Rare Earth Elements Transfer from Soil to Vegetables and Health Risks Associated with Vegetable Consumption in a Former Mining Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection and Preparation
2.2. Chemical Analysis
2.3. Health Risk Assessment for REEs
3. Results and Discussion
3.1. Element Concentrations in Soil Samples
3.2. Element Concentrations in Vegetables
3.3. Soil-Plant Transfer
3.4. Correlations Analysis between Element Concentrations in Soil and Vegetables
3.5. Correlations of Transfer Factors and Atomic Numbers of REEs
3.6. Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tsay, A.; Zajacz, Z.; Sanchez-Valle, C. Efficient mobilization and fractionation of rare-earth elements by aqueous fluids upon slab dehydration. Earth Planet. Sci. Lett. 2014, 398, 101–112. [Google Scholar] [CrossRef]
- Brouziotis, A.A.; Giarra, A.; Libralato, G.; Pagano, G.; Guida, M.; Trifuoggi, M. Toxicity of rare earth elements: An overview on human health impact. Front. Environ. Sci. 2022, 10, 948041. [Google Scholar] [CrossRef]
- Han, R.; Xu, Z. Geochemical behaviors of rare earth elements (REEs) in karst soils under different land-use types: A case in Yinjiang karst catchment, Southwest China. Int. J. Environ. Res. Public Health 2021, 18, 502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, X.; Chen, C.T.A. Rare earth elements in intertidal sediments of Bohai Bay, China: Concentration, fractionation and the influence of sediment texture. Ecotox. Environ. Safe. 2014, 105, 72–79. [Google Scholar] [CrossRef]
- Li, W.; Zhuo, Y.; Wang, L.; Wan, X.; Yang, J.; Liang, T.; Song, H.; Weihrauch, C.; Rinklebe, J. Abundance, spatial variation, and sources of rare earth elements in soils around ion-adsorbed rare earth mining areas. Environ. Pollut. 2022, 313, 120099. [Google Scholar] [CrossRef]
- Mancheri, N.A.; Sprecher, B.; Bailey, G.; Ge, J.; Tukker, A. Effect of Chinese policies on rare earth supply chain resilience. Resour. Conserv. Recycl. 2019, 142, 101–112. [Google Scholar] [CrossRef]
- Zhou, B.; Bertinelli, L.; Poncin, S. The War of Rare Earth Elements: A Dynamic Game Approach, DEM Discussion Paper Series 19–11; Department of Economics at the University of Luxembourg: Luxembourg, 2019. [Google Scholar]
- Goodenough, K.M.; Schilling, J.; Jonsson, E.; Kalvig, P.; Charles, N.; Tuduri, J.; Deady, E.A.; Sadeghi, M.; Schiellerup, H.; Müller, A.; et al. Europe’s rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore. Geol. Rev. 2016, 72, 838–856. [Google Scholar] [CrossRef]
- Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 2018, 636, 299–313. [Google Scholar] [CrossRef]
- Naccarato, A.; Tassone, A.; Cavaliere, F.; Elliani, R.; Pirrone, N.; Sprovieri, F. Agrochemical treatments as a source of heavy metals and rare Earth elements in agricultural soils and bioaccumulation in ground beetles. Sci. Total Environ. 2020, 749, 141438. [Google Scholar] [CrossRef]
- Mleczek, P.; Borowiak, K.; Budka, A.; Niedzielski, P. Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road. Environ. Sci. Pollut. Res. 2018, 25, 23695–23711. [Google Scholar] [CrossRef]
- Pagano, P.P.; Thomas, P.J.; Nunzio, A.D.; Trifuoggi, M. Human exposures to rare earth elements: Present knowledge and research prospects. Environ. Res. 2019, 171, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, H.; Nolde, J.; Berger, S.; Heise, S. Aquatic ecotoxicity of lanthanum—A review and an attempt to derive water and sediment quality criteria. Ecotox. Environ. Safe. 2016, 124, 213–238. [Google Scholar] [CrossRef] [PubMed]
- Klingelhöfer, D.; Braun, M.; Dröge, J.; Bruggmann, D.; Groneberg, D.A. Environmental and health-related research on application and production of rare earth elements under scrutiny. Global Health 2022, 18, 86. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Sui, H.; Mao, W.; Wang, Y.; Yang, D.; Zhang, L.; Liu, Z.; Yong, L.; Song, Y. Dietary exposure assessment of rare earth elements in the Chinese population. Int. J. Environ. Res. Public Health 2022, 19, 15583. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, J.; Lu, J. Geochemical signatures and human health risk evaluation of rare earth elements in soils and plants of the northeastern Qinghai-Tibet Plateau, China. J. Arid Land 2022, 14, 1258–1273. [Google Scholar] [CrossRef]
