Brewer’s Spent Grain with Yeast Amendment Shows Potential for Anaerobic Soil Disinfestation of Weeds and Pythium irregulare
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Setup
2.2. Inoculum Preparation and Sensor Installation
2.3. ASD Treatment Initiation and Post-Assessments
2.4. Statistical Analyses
3. Results
3.1. Weed and P. irregulare Viability
3.2. Cumulative Soil Anaerobicity
3.3. Temperature
3.4. Volatile Fatty Acids
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shennan, C.; Muramoto, J.; Koike, S.T.; Daugovish, O. Optimizing anaerobic soil disinfestation for non-fumigated strawberry production in California. In Proceedings of the Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions, Methyl Bromide Alternatives Outreach, San Diego, CA, USA, 10–13 November 2009. [Google Scholar]
- Muramoto, J.; Shennan, C.; Fitzgerald, A.; Koike, S.; Bolda, M.; Daugovish, O.; Rosskopf, E.; Kokalis-Burelle, N.; Butler, D.M. Effect of anaerobic soil disinfestation on weed seed germination. In Proceedings of the Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions, Orlando, FL, USA, 11–14 November 2008; Volume 101, pp. 1–3. [Google Scholar]
- Rosskopf, E.N.; Chellemi, D.O.; Kokalis-Burelle, N.; Church, G.T. Alternatives to methyl bromide: A Florida perspective. Plant Health Prog. 2005, 6, 19. [Google Scholar] [CrossRef]
- Fennimore, S.A.; Serohijos, R.; Samtani, J.B.; Ajwa, H.A.; Subbarao, K.V.; Martin, F.N.; Daugovish, O.; Legard, D.; Browne, G.T.; Muramoto, J.; et al. TIF film, substrates and nonfumigant soil disinfestation maintain fruit yields. Calif. Agric. 2013, 67, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Hanson, B.D.; Wang, D.; Browne, G.T.; Qin, R.J.; Ajwa, H.; Yates, S.R. Methods evaluated to minimize emissions from preplant soil fumigation. Calif. Agric. 2011, 65, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Hewavitharana, S.S.; Klarer, E.; Reed, A.J.; Leisso, R.; Poirier, B.; Honaas, L.; Rudell, D.R.; Mazzola, M. Temporal Dynamics of the Soil Metabolome and Microbiome During Simulated Anaerobic Soil Disinfestation. Front. Microbiol. 2019, 10, 2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Wen, T.; Zhang, J.; Meng, L.; Zhu, T.; Cai, Z. Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f. sp. cubense. Biocontrol 2015, 60, 113–124. [Google Scholar] [CrossRef]
- Rosskopf, E.; Gioia, F.D.; Hong, J.C.; Pisani, C.; Kokalis-Burelle, N. Organic amendments for pathogen and nematode control. Annu. Rev. Phytopathol. 2020, 58, 277–311. [Google Scholar] [CrossRef]
- Shrestha, U.; Augé, R.M.; Butler, D.M. A meta-analysis of the impact of anaerobic soil disinfestation on pest suppression and yield of horticultural crops. Front. Plant Sci. 2016, 7, 1254. [Google Scholar] [CrossRef] [Green Version]
- Khadka, R.B.; Marasini, M.; Rawal, R.; Testen, A.L.; Miller, S.A. Effects of anaerobic soil disinfestation carbon sources on soilborne diseases and weeds of okra and eggplant in Nepal. Crop Prot. 2020, 135, 104846. [Google Scholar] [CrossRef]
- Di Gioia, F.; Ozores-Hampton, M.; Hong, J.; Kokalis-Burelle, N.; Albano, J.; Zhao, X.; Black, Z.; Gao, Z.; Wilson, C.; Thomas, J.; et al. The effects of anaerobic soil disinfestation on weed and nematode control, fruit yield, and quality of Florida fresh-market tomato. HortScience 2016, 51, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Di Gioia, F.; Zhao, X.; Ozores-Hampton, M.; Swisher, M.E.; Hong, J.; Kokalis-Burelle, N.; DeLong, A.N.; Rosskopf, E.N. Optimizing anaerobic soil disinfestation for fresh market tomato production: Nematode and weed control, yield, and fruit quality. Sci. Hortic. 2017, 218, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Di Gioia, F.; Hwang, J.; Hong, J.; Ozores-Hampton, M.; Zhao, X.; Pisani, C.; Rosskopf, E.; Wilson, P.C. Dissipation of fomesafen in fumigated, anaerobic soil disinfestation-treated, and organic-amended soil in Florida tomato production systems. Pest Manag. Sci. 2020, 76, 628–635. [Google Scholar] [CrossRef] [PubMed]
