, J.; Ma, B.; Wang, Z.; Liu, S.; Mu, J.; Wang, Y. Pest identification method in apple orchards based on improved Mask R-CNN. Trans. Chin. Soc. Agric. Mach. 2023, 54, 253–263. [Google Scholar]
- Ramadan, H.; Lachqar, C.; Tairi, H. A Survey of Recent Interactive Image Segmentation Methods. Comput. Vis. Media 2020, 6, 355–384. [Google Scholar] [CrossRef]
- Lu, A.Q.; Qin, C.C.; Hu, S.B.; Li, G.Q. Research on deep interactive image segmentation with extreme point feature. Inf. Commun. 2020, 6, 66–69. [Google Scholar]
- Lin, Z.; Zhang, Z.; Chen, L.-Z.; Cheng, M.-M.; Lu, S.-P. Interactive Image Segmentation with First Click Attention. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 13336–13345. [Google Scholar]
- Li, Q.X.; Wang, Q.H.; Ma, M. Research on egg image data generation based on generative adduction network. Trans. Chin. Soc. Agric. Mach. 2021, 52, 236–245. [Google Scholar]
- Ye, Y.; Shen, B.; Shen, Y. Shadow resistant tree detection method based on generation adduction network. Trans. Chin. Soc. Agric. Eng. 2021, 37, 118–126. [Google Scholar]
- Pan, Y.; Jin, M.; Zhang, S.; Deng, Y. TEC map completion using DCGAN and Poisson blending. Space Weather.—Int. J. Res. Appl. 2020, 18, 5. [Google Scholar] [CrossRef]
- Chen, H.; Zhen, X.; Zhao, T. An adaptive image fusion data enhanced method for Pika target detection. Trans. Chin. Soc. Agric. Eng. 2022, 38, 170–175. [Google Scholar]
- Yu, X.M.; Hong, S.; Yu, J.X.; Lu, Y.B.; Peng, Y. Research on enhancement method of ship target data in visible remote sensing image. Chin. J. Sci. Instrum. 2020, 41, 261–269. [Google Scholar]
- Brock, A.; Donahue, J.; Simonyan, K. Large Scale GAN Training for High Fidelity Natural Image Synthesis. Learning 2019, 1809, 11096. [Google Scholar]
- Afzaal, U.; Bhattarai, B.; Pandeya, Y.R.; Lee, J. An Instance Segmentation Model for Strawberry Diseases Based on Mask R-CNN. Sensors 2021, 21, 6565. [Google Scholar] [CrossRef]
- Taş, M.; Taş, Y.; Balki, O.; Aydın, Z.; Taşdemir, K. Camera-based wildfire smoke detection for foggy environments. J. Electron. Imaging 2022, 31, 5. [Google Scholar] [CrossRef]
- Lin, X.Z.; Zhu, S.H.; Zhang, J.Y.; Liu, D.Y. Image classification method of rice planthopper based on transfer learning and Mask R-CNN. Trans. Chin. Soc. Agric. Mach. 2019, 50, 201–207. [Google Scholar]
- Qin, H.; Zhang, D.; Tang, Y.; Wang, Y. Automatic Recognition of Tunnel Lining Elements From Gpr Images Using Deep Convolutional Networks With Data Augmentation. Autom. Constr. 2021, 130, 103830. [Google Scholar] [CrossRef]
- Shen, C.; Qi, G.J.; Jiang, R.; Jin, Z.; Yong, H.; Chen, Y.; Hua, X.S. Sharp Attention Network via Adaptive Sampling for Person Re-identification. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 3016–3027. [Google Scholar] [CrossRef]
Address | Longitude and Latitude |
---|---|
Weifang city Shouguang pest monitoring station | 119.1° E, 36.6° N |
Linyi city Lanling county Jinsui family farm | 118.2° E, 34.8° N |