- Da Silva Ferreira, M.; Ferreira Fontes, M.P.; Weitzel Dias Carneiro Lima, M.T.; Cordeiro, S.G.; Passamani Wyatt, N.L.; Lima, H.N.; Fendorf, S. Human health risk assessment and geochemical mobility of rare Earth elements in Amazon soils. Sci. Total Environ. 2022, 806, 151191. [Google Scholar] [CrossRef]
- Dai, Y.; Sun, S.; Li, Y.; Yang, J.; Zhang, C.; Cao, R.; Zhang, H.; Chen, J.; Geng, N. Residual levels and health risk assessment of rare earth elements in Chinese resident diet: A market-based investigation. Sci. Total Environ. 2022, 828, 154119. [Google Scholar] [CrossRef]
- Hoaghia, M.A.; Levei, E.A.; Cadar, O.; Senila, M.; Hognogi, G.G. Assessment of metal contamination and ecological risk in urban soils situated near a metallurgical complex. Environ. Eng. Manag. J. 2017, 16, 1623–1630. [Google Scholar] [CrossRef]
- Kubova, J.; Matus, P.; Bujdos, M.; Hagarova, I.; Medved, J. Utilization of optimized BCR three-step sequential and dilute HCl single extraction procedures for soil-plant metal transfer predictions in contaminated lands. Talanta 2008, 75, 1110–1122. [Google Scholar] [CrossRef]
- Levei, E.; Frentiu, T.; Ponta, M.; Senila, M.; Miclean, M.; Roman, C.; Cordos, E. Characterization of soil quality and mobility of Cd, Cu, Pb and Zn in the Baia Mare area Northwest Romania following the historical pollution. Int. J. Environ. Anal. Chem. 2009, 89, 635–649. [Google Scholar] [CrossRef]
- Sihlahla, M.; Mouri, H.; Nomngongo, P.N. Assessment of bioavailability and mobility of major and trace elements in agricultural soils collected in Port St Johns, Eastern Cape, South Africa using single extraction procedures and pseudo-total digestion. J. Environ. Health Sci. Eng. 2020, 18, 1615–1628. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.D.; Hasan, M.M.; Rahaman, A.; Haque, P.; Islam, M.S.; Rahman, M.M. Translocation and bioaccumulation of trace metals from industrial effluent to locally grown vegetables and assessment of human health risk in Bangladesh. SN Appl. Sci. 2020, 2, 1315. [Google Scholar] [CrossRef]
- Borgese, L.; Federici, S.; Zacco, A.; Gianoncelli, A.; Rizzo, L.; Smith, D.R.; Donna, F.; Lucchini, R.; Depero, L.E.; Bontempi, E. Metal fractionation in soils and assessment of environmental contamination in Vallecamonica, Italy. Environ. Sci. Pollut. Res. Int. 2013, 20, 5067–5075. [Google Scholar] [CrossRef] [PubMed]
- Miclean, M.; Levei, E.; Cadar, O.; Senila, M.; Groza, I.S. Comparison of two empirical models for soil to ryegrass transfer of metals in Baia Mare mining area. Carpath. J. Earth Environ. Sci. 2013, 8, 93–100. [Google Scholar]
- Miclean, M.; Cadar, O.; Levei, L.; Senila, L.; Ozunu, A. Metal contents and potential health risk assessment of vegetables grown in a former mining district (Romania). J. Environ. Sci. Health B. 2018, 53, 595–601. [Google Scholar] [CrossRef]
- Augustsson, A.; Uddh-Söderberg, T.; Filipsson, M.; Helmfrid, I.; Berglund, M.; Karlsson, H.; Hogmalm, J.; Karlsson, A.; Alriksson, S. Challenges in assessing the health risks of consuming vegetables in metal-contaminated environments. Environ. Int. 2018, 113, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Miclean, M.; Cadar, O.; Levei, E.A.; Roman, R.; Ozunu, A.; Levei, L. Metal (Pb, Cu, Cd, and Zn) transfer along food chain and health risk assessment through raw milk consumption from free-range cows. Int. J. Environ. Res. Public Health 2019, 16, 4064. [Google Scholar] [CrossRef] [PubMed]
- ISO 11466:1995; Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia. ISO: Geneva, Switzerland, 1995.
- ISO 14870:2001; Soil Quality—Extraction of trace Elements by Buffered DTPA Solution. ISO: Geneva, Switzerland, 2001.
- Staven, L.H.; Rhoads, K.; Napier, B.A.; Strenge, D.L. A Compendium of Transfer Factors for Agricultural and Animal Products; Pacific Northwest National Laboratory: Richland, WA, USA, Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830; 2003; Available online: https://www.pnnl.gov/main/publications/external/technical_reports/pnnl-13421.pdf (accessed on 25 January 2023).