- McCarty, D.G.; Eichler Inwood, S.E.; Ownley, B.H.; Sams, C.E.; Wszelaki, A.L.; Butler, D.M. Field evaluation of carbon sources for anaerobic soil disinfestation in tomato and bell pepper production in Tennessee. HortScience 2014, 49, 72–80. [Google Scholar] [CrossRef]
- Shrestha, U.; Duesterbeck, G.; Rosskopf, E.N.; Butler, D.M. Evaluation of a bioherbicide and anaerobic soil disinfestation for weed control in specialty crop production. In Proceedings of the Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions, Methyl Bromide Alternatives Outreach, Orlando, FL, USA, 8–10 November 2016. [Google Scholar]
- Momma, N. Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Jpn. Agric. Res. Q. 2008, 42, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Butler, D.M.; Rosskopf, E.N.; Kokalis-Burelle, N.; Albano, J.P.; Muramoto, J.; Shennan, C. Exploring warm season cover crops as carbon sources for anaerobic soil disinfestation (ASD). Plant Soil 2012, 355, 149–165. [Google Scholar] [CrossRef]
- Messiha, N.S.; Diepeningen, A.; Wenneker, M.; Beuningen, A.; Janse, J.; Coenen, T.C.; Termorshuizen, A.; Bruggen, A.C.; Blok, W. Biological soil disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3biovar 2. Eur. J. Plant Pathol. 2017, 117, 403–415. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Pérez, P.; Rosskopf, E.N.; Santiago, A.D.; Rodríguez-Molina, M.C. Anaerobic soil disinfestation reduces survival and infectivity of Phytophthora nicotianae chlamydospores in pepper. Sci. Hortic. 2017, 215, 38–48. [Google Scholar] [CrossRef]
- Uematsu, S.; Tanaka-Miwa, C.; Sato, Y.; Kobara, R.; Sato, M. Ethyl alcohol as a promising material of reductive soil disinfestation for controlling root knot nematode and soilborne plant diseases. In Proceedings of the Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions, San Diego, CA, USA, 29 October–1 November 2007; Volume 75, pp. 1–3. [Google Scholar]
- Momma, N.; Kobara, Y.; Uematsu, S.; Kita, N.; Shinmura, A. Development of biological soil disinfestations in Japan. Appl. Microbiol. Biotechnol. 2013, 97, 3801–3809. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Inert Reassessment-Three Exemptions from the Requirement of a Tolerance for Ethyl alcohol (CAS# 64-17-5). Available online: https://www.epa.gov/sites/production/files/2015-04/documents/ethyl.pdf (accessed on 10 September 2020).
- Honda, H.; Ohnishi, A.; Fujimoto, N.; Suzuki, M. Development of a solid-state fermentation system for producing bioethanol from food waste. Environ. Conserv. Eng. 2008, 37, 207–215. (In Japanese) [Google Scholar] [CrossRef]
- Kitamoto, H.K.; Horita, M.; Cai, Y.; Shinozaki, K.; Sakaki, K. Silage produces biofuel for local consumption. Biotechnol. Biofuels 2011, 4, 46. [Google Scholar] [CrossRef] [Green Version]
- Horita, M.; Kitamoto, H.K. Biological soil disinfestation using bioethanol fermentation products: Role of residual organic substances. J. Gen. Plant Pathol. 2015, 81, 304–314. [Google Scholar] [CrossRef]
- Liguori, R.; Soccol, C.R.; Porto de Souza Vandenberghe, L.; Woiciechowski, A.L.; Faraco, V. Second generation ethanol production from Brewers’ spent grain. Energies 2015, 8, 2575–2586. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I. Brewer’s spent grain: A valuable feedstock for industrial applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldman, H. Yeast metabolism. In Yeast: Molecular and Cell Biology, 2nd, ed.; Feldmann, H., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany; Wiley-Blackwell: Hoboken, NY, USA, 2012; pp. 25–58. [Google Scholar]
- Liu, D.; Samtani, J.B.; Johnson, C.S.; Butler, D.M.; Derr, J. Weed control assessment of various carbon sources for anaerobic soil disinfestation. Int. J. Fruit Sci. 2020, 20, 1005–1018. [Google Scholar] [CrossRef]
- Scarsbrook, C.E. Nitrogen availability. In Soil Nitrogen; Bartholomew, W.V., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; Volume 10, pp. 481–502. [Google Scholar]
- A Survey of Strawberry Production Practices in Virginia. Available online: https://www.pubs.ext.vt.edu/SPES/SPES-150/SPES-150.html (accessed on 10 September 2020).
