Effects of Utilization Methods on C, N, P Rate and Enzyme Activity of Artificial Grassland in Karst Desertification Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Sample Plot Set-Up and Sampling
2.3. Determination of Soil Properties
2.4. Data Processing
3. Results
3.1. C, N, P and Their Ratio Characteristics of Grassland Soil under Different Utilization Methods
3.2. Soil Enzyme Activity and Its Ratios of Grassland under Different Utilization Methods
3.3. Overall Correlation Analysis of Soil Enzymes, Their Ratios and Soil Chemical Factors in Different Utilization Methods of Grassland
3.4. Analysis of Soil Chemical Factors Affecting Enzyme Activity
4. Discussion
4.1. Characteristics of Soil C, N and P Nutrients
4.2. Ratio Characteristics of Soil C, N and P
4.3. Responses of Soil Enzymes to Different Grassland Uses
4.4. Effects of Utilization Methods on Soil Enzyme Ratio
4.5. Soil Enzymes and Environmental Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GG | grazing grassland |
MG | mowing grassland |
EG | enclosed grassland |
pH | pondus hydrogenii |
SOC | soil organic carbon |
TN | total nitrogen |
TP | total phosphorus |
AP | soil available phosphorus |
AN | alkaline nitrogen |
NH4+-N | soil ammonium nitrogen |
NO3−-N | soil nitrate nitrogen |
βG | β-1,4-glucosidase |
NAG | β-1,4-N-acetylglucos-aminidase |
LAP | leucine aminopeptidase |
ACP | acid phosphatase |
References
- Puhlick, J.J.; Fernandez, I.J. Change in soil carbon, nitrogen, and phosphorus after timber harvesting in northern hardwood forests. Soil Sci. Soc. Am. J. 2023, 87, 404–416. [Google Scholar] [CrossRef]
- Ye, L.H.; Chen, L.M.; Lv, Q.; Li, X.J.; Hu, W.T.; Zhang, Y.; Li, X.W. Effects of Different Nitrogen and Phosphorus Ratios on Ecological Stoichiometry of Carbon, Nitrogen and Phosphorus at the End of Shoot Growth in Phyllostachys violascens Stand. J. Sichuan Agri. Uni. 2023, 41, 42–53. [Google Scholar]
- Qimanguli, P.; Liu, D.; Mao, J.; Qiao, F.S.; Wang, C.T. Soil carbon, nitrogen, phosphorus and their eco-stoichiometric characteristics of alpine grasslands under different degradation degrees. Chin. J. Ecol. 2023, 42, 1–11. [Google Scholar]
- Shi, L.N.; Lin, Z.R.; Wei, X.T.; Peng, C.J.; Yao, Z.Y.; Han, B.; Xiao, Q.; Zhou, H.K.; Deng, Y.F.; Liu, K.S.; et al. Precipitation increase counteracts warming effects on plant and soil C:N:P stoichiometry in an alpine meadow. Front. Plant Sci. 2022, 13, 1044173. [Google Scholar] [CrossRef]
- Meena, A.; Rao, K.S. Assessment of soil microbial and enzyme activity in the rhizosphere zone under different land use/cover of a semiarid region, India. Ecol. Process. 2021, 10, 16. [Google Scholar] [CrossRef]
- Zhao, D.; Li, F.; Yang, Q.; Wang, R.; Song, Y.; Tao, Y. The influence of different types of urban land use on soil microbial biomass and functional diversity in Beijing, China. Soil Use Manag. 2013, 29, 230–239. [Google Scholar] [CrossRef]
- Liu, J.R.; You, C.M.; Xu, Z.F.; Liu, Y.; Zhang, L.; Li, H.; Wang, L.X.; Liu, S.N.; He, S.Q.; Luo, Z.T.; et al. Soil arthropods promote litter enzyme activity by regulating microbial carbon limitation and ecoenzymatic stoichiometry in a subalpine forest. Sci. Total Environ. 2023, 876, 162789. [Google Scholar] [CrossRef] [PubMed]
- Moreau, D.; Bardgett, R.D.; Finlay, R.D.; Finlay, R.D.; Jones, D.L.; Philippot, L. A plant perspective on nitrogen cycling in the rhizosphere. Funct. Ecol. 2019, 33, 540–552. [Google Scholar] [CrossRef]
- Ma, L.; Ding, X.H.; Gu, W.; Ma, W. Spatial distribution patterns