- Jiang, D.G.; Yang, J.; Zhang, S.; Yang, D.J. A survey of 16 rare earth elements in the major foods in China. Biomed. Environ. Sci. 2012, 25, 267–271. [Google Scholar]
- Loell, M.; Albrecht, C.; Felix-Henningsen, P. Rare earth elements and relation between their potential bioavailability and soil properties, Nidda catchment (Central Germany). Plant Soil 2011, 349, 303–317. [Google Scholar] [CrossRef]
- Alfaro, M.R.; do Nascimento, C.W.A.; Biondi, C.M.; da Silva, Y.J.A.B.; de Aguiar Accioly, A.M.; Montero, A.; Muñiz Ugarte, O.; Estevez, J. Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. Catena 2018, 162, 317–324. [Google Scholar] [CrossRef]
- Vermeire, M.L.; Cornu, S.; Fekiacova, Z.; Detienne, M.; Delvaux, B.; Cornélis, J.T. Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chem. Geol. 2016, 446, 163–174. [Google Scholar] [CrossRef]
- Ramos, S.J.; Dinali, G.S.; Oliveira, C.; Martins, G.C.; Moreira, C.G.; Siqueira, J.O.; Guilherme, L.R.G. Rare earth elements in the soil environment. Curr. Pollution Rep. 2016, 2, 28–50. [Google Scholar] [CrossRef]
- Sadeghi, M.; Petrosino, P.; Ladengberger, A.; Albanese, S.; Andersson, M.; Morris, G.; Lima, A.; Zomeni, Z. The GEMAS Project Team. Ce, La and Y concentrations in agricultural and grazing-land soils of Europe. J. Geochem. Explor. 2013, 133, 202–213. [Google Scholar] [CrossRef]
- Laveuf, C.; Cornu, S. A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma 2009, 154, 1–12. [Google Scholar] [CrossRef]
- Mihajlovic, J.; Rinklebe, J. Rare earth elements in German soils—A review. Chemosphere 2018, 205, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.M.; Behkami, S.; Yusoff, I.; Zain, S.B.M.; Abu Bakar, N.K.; Abu Bakar, A.F.; Alias, Y. Geochemical characteristics of rare earth elements in different types of soil: A chemometric approach. Chemosphere 2017, 184, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Briki, M.; Ji, H.; Gao, Y.; Ding, H.; Li, C. Distribution of rare earth elements in agricultural soil and human body (scalp hair and urine) near smelting and mining areas of Hezhang, China. J. Rare Earth 2016, 34, 1156–1167. [Google Scholar]
- Tripathee, L.; Kang, S.; Rupakheti, D.; Zhang, Q.; Bajracharya, R.M.; Sharma, C.M.; Huang, J.; Gyawali, A.; Paudyal, R.; Sillanpaa, M. Spatial distribution, sources and risk assessment of potentially toxic trace elements and rare earth elements in soils of the Langtang Himalaya, Nepal. Environ. Earth Sci. 2016, 75, 1332–1344. [Google Scholar] [CrossRef]
- Khan, A.M.; Yusoff, I.; Abu Bakar, N.K.; Abu Bakar, A.F.; Alias, Y.; Mispan, M.S. Accumulation, uptake and bioavailability of rare earth elements (REEs) in soil grown plants from ex-mining area in Perak, Malaysia. Appl. Ecol. Env. Res. 2017, 15, 117–133. [Google Scholar] [CrossRef]
- Sadeghi, M.; Albanese, S.; Morris, G.; Ladenberger, A.; Andersson, M.; Cannatelli, C.; Lima, A.; De Vivo, B. REE concentrations in agricultural soil in Sweden and Italy: Comparison of weak MMI® extraction with near total extraction data. Appl. Geochem. 2015, 63, 22–36. [Google Scholar] [CrossRef]