- Melanson, R.A.; Johnson, C.; Hale, F.; Jennings, K.; Samtani, J.B.; Lockwood, D.; Sial, A.; Hale, F. 2021 Southeast Regional Strawberry Integrated Pest Management Guide for Plasticulture Production; The Southern Region Small Fruit Consortium: Raleigh, NC, USA, 2021; pp. 40–46. [Google Scholar]
- Black Root Rot of Strawberry. Available online: https://content.ces.ncsu.edu/black-root-rot-of-strawberry-1#section_heading_3324 (accessed on 1 September 2020).
- Mazzola, M.; Muramoto, J.; Shennan, C. Anaerobic disinfestation induced changes to the soil microbiome, disease incidence and strawberry fruit yields in California field trials. Appl. Soil Ecol. 2018, 127, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, U.; Rosskopf, E.N.; Butler, D.M. Effect of anaerobic soil disinfestation amendment type and C:N ratio on Cyperus esculentus tuber sprouting, growth and reproduction. Weed Res. 2018, 58, 379–388. [Google Scholar] [CrossRef]
- Browne, G.; Ott, N.; Poret-Peterson, A.; Gouran, H.; Lampinen, B. Efficacy of anaerobic soil disinfestation for control of prunus replant disease. Plant Dis. 2018, 2, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Shennan, C.; Muramoto, J.; Koike, S.; Baird, G.; Fennimore, S.; Samtani, J.B.; Bolda, M.; Dara, S.; Daugovish, O.; Lazarovits, G.; et al. Anaerobic soil disinfestation is an alternative to soil fumigation for control of some soilborne pathogens in strawberry production. Plant Pathol. 2018, 67, 51–66. [Google Scholar] [CrossRef]
- Walker, W.R. Guidelines for Designing and Evaluating Surface Irrigation Systems; FAO: Rome, Italy, 1989; pp. 20–21. [Google Scholar]
- Peters, J. Tetrazolium Testing Handbook: Contribution No. 29 to the Handbook on Seed Testing; Association of Official Seed Analysts: Ithaca, NY, USA, 2000; pp. 1–11. [Google Scholar]
- Pacharee, L.; Kazuyuki, I.; Hidenori, W. Determination of organic acids in soil by high performance liquid chromatography. Soil Sci. Plant Nutr. 1987, 33, 299–302. [Google Scholar]
- Shrestha, U.; Collins, R.L.; Swilling, K.J.; Ownley, B.H.; Butler, D.M. Role of substrate decomposability and volatile fatty acids in anaerobic soil disinfestation activity against Sclerotinia sclerotiorum. Acta Hortic. 2020, 1270, 71–82. [Google Scholar] [CrossRef]
- Rabenhorst, M.C.; Castenson, K.L. Temperature effects on iron reduction in a hydric soil. Soil Sci. 2005, 170, 734–742. [Google Scholar] [CrossRef] [Green Version]
- Khadka, R.B. Application of Nepalese Trichoderma spp. with Anaerobic Soil Disinfestation (ASD) to Control Soil-Borne Diseases and Effect of ASD on Weeds. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2021. [Google Scholar]
- Zeeland, M.G.; van Weide, R.Y.; van der Groeneveld, M.W.; Scheepens, P.C.; Uffing, A.J.M. Effecten van Biologische Grondontsmetting op de Onkruiddruk; PPO: Lelystad, The Netherlands, 2004; pp. 9–17. [Google Scholar]
- McCarty, D.G. Anaerobic Soil Disinfestation: Evaluation of Anaerobic Soil Disinfestation (ASD) for Warm-Season Vegetable Production in Tennessee. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2012. Available online: https://trace.tennessee.edu/utk_gradthes/1393 (accessed on 11 September 2020).