Weihai Rushan pest monitoring station | 121.5° E, 36.9° N |
Zibo city Yiyuan pest monitoring station | 118.2° E, 36.2° N |
Jinan city Jiyang pest monitoring station | 117.2° E, 37.0° N |
Yantai Muping pest monitoring station | 121.6° E, 37.4° N |
Dezhou Qingyun pest monitoring station | 117.4° E, 37.8° N |
Liaocheng Linqing pest monitoring station | 115.5° E, 36.7° N |
Heze city Caoxian pest monitoring station | 115.5° E, 34.8° N |
Taian pest monitoring station | 117.1° E, 36.2° N |
Jining city Yutai pest monitoring station | 116.7° E, 35.0° N |
Tancheng County Puwang farm, Linyi city | 118.3° E, 34.5° N |
Dongying Huanghekou pest monitoring station | 118.8° E, 37.9° N |
Linyi city Junan pest monitoring station | 118.8° E, 35.2° N |
Qingdao Laixi pest monitoring station | 120.5° E, 36.9° N |
Data Set | Original Sample/Sheet | Expanded Sample/Sheet | ||
---|---|---|---|---|
Rice Stem Borer | Rice Leaf Roller | Rice Stem Borer | Rice Leaf Roller | |
Bug monitoring equipment | 1478 | 1527 | 5912 | 6180 |
Pest traps | 2116 | 2160 | 8464 | 8640 |
Pests on rice plants | 229 | 208 | 2178 | 2476 |
Multi-source data sets | 3823 | 4195 | 16,554 | 17,296 |
Experiment Round | Target Sample | Interference Sample | Original Model | Improved Model | ||
---|---|---|---|---|---|---|
Number of Detections | Number of False Detections | Number of Detections | Number of False Drops | |||
1 | 50 | 65 | 41 | 12 | 40 | 6 |
2 | 80 | 95 | 68 | 20 | 65 | 10 |
3 | 120 | 120 | 102 | 24 | 103 | 7 |
4 | 170 | 155 | 138 | 30 | 143 | 12 |
5 | 230 | 205 | 195 | 35 | 198 | 16 |
Evaluation Index | Original Mask R-CNN Model | GA-Mask R-CNN Model |
---|---|---|
Multitask loss function | 0.02711 | 0.02382 |
Average precision | 85.64% | 92.71% |
Recall | 81.63% | 89.28% |
F1 | 0.8213 | 0.9096 |
Mrcnn_bbox_loss | 1.1253 × 10−3 | 8.1745 × 10−4 |
Mrcnn_class_loss | 2.1068 × 10−3 | 1.5485 × 10−3 |
Mrcnn_mask_loss | 0.02227 | 0.02136 |
Rpn_bbox_loss | 1.6175 × 10−3 | 1.0825 × 10−3 |
Rpn_class_loss | 1.6492 × 10−5 | 1.1164 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Fu, S.; Hu, A.; Ma, P.; Hu, X.; Tian, X.; Zhang, H.; Liu, S. Research on Insect Pest Identification in Rice Canopy Based on GA-Mask R-CNN. Agronomy 2023, 13, 2155. https://doi.org/10.3390/agronomy13082155
Liu S, Fu S, Hu A, Ma P, Hu X, Tian X, Zhang H, Liu S. Research on Insect Pest Identification in Rice Canopy Based on GA-Mask R-CNN. Agronomy. 2023; 13(8):2155. https://doi.org/10.3390/agronomy13082155
Chicago/Turabian StyleLiu, Sitao, Shenghui Fu, Anrui Hu, Pan Ma, Xianliang Hu, Xinyu Tian, Hongjian Zhang, and Shuangxi Liu. 2023. "Research on Insect Pest Identification in Rice Canopy Based on GA-Mask R-CNN" Agronomy 13, no. 8: 2155. https://doi.org/10.3390/agronomy13082155
APA StyleLiu, S., Fu, S., Hu, A., Ma, P., Hu, X., Tian, X., Zhang, H., & Liu, S. (2023). Research on Insect Pest Identification in Rice Canopy Based on GA-Mask R-CNN. Agronomy, 13(8), 2155. https://doi.org/10.3390/agronomy13082155