- Laul, J.C.; Weimer, W.C.; Rancitelli, L.A. Biogeochemical distribution of rare earths and other trace elements in plants and soils. Phys. Chem. Earth 1979, 11, 819–827. [Google Scholar] [CrossRef]
- Wiche, O.; Zertani, V.; Hetschel, W.; Achtziger, R.; Midula, P. Germanium and rare earth elements in topsoil and soil-grown plants on different land use types in the mining area of Freiberg (Germany). J. Geochem. Explor. 2017, 175, 120–129. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.B.; Gou, X.; Su, Y.B.; Wang, G. Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. J. Environ. Sci.-China 2006, 18, 1124–1134. [Google Scholar] [CrossRef] [PubMed]
- Ichihashi, H.; Morita, H.; Tatsukawa, R. Rare earth elements in naturally grown plants in relation to their variation in soils. Environ. Pollut. 1992, 76, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Z.; Chen, Z.; Zhang, Y. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere 2013, 93, 1240–1246. [Google Scholar] [CrossRef]
- Magdas, D.A.; Feher, I.; Dehelean, A.; Cristea, G.; Magdas, T.M.; Puscas, R.; Marincas, O. Isotopic and elemental markers for geographical origin and organically grown carrots discrimination. Food Chem. 2018, 267, 231–239. [Google Scholar] [CrossRef]
- Yang, J.; Lv, F.; Zhou, J.; Song, Y.; Li, F. Health risk assessment of vegetables grown on the contaminated soils in Daye City of Hubei Province, China. Sustainability 2017, 9, 2141. [Google Scholar] [CrossRef]
- The European Commission. Commission Regulation (EU) No. 488/2014 amending Regulation (EC) No. 1881/2006 as regards maximum levels of cadmium in foodstuffs. Off. J. Eur. Union 2014, 138, 0011. [Google Scholar]
- Rogan, N.; Serafimovski, T.; Dolenec, M.; Tasev, G.; Dolenec, T. The distribution of rare earth elements in paddy soil and rice seeds from Kocani Field (eastern Macedonia). Mat. Geoenviron. 2006, 53, 433–444. [Google Scholar]
- Nakamaru, Y.; Tagami, K.; Uchida, S. Effect of nutrient uptake by plant roots on the fate of REEs in soil. J. Alloy Compd. 2006, 408–412, 413–416. [Google Scholar] [CrossRef]
- Liang, T.; Li, K.; Wang, L. State of rare earth elements in different environmental components in mining areas of China. Environ. Monit. Assess. 2013, 186, 1499–1513. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, M.; Zhao, J.; Li, S.; Liu, D.; Wang, K.; Xiao, P.; Yu, L.; Jiang, Y.; Song, J.; Zhou, J.; et al. Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China. Chemosphere 2017, 168, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, E.; Givelet, L.; Amlund, H.; Sloth, J.J.; Hansen, M. Risk assessment of rare earth elements, antimony, barium, boron, lithium, tellurium, thallium and vanadium in teas. EFSA J. 2022, 20, e200410. [Google Scholar] [CrossRef] [PubMed]
Element | Available | Pseudo-Total | Element | Available | Pseudo-Total |
---|---|---|---|---|---|
La | 2957 ± 3035 a | 27,817 ± 5736 b | Sc | 132 ± 120 a | 2840 ± 832 b |
Ce | 5082 ± 5364 a | 63,404 ± 12,805 b | Y | 1388 ± 1270 a | 5184 ± 1560 b |
Pr | 700 ± 753 a | 7123 ± 1526 b | Mn | 15,997 ± 6356 a | 462,351 ± 320,121 b |
Nd | 2453 ± 3014 a | 23,871 ± 6250 b | Co | 29.7 ± 17.3 a | 2785 ± 1273 b |