- van Os, G.J.; van Agtmaal, M.; Hol, G.; Hundscheid, M.P.J.; Runia, W.T.; Hordijk, C.; de Boer, W. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles. Front. Microbiol. 2015, 6, 701. [Google Scholar]
- Strauss, S.; Greenhut, R.; McClean, A.; Kluepfel, D. Effect of anaerobic soil disinfestation on the bacterial community and key soilborne phytopathogenic agents under walnut tree-crop nursery conditions. Plant Soil 2017, 415, 493–506. [Google Scholar] [CrossRef]
- Blok, W.J.; Lamers, J.G.; Termorshuizen, A.J.; Bollen, G.J. Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 2000, 90, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browning, M.; Wallace, D.B.; Dawson, C.; Alm, S.R.; Amador, J.A. Potential of butyric acid for control of soil-borne fungal pathogens; nematodes affecting strawberries. Soil Biol. Biochem. 2006, 38, 401–404. [Google Scholar] [CrossRef]
- Nakano, M.M.; Zuber, P. Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Ann. Rev. Microbiol. 1998, 52, 165–190. [Google Scholar] [CrossRef] [PubMed]
- Weed Profile: Yellow Nutsedge (Cyperus esculentus) and Purple Nutsedge (C. rotundus). Available online: https://eorganic.org/node/5131 (accessed on 30 September 2020).
- Katase, M.; Kubo, C.; Ushio, S.; Ootsuka, E.; Takeuchi, T.; Mizukubo, T. Nematicidal activity of volatile fatty acids generated from wheat bran in reductive soil disinfestation. Jpn. J. Nematol. 2009, 39, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Mowlick, S.; Yasukawa, H.; Inoue, T.; Takehara, T.; Kaku, N.; Ueki, K.; Ueki, A. Suppression of spinach wilt disease by biological soil disinfestation incorporated with Brassica juncea plants in association with changes in soil bacterial communities. Crop Prot. 2013, 54, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.H.; Peerzada, A.M.; Hanif, Z.; Hashim, S.; Chauhan, B.S. Weed management using crop competition in Pakistan: A review. Crop Prot. 2017, 95, 22–30. [Google Scholar] [CrossRef]
- Chauhan, B.S. Grand challenges in weed management. Front. Agron. 2020, 1, 3. [Google Scholar] [CrossRef]
- Brown, B.; Karki, E.; Sharma, A.; Suri, B.; Chaudhary, A. Herbicides and zero tillage in South Asia: Are we creating a gendered problem? Outlook Agric. 2021, 50, 238–246. [Google Scholar] [CrossRef]
- Kubitza, C.; Krishna, V.V.; Schulthess, U.; Jain, M. Estimating adoption and impacts of agricultural management practices in developing countries using satellite data. A scoping review. Agron. Sustain. Dev. 2020, 40, 16. [Google Scholar] [CrossRef]
- Sydorovych, O.; Safley, C.D.; Ferguson, L.M.; Poling, E.B.; Fernandez, G.E.; Brannen, P.M.; Monks, D.M.; Louws, F.J. Economic evaluation of methyl bromide alternatives for the production of strawberries in the Southeastern United States. HortTechnology 2006, 16, 118–128. [Google Scholar] [CrossRef]
- Shrestha, U.; Swilling, K.J.; Butler, D.M. Amendment properties affect crop performance, leaf tissue nitrogen, and soil nitrogen availability following soil treatment by anaerobic soil disinfestation. Front. Sustain. Food Syst. 2021, 5, 694820. [Google Scholar] [CrossRef]
- Jin, Z.; Lan, Y.; Ohm, J.B.; Gillespie, J.; Schwarz, P.; Chen, B. Physicochemical composition, fermentable sugars, free amino acids, phenolics, and minerals in brewers’ spent grains obtained from craft brewing operations. J. Cereal Sci. 2022, 104, 103413. [Google Scholar] [CrossRef]
- Devi, R.; Veliveli, V.L.; Devi, S.S. Nutritional composition of rice bran and its potentials in the development of nutraceuticals rich products. J. Pharm. Phytochem. 2021, 10, 470–473. [Google Scholar]
- Arun, V.; Perumal, E.M.; Prakash, K.A.; Rajesh, M.; Tamilarasan, K. Sequential fractionation and characterization of lignin and cellulose fiber from waste rice bran. J. Environ. Chem. Eng. 2020, 8, 104–124. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Moreira, M.M.; Morais, S.; Carvalho, D.O.; Barros, A.A.; Delerue-Matos, C.; Guido, L.F. Brewer’s spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Res. Int. 2013, 54, 382–388. [Google Scholar] [CrossRef] [Green Version]
Common Chickweed | Redroot Pigweed | White Clover | Yellow Nutsedge | P. irregulare | Anaerobic Condition | |
---|---|---|---|---|---|---|
Probability > F | ||||||
Carbon source | <0.0001 | <0.0001 | <0.0001 | 0.0133 | <0.0001 | 0.0018 |
Yeast | 0.0007 | 0.0005 | 0.0057 | 0.8347 | 0.0317 | 0.3494 |
Run | 0.092 | 0.11 | 0.289 | 0.730 | 0.264 | 0.182 |
Carbon × yeast | 0.1290 | 0.0054 | 0.0033 | 0.8815 | 0.0122 | 0.8142 |
Carbon × run | 0.837 | 0.940 | 0.089 | 0.077 | 0.518 | 0.235 |
Yeast × run | 0.342 | 0.710 | 0.789 | 0.485 | 0.127 | 0.508 |
Carbon × yeast × run | 0.777 | 0.852 | 0.823 | 0.613 | 0.921 | 0.617 |
Redroot Pigweed | White Clover | ||||
---|---|---|---|---|---|
Carbon Source a | Yeast | Seed Viability (%) | Contrast p-Value c | Seed Viability (%) | Contrast p-Value c |
Brewer’s spent grain | Without | 27.0 b b | <0.0001 | 21.0 b | <0.0001 |
With | 15.0 d | 11.0 d | |||
Rice bran | Without | 23.0 c | 0.30 | 13.0 cd | 0.30 |
With | 20.0 c | 15.0 c | |||
Non-treated control | Without | 74.0 a | 0.15 | 82.0 a | 0.07 |
With | 68.0 a | 78.0 a | |||
P. irregulare | |||||
Carbon Source | Yeast | Colony forming units | Contrast p-value c | ||
Brewer’s spent grain | Without | 51.3 b | <0.0001 | ||
With | 28.0 c | ||||
Rice bran | Without | 53.9 b | 0.84 | ||
With | 52.3 b | ||||
Non-treated control | Without | 164.4 a | 0.42 | ||
With | 172.4 a |
Carbon Sources a | Common Chickweed Viability (%) | Yellow Nutsedge Viability (%) | Anaerobic Condition (Vh) |
---|---|---|---|
Brewer’s spent grain | 17.5 b b | 0.0 b | 179.8 a |
Rice bran | 20.9 b | 1.3 b | 120.7 b |
Non-treated control | 69.3 a | 72.5 a | 4.7 c |
Treatment a | Weed Viability (%) | P. irregulare (CFU) b | Cumulative Anaerobicity (Vh) | |||
---|---|---|---|---|---|---|
Common Chickweed | Redroot Pigweed | White Clover | Yellow Nutsedge | |||