Sm | 450 ± 413 a | 4311 ± 922 b | Fe | 50,844 ± 24,669 a | 4,493,184 ± 2,857,117 b |
Eu | 115 ± 105 a | 864 ± 134 b | Ni | 402 ± 276 a | 4668 ± 2562 b |
Gd | 537 ± 483 a | 4123 ± 848 b | Cu | 6463 ± 3454 a | 29,811 ± 25,268 b |
Tb | 71.7 ± 65.1 a | 490 ± 99.7 b | Zn | 36,639 ± 60,615 a | 94,212 ± 113,955 a |
Dy | 391 ± 354 a | 2337 ± 512 b | Ga | 11.9 ± 5.84 a | 1935 ± 372 b |
Ho | 71.4 ± 65.4 a | 375 ± 87.5 b | Ge | 2.07 ± 1.06 a | 22.9 ± 7.12 b |
Er | 182 ± 168 a | 926 ± 225 b | Mo | 11.5 ± 4.84 a | 294 ± 110 b |
Tm | 23.1 ± 21.2 a | 123 ± 30.2 b | Cd | 672 ± 362 a | 1103 ± 1148 a |
Yb | 139 ± 1261 a | 804 ± 193 b | Pb | 141,078 ± 49,610 a | 174,814 ± 57,864 b |
Lu | 20.1 ± 18.2 a | 114 ± 27.4 b | Zr | 27.7 ± 22.2 a | 100 ± 59.8 b |
LREEs | 12,294 ± 13,167 a | 131,513 ± 28,221 b | Te | 0.722 ± 0.063 a | 16.3 ± 10.6 b |
HREEs | 898 ± 1953 a | 5169 ± 1175 b | Th | 26.3 ± 29.0 a | 4783 ± 3514 b |
ΣREEs | 13,192 ± 15,120 a | 136,682 ± 29,396 b | Hf | 1.07 ± 0.940 a | 7.35 ± 1.15 b |
Ta | 0.228 ± 0.201 a | 1.62 ± 0.364 b |
Element | Potato (n = 6) | Carrot (n = 8) | Onion (n = 5) | Cabbage (n = 9) | Parsley (n = 9) |
---|---|---|---|---|---|
La | 12.9 ± 12.2 b | 149 ± 116 a,b | 376 ± 374 a | 504 ± 525 a,b | 712 ± 674 a,b |
Ce | 24.2 ± 23.3 b | 267 ± 204 b | 745 ± 720 a | 445 ± 253 a,b | 1382 ± 1329 a,b |
Pr | 3.31 ± 2.70 b | 35.1 ± 28.6 b | 85.0 ± 81.2 a | 76.1 ± 59.9 a,b | 161 ± 154 a,b |
Nd | 10.7 ± 10.0 b | 129 ± 103 b | 314 ± 310 a | 288 ± 228 a,b | 615 ± 597 a,b |
Sm | 1.94 ± 1.86 b | 30.8 ± 30.1 a,b | 65.6 ± 63.1 a | 55.2 ± 43.0 a,b | 129 ± 135 a,b |
Eu | 0.985 ± 0.880 a | 17.5 ± 11.4 a,b | 17.3 ± 9.69 a | 26.1 ± 14.6 a,b | 39.6 ± 30.1 a,b |
Gd | 2.41 ± 2.03 b | 35.3 ± 33.8 a,b | 67.5 ± 61.3 a | 68.7 ± 54.0 a,b | 138 ± 131 a,b |
Tb | 0.288 ± 0.236 a | 4.58 ± 4.44 a,b | 8.91 ± 8.29 a | 7.79 ± 5.74 a,b | 17.4 ± 16.3 a,b |
Dy | 1.63 ± 1.37 b | 25.4 ± 22.8 a,b | 48.2 ± 42.3 a | 38.3 ± 27.7 a,b | 95.2 ± 89.4 a,b |
Ho | 0.299 ± 0.251 b | 4.24 ± 3.63 b | 9.11 ± 7.89 a | 6.77 ± 4.97 a,b | 17.7 ± 16.3 a,b |
Er | 1.16 ± 0.900 b | 10.7 ± 8.35 b | 24.2 ± 21.2 a | 16.1 ± 11.0 a,b | 46.5 ± 43.1 a,b |
Tm | 0.129 ± 0.096 b | 1.40 ± 1.09 b | 3.36 ± 2.89 a | 1.90 ± 1.30 a,b | 6.38 ± 5.78 b |
Yb | 0.695 ± 0.512 b | 9.08 ± 7.62 b | 19.4 ± 16.2 a | 10.9 ± 7.47 a,b | 39.2 ± 35.8 b |
Lu | 0.085 ± 0.076 b | 1.23 ± 1.01 b | 2.89 ± 2.14 a | 1.69 ± 1.09 a,b | 5.61 ± 5.15 b |
LREEs | 56.4 ± 53.0 b | 664 ± 527 b | 1670 ± 1619 a | 1463 ± 1178 a,b | 3177 ± 3050 a,b |
HREEs | 4.29 ± 3.44 b | 56.6 ± 48.9 b | 116 ± 101 a | 83.5 ± 59.3 a,b | 228 ± 212 a,b |
ƩREEs | 60.7 ± 56.4 b | 720 ± 576 b | 1786 ± 1720 a | 1547 ± 1237 a,b | 3405 ± 3262 a,b |
Sc | 3.35 ± 2.54 b | 14.6 ± 8.82 a,b | 78.9 ± 109 b | 42.7 ± 21.1 a | 167 ± 138 a,b |
Y | 3.47 ± 2.92 b | 41.9 ± 28.0 a,b | 87.5 ± 86.1 a,b | 92.3 ± 76.9 a | 107 ± 76.6 b |
Mn | 3483 ± 5694 a | 6416 ± 5701 a | 21,582 ± 13,476 a | 17,984 ± 12,572 a | 16,846 ± 11,129 a |
Co | 9.42 ± 6.57 c | 33.6 ± 24.8 a,b | 83.6 ± 48.8 b,c | 88.4 ± 43.8 a | 114 ± 77.9 a,b,c |
Fe | 11,128 ± 7418 b | 47,77 ± 47,613 b | 169,210 ± 120,716 b | 82,796 ± 50,107 a | 278,533 ± 218,116 a,b |