Brewer’s spent grain full | ||||||
Without yeast | 16.6 d c | 18.9 c | 24.8 c | 2.5 c | 46.3 e | 320.4 a |
Brewer’s spent grain half | ||||||
Without yeast | 31.2 b | 47.5 b | 46.8 b | 8.8 c | 87.5 b | 250.9 ab |
With yeast | 21.3 c | 19.2 c | 25.0 c | 8.8 c | 70.0 c | 223.5 ab |
Brewer’s spent grain one-third | ||||||
Without yeast | 32.6 b | 44.4 b | 43.9 b | 20.0 b | 68.8 cd | 138.0 b |
With yeast | 23.5 c | 21.8 c | 24.6 c | 6.3 bc | 61.2 d | 254.9 ab |
Non-treated control | ||||||
Without yeast | 69.9 a | 72.9 a | 76.7 a | 72.5 a | 186.9 a | 20.1 c |
With yeast | 74.6 a | 74.8 a | 74.5 a | 66.3 a | 147.5 a | 76.0 c |
p value | ||||||
Treatment | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Run | 0.637 | 0.637 | 0.060 | 0.219 | 0.105 | 0.324 |
Treatment × run | 0.402 | 0.242 | 0.140 | 0.271 | 0.922 | 0.450 |
Treatment a | Temperature (°C) ± Standard Deviation | |||||
---|---|---|---|---|---|---|
Mean for Three Weeks | Mean for Week 1 | Mean for Week 2 | Mean for Week 3 | Minimum for Three Weeks | Maximum for Three Weeks | |
Brewer’s spent grain full | ||||||
Without yeast | 25.9 ± 0.5 | 25.3 ± 0.4 | 25.5 ± 0.5 | 27.1 ± 0.6 | 17.4 ± 2.0 | 42.2 ± 0.7 |
With yeast | 26.6 ± 0.3 | 25.8 ± 0.3 | 26.0 ± 0.5 | 28.0 ± 0.3 | 18.1 ± 0.7 | 43.3 ± 0.5 |
Rice bran | ||||||
Without yeast | 26.3 ± 0.3 | 25.7 ± 0.3 | 25.7 ± 0.5 | 27.7 ± 0.3 | 17.8 ± 0.7 | 43.1 ± 0.5 |
With yeast | 26.6 ± 0.3 | 25.9 ± 0.2 | 26.1 ± 0.4 | 28.0 ± 0.2 | 17.5 ± 0.4 | 41.2 ± 0.4 |
Non-treated control | ||||||
Without yeast | 25.7 ± 0.4 | 24.9 ± 0.4 | 25.8 ± 0.6 | 26.4 ± 0.5 | 18.2 ± 0.7 | 41.7 ± 0.7 |
With yeast | 26.1 ± 0.4 | 25.2 ± 0.3 | 25.7 ± 0.5 | 27.4 ± 0.3 | 17.3 ± 0.6 | 40.2 ± 0.5 |
p-value b | ||||||
Carbon source | 0.282 | 0.100 | 0.944 | 0.059 | 0.277 | 0.606 |
Yeast | 0.161 | 0.217 | 0.501 | 0.074 | 0.300 | 0.964 |
Carbon × yeast | 0.892 | 0.834 | 0.858 | 0.660 | 0.325 | 0.240 |
Treatment a | Temperature (°C) ± Standard Deviation | |||||
---|---|---|---|---|---|---|
Mean for Three Weeks | Mean for Week 1 | Mean for Week 2 | Mean for Week 3 | Minimum for Three Weeks | Maximum for Three Weeks | |
Brewer’s spent grain full | ||||||
Without yeast | 28.7 ± 0.2 | 29.2 ± 0.3 | 29.5 ± 0.2 | 27.1 ± 0.1 | 19.5 ± 0.7 | 41.5 ± 1.2 |
Brewer’s spent grain half | ||||||
Without yeast | 29.5 ± 0.6 | 30.0 ± 0.7 | 30.5 ± 0.4 | 27.9 ± 0.8 | 19.3 ± 2.1 | 43.9 ± 1.1 |
With yeast | 30.0 ± 0.6 | 30.6 ± 0.6 | 30.6 ± 0.4 | 28.7 ± 0.8 | 18.9 ± 0.9 | 44.5 ± 1.2 |
Brewer’s spent grain one-third | ||||||
Without yeast | 29.4 ± 0.6 | 30.0 ± 0.8 | 30.2 ± 0.3 | 28.0 ± 0.7 | 18.8 ± 0.4 | 43.1 ± 1.2 |
With yeast | 29.4 ± 0.6 | 30.1 ± 0.6 | 30.1 ± 0.6 | 28.0 ± 0.8 | 19.1 ± 0.7 | 42.5 ± 1.0 |
Non-treated control | ||||||
Without yeast | 28.7 ± 0.7 | 29.2 ± 0.8 | 29.5 ± 0.7 | 27.1 ± 0.8 | 19.5 ± 1.6 | 41.5 ± 1.3 |
With yeast | 28.5 ± 0.5 | 28.9 ± 0.8 | 29.2 ± 0.3 | 27.0 ± 0.7 | 20.9 ± 1.1 | 40.4 ± 0.1 |
p-value b | ||||||