Ni | 69.7 ± 59.3 c | 186 ± 136 a,b,c | 757 ± 547 b,c | 357 ± 318 a | 7099 ± 533 a,b |
Cu | 1691 ± 1066 a | 1767 ± 3146 a | 5506 ± 5097 a | 3310 ± 1618 a | 5080 ± 4635 a |
Zn | 6304 ± 4960 a | 14,157 ± 12,505 a | 22,934 ± 21,506 a | 14,110 ± 9547 a | 26,129 ± 16,100 a |
Ga | 14.0 ± 9.98 b | 44.2 ± 23.3 b | 91.5 ± 55.9 b | 40.9 ± 28.2 a | 121 ± 73.7 a,b |
Ge | 0.95 ± 0.52 b | 2.98 ± 1.65 a,b | 3.70 ± 2.66 a,b | 3.02 ± 1.84 a | 4.42 ± 2.65 a,b |
Mo | 93.3 ± 56.0 b | 67.2 ± 36.2 a | 734 ± 513 b | 1060 ± 972 a,b | 507 ± 544 a,b |
Cd | 99.4 ± 50.3 a | 436 ± 385 a | 319 ± 254 a | 179 ± 110 a | 263 ± 264 a |
Pb | 144 ± 330 b | 1641 ± 2937 b | 5519 ± 6199 b | 445 ± 378 a | 3959 ± 4205 a,b |
Zr | 25.6 ± 20.2 a | 33.6 ± 42.5 a | 141 ± 73.7 a | 59.8 ± 39.6 a | 113 ± 115 a |
Te | <0.025 a | 0.044 ± 0.105 a | 0.903 ± 1.66 a | 0.084 ± 0.104 a | 0.531 ± 0.461 a |
Th | 4.83 ± 5.81 b | 44.2 ± 33.9 b | 137 ± 96.4 b | 61.7 ± 60.0 a | 298 ± 305 a,b |
Hf | 0.36 ± 0.36 a | 0.627 ± 0.783 a | 2.40 ± 1.50 a | 0.889 ± 0.591 a | 2.33 ± 2.72 a |
Ta | <0.025 b | 0.108 ± 0.054 a,b | 0.349 ± 0.229 b | 0.169 ± 0.124 a | 0.554 ± 0.450 a,b |
Element | Potato (n = 6) | Carrot (n = 8) | Onion (n = 5) | Cabbage (n = 9) | Parsley (n = 9) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Average | St. Dev | Min | Max | Average | St. Dev | Min | Max | Average | St. Dev | Min | Max | Average | St. Dev | Min | Max | Average | St. Dev | |
La | 1.07 | 10.2 | 3.90 | 3.71 | 12.4 | 99.8 | 45.2 | 35.3 | 12.5 | 302 | 114 | 114 | 20.9 | 542 | 153 | 159 | 59.7 | 685 | 216 | 205 |
Ce | 0.82 | 9.03 | 3.28 | 3.16 | 11.4 | 78.2 | 36.2 | 27.7 | 9.56 | 261 | 101 | 97.7 | 14.5 | 103 | 60.3 | 34.3 | 46.7 | 601 | 187 | 180 |
Pr | 1.07 | 9.46 | 3.94 | 3.22 | 11.1 | 90.3 | 41.9 | 34.1 | 10.8 | 260 | 101 | 96.7 | 16.7 | 247 | 90.6 | 71.3 | 49.33 | 610 | 192 | 184 |
Nd | 1.08 | 10.3 | 4.00 | 3.75 | 13.3 | 108 | 48.3 | 38.5 | 11.8 | 311 | 118 | 116 | 20.1 | 295 | 108 | 85.5 | 59.4 | 740 | 231 | 224 |
Sm | 0.94 | 10.3 | 3.95 | 3.79 | 12.4 | 189 | 62.6 | 61.2 | 10.9 | 348 | 133 | 128 | 20.0 | 287 | 112 | 87.5 | 66.0 | 889 | 262 | 275 |
Eu | 0.30 | 23.6 | 10.8 | 9.61 | 36.1 | 387 | 191 | 124 | 22.4 | 315 | 189 | 106 | 38.6 | 488 | 285 | 159 | 90.6 | 1019 | 432 | 329 |
Gd | 1.74 | 12.5 | 5.54 | 4.66 | 17.6 | 238 | 81.0 | 77.6 | 13.3 | 381 | 155 | 141 | 27.6 | 412 | 158 | 124 | 85.5 | 968 | 317 | 300 |
Tb | 1.88 | 13.2 | 5.72 | 4.70 | 17.6 | 271 | 91.1 | 88.2 | 14.8 | 443 | 177 | 165 | 29.6 | 366 | 155 | 114 | 96.7 | 1059 | 345 | 324 |
Dy | 2.62 | 16.9 | 7.22 | 6.03 | 23.0 | 289 | 112 | 101 | 21.4 | 513 | 213 | 187 | 35.6 | 387 | 169 | 122 | 112 | 1287 | 421 | 395 |
Ho | 2.39 | 18.0 | 8.72 | 7.32 | 23.2 | 287 | 124 | 106 | 27.2 | 636 | 266 | 230 | 41.3 | 441 | 198 | 145 | 131 | 1548 | 516 | 476 |
Er | 2.31 | 31.8 | 14.0 | 10.9 | 28.8 | 285 | 130 | 101 | 35.3 | 707 | 292 | 256 | 45.3 | 398 | 195 | 133 | 150 | 1698 | 562 | 520 |
Tm | 4.37 | 26.5 | 11.9 | 8.88 | 28.5 | 313 | 129 | 100 | 45.8 | 745 | 309 | 266 | 43.4 | 363 | 175 | 120 | 150 | 1742 | 588 | 533 |
Yb | 3.83 | 19.6 | 9.75 | 7.19 | 31.6 | 339 | 127 | 107 | 40.1 | 638 | 272 | 227 | 41.8 | 366 | 152 | 105 | 144 | 1622 | 550 | 503 |
Lu | 2.26 | 17.4 | 8.11 | 7.20 | 29.5 | 306 | 118 | 96.3 | 41.5 | 595 | 276 | 204 | 50.9 | 367 | 62.0 | 104 | 137 | 1573 | 535 | 491 |
Sc | 1.31 | 70.1 | 34.4 | 26.1 | 21.7 | 319 | 150 | 90.7 | 42.6 | 2786 | 811 | 1121 | 240 | 893 | 439 | 217 | 340 | 2532 | 1090 | 834 |
Y | 5.49 | 41.8 | 18.7 | 15.7 | 47.2 | 539 | 225 | 190 | 41.5 | 1245 | 471 | 464 | 75.6 | 1322 | 4977 | 414 | 283 | 2579 | 900 | 790 |
Mn | 12.4 | 410 | 95.1 | 155 | 28.5 | 498 | 175 | 156 | 153 | 1148 | 589 | 368 | 95.2 | 1072 | 491 | 343 | 78.9 | 1023 | 460 | 322 |
Co | 6.27 | 98.5 | 50.3 | 35.1 | 42.1 | 459 | 179 | 132 | 42.0 | 663 | 446 | 260 | 194 | 879 | 472 | 234 | 131 | 1262 | 622 | 439 |
Fe | 8.48 | 52.0 | 28.7 | 19.1 | 20.1 | 405 | 123 | 123 | 37.8 | 880 | 437 | 311 | 117 | 505 | 214 | 129 | 219 | 1953 | 717 | 597 |
Ni | 2.83 | 238 | 135 | 115 | 25.6 | 686 | 359 | 264 | 112 | 2878 | 1461 | 1056 | 148 | 2160 | 690 | 614 | 270 | 3262 | 1419 | 1079 |
Cu | 22.0 | 446 | 244 | 154 | 379 | 1918 | 933 | 531 | 890 | 5933 | 2147 | 2136 | 158 | 860 | 478 | 234 | 218 | 2505 | 780 | 694 |
Zn | 394 | 3145 | 1259 | 990 | 395 | 8610 | 2827 | 2497 | 2355 | 12,232 | 4579 | 4294 | 999 | 6353 | 2817 | 1906 | 1086 | 11,853 | 5354 | 3378 |
Ga | 21.3 | 157 | 80.2 | 57.1 | 55.0 | 460 | 253 | 133 | 114 | 952 | 524 | 320 | 92.4 | 585 | 234 | 161 | 215 | 1440 | 684 | 446 |
Ge | 56.9 | 732 | 494 | 268 | 516 | 3176 | 1550 | 859 | 388 | 4193 | 1926 | 1387 | 38.8 | 3313 | 1573 | 961 | 91.0 | 4637 | 2312 | 1464 |
Mo | 723 | 6786 | 3526 | 2115 | 650 | 4942 | 2542 | 1367 | 3231 | 49,592 | 27,742 | 19,401 | 2890 | 128,943 | 40,057 | 36,744 | 8961 | 35,273 | 18,853 | 9860 |
Cd | 818 | 4772 | 2929 | 1481 | 33,066 | 34,381 | 12,843 | 11,340 | 2814 | 21,893 | 9389 | 7488 | 1597 | 9462 | 5260 | 3244 | 1289 | 22,150 | 8455 | 7897 |
Pb | - | 39.7 | 6.99 | 16.0 | 16.7 | 601 | 187 | 184 | 59.6 | 966 | 510 | 352 | 8.68 | 194 | 129 | 57.8 | 103 | 610 | 362 | 186 |
Zr | 274 | 2588 | 1309 | 1032 | - | 6726 | 1714 | 2167 | 2596 | 12,621 | 7215 | 3763 | 572 | 6936 | 3052 | 2024 | 709 | 19,604 | 5702 | 6248 |
Te | - | 39.9 | 8.86 | 16.1 | - | 259 | 32.4 | 91.6 | - | 3355 | 791 | 1457 | - | 241 | 73.5 | 90.9 | - | 1129 | 433 | 415 |
Th | 0.97 | 26.1 | 7.72 | 9.28 | 11.2 | 179 | 70.6 | 54.1 | 15.6 | 414 | 218 | 154 | 15.1 | 248 | 98.4 | 95.8 | 79.9 | 1654 | 499 | 511 |
Hf | - | 856 | 362 | 359 | - | 2391 | 628 | 783 | 1138 | 4804 | 2398 | 1500 | 35.3 | 2081 | 889 | 592 | 141 | 8788 | 2331 | 2891 |
Ta | - | 299 | 1569 | 97.9 | 193 | 955 | 625 | 313 | 480 | 4149 | 2020 | 1328 | 335 | 2303 | 978 | 719 | 450 | 9966 | 3159 | 3054 |
Element in Soil | Significantly (α = 0.05) Correlated with Elements in Soil |
---|---|
Ni-A | Cu-A, Zn-A, Cd-A, Pb-A, Ni-T, Cu-T, Zn-T, Mo-T, Pb-T |
Cd-A | Cu-A, Zn-A, Ni-A, Pb-A, Cu-T, Zn-T, Pb-T, Mo-T |
Pb-A | Cu-A, Zn-A, Ni-A, Cd-A, Cu-T, Zn-T, Pb-T |
Cu-A | Ni-A, Zn-A, Cd-A, Pb-A, Co-T, Ni-T, Cu-T, Zn-T, Mo-T, Pb-T |
Zn-A | Cu-A, Ni-A, Cd-A, Pb-A, Cu-T, Zn-T, Mo-T, Pb-T |
Te-A | Ni-A, Cu-A, Cu-T AR, Zn-A, Zn-T. |