Treatment | 0.384 | 0.344 | 0.294 | 0.375 | 0.176 | 0.854 |
Acetic Acid | Propionic Acid | Isobutyric Acid | n-Butyric Acid | Isovaleric Acid | |
---|---|---|---|---|---|
Probability > F | |||||
Carbon | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0004 |
Yeast | 0.056 | 0.0021 | 0.646 | 0.090 | 0.091 |
Run | 0.100 | 0.142 | 0.452 | 0.066 | 0.065 |
Yeast × Carbon | 0.715 | 0.0053 | 0.378 | 0.489 | 0.795 |
Carbon × run | 0.108 | 0.928 | 0.076 | 0.622 | 0.462 |
Yeast × run | 0.813 | 0.062 | 0.066 | 0.360 | 0.775 |
Carbon × yeast × run | 0.250 | 0.094 | 0.662 | 0.965 | 0.278 |
Inoculum | Carbon Sources a | Concentration (mmol kg−1 of Soil) | ||
---|---|---|---|---|
With Yeast | Without Yeast | Contrast p-Value | ||
Acetic acid | Brewer’s spent grain | 1.323 a b | 1.436 a | - |
Rice bran | 0.430 b | 0.166 b | - | |
Non-treated control | 0.203 b | 0.037 b | - | |
Propionic acid | Brewer’s spent grain | 0.152 a | 0.077 a | <0.0001 c |
Rice bran | 0.024 b | 0.024 b | 0.84 | |
Non-treated control | 0.017 b | 0.009 b | 0.43 | |
Isobutyric acid | Brewer’s spent grain | 0.117 a | 0.161 a | - |
Rice bran | 0.033 b | 0.014 b | - | |
Non-treated control | 0.000 b | 0.001 b | - | |
n-butyric acid | Brewer’s spent grain | 0.390 a | 0.483 a | |
Rice bran | 0.118 b | 0.005 b | - | |
Non-treated control | 0.070 b | 0.004 b | - | |
Isovaleric acid | Brewer’s spent grain | 0.472 a | 0.427 a | - |
Rice bran | 0.166 b | 0.063 b | - | |
Non-treated control | 0.043 b | 0.002 b | - |
Brewer’s Spent Grain | Rice Bran | |
---|---|---|
Total C (% dry wt) | 44.8 * | 41.7 |
Total N (% dry wt) | 3.8 | 3.1 |
C/N ratio | 12.0 | 13.3 |
Cellulose (% dry wt) | 17–25 | 30–35 |
Hemicellulose (% dry wt) | 20–30 | 20–22 |
Lignin (% dry wt) | 12–27 | 7–10 |
Protein (% dry wt) | 15–24 | 11–17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Samtani, J.; Johnson, C.; Zhang, X.; Butler, D.M.; Derr, J. Brewer’s Spent Grain with Yeast Amendment Shows Potential for Anaerobic Soil Disinfestation of Weeds and Pythium irregulare. Agronomy 2023, 13, 2081. https://doi.org/10.3390/agronomy13082081
Liu D, Samtani J, Johnson C, Zhang X, Butler DM, Derr J. Brewer’s Spent Grain with Yeast Amendment Shows Potential for Anaerobic Soil Disinfestation of Weeds and Pythium irregulare. Agronomy. 2023; 13(8):2081. https://doi.org/10.3390/agronomy13082081
Chicago/Turabian StyleLiu, Danyang, Jayesh Samtani, Charles Johnson, Xuemei Zhang, David M. Butler, and Jeffrey Derr. 2023. "Brewer’s Spent Grain with Yeast Amendment Shows Potential for Anaerobic Soil Disinfestation of Weeds and Pythium irregulare" Agronomy 13, no. 8: 2081. https://doi.org/10.3390/agronomy13082081
APA StyleLiu, D., Samtani, J., Johnson, C., Zhang, X., Butler, D. M., & Derr, J. (2023). Brewer’s Spent Grain with Yeast Amendment Shows Potential for Anaerobic Soil Disinfestation of Weeds and Pythium irregulare. Agronomy, 13(8), 2081. https://doi.org/10.3390/agronomy13082081