Fe-A | Ge-A, Y-A, all REEs-A (except La-A, Ce-A, Pr-A), Cd-T, all REEs-T (except La-T, Ce-T, Nd-T) |
Sc-A | Ga-A, Ge-A, Y-A, Mo-A, Zr-A, all REEs-A, Mn-T, Co-T, Ni-T, all HREEs-T, Mo-T, Hf-A, Ta-A, Th-A |
Ga-A | Sc-A, Y-A, Zr-A, all REEs-A (except Nd-A, Yb-A, Lu-A), Ni-T, Hf-A, Ta-A, Th-A |
Ge-A | Sc-A, Fe-A, Y-A, Zr-A, all REEs-A, Co-T, Ni-T, Cd-T, Pr-T, Sm-T, Eu-T, all HREEs-T, Hf-A, Ta-A, Th-A |
Mo-A | Sc-A, Y-A, Zr-A, all REEs-A (except Pr-A, Nd-A, Tm-A, Yb-A, Lu-A), Co-T, Ni-T, Hf-A, Ta-A, Th-A |
Y-A | Sc-A, Fe-A, Ga-A, Ge-A, Zr-A, Mo-A, all REEs-A, Co-T, Ni-T, Hf-A, Ta-A, Th-A |
Zr-A | Sc-A, Ga-A, Ge-A, Y-A, Mo-A, all REEs-A, Mn-T, Co-T, Ni-T, Mo-T, Hf-A, Ta-A, Th-A |
Th-A | Sc-A, Ga-A, Ge-A, Y-A, Zr-A, Mo-A, all REEs-A, Mn-T, Co-T, Ni-TR, all HREEs-T, Hf -A, Ta-A, Ta AR |
Hf-A | all REEs-A, Sc-A, Fe-A, Ga-A, Ge-A, Y-A, Zr-A, Mo-A, Ta-A, Th-A, Mn-T, Co-T, Ni-T, Mo-T, all HREEs-T (except Eu-T) |
Ta-A | all REEs-A, Sc-A, Fe-A, Ga-A, Ge-A, Y-A, Zr-A, Hf-A, Th-A, Ni-T, Cd-T, all HREEs-T |
Each available REE | Sc-A, Fe-A (except La-A, Ce-A, Pr-A, Eu-A), Ga-A (except Nd-A, Yb-A, Lu-A), Ge-A, Y-A, Zr-A, Mo-A (except Pr-A, Nd-A, Tm-A, Yb-A, Lu-A), all REEs-A, Th-A, Hf-A, Ta-A, Mn-T (except Pr-A, Nd-A, Er-A, Tm-A, Yb-A, Lu-A), Co-T (except Nd-A), Ni-T (except Nd-A), Mo-T, Cd-T, all HREE-T (except Gd-T) |
Vegetable | FIR ± SD * | EDI (dw) for REEs | EDI (ww) for REEs | EDI (ww) for REEOs | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Average | Min | Max | Average | Min | Max | Average | ||
Potato | 118.5 ± 44.6 | 0.032 | 0.261 | 0.101 | 0.005 | 0.039 | 0.015 | 0.006 | 0.051 | 0.020 |
Carrot | 91.5 ± 22.1 | 0.261 | 2.09 | 0.928 | 0.051 | 0.406 | 0.180 | 0.066 | 0.527 | 0.234 |
Parsley | 38.4 ± 18.6 | 0.277 | 7.17 | 2.78 | 0.045 | 1.15 | 0.446 | 0.058 | 1.500 | 0.580 |
Onion | 110.2 ± 31.5 | 0.184 | 2.26 | 0.953 | 0.060 | 0.733 | 0.309 | 0.078 | 0.953 | 0.402 |
Cabbage | 43.7 ± 15.9 | 0.494 | 18.1 | 5.69 | 0.228 | 2.70 | 0.851 | 0.300 | 3.51 | 1.11 |
Total | 1.25 | 29.9 | 10.5 | 0.388 | 5.03 | 1.80 | 0.504 | 6.54 | 2.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miclean, M.; Levei, E.A.; Tanaselia, C.; Cadar, O. Rare Earth Elements Transfer from Soil to Vegetables and Health Risks Associated with Vegetable Consumption in a Former Mining Area. Agronomy 2023, 13, 1399. https://doi.org/10.3390/agronomy13051399
Miclean M, Levei EA, Tanaselia C, Cadar O. Rare Earth Elements Transfer from Soil to Vegetables and Health Risks Associated with Vegetable Consumption in a Former Mining Area. Agronomy. 2023; 13(5):1399. https://doi.org/10.3390/agronomy13051399
Chicago/Turabian StyleMiclean, Mirela, Erika Andrea Levei, Claudiu Tanaselia, and Oana Cadar. 2023. "Rare Earth Elements Transfer from Soil to Vegetables and Health Risks Associated with Vegetable Consumption in a Former Mining Area" Agronomy 13, no. 5: 1399. https://doi.org/10.3390/agronomy13051399
APA StyleMiclean, M., Levei, E. A., Tanaselia, C., & Cadar, O. (2023). Rare Earth Elements Transfer from Soil to Vegetables and Health Risks Associated with Vegetable Consumption in a Former Mining Area. Agronomy, 13(5), 1399. https://doi.org/10.3390/agronomy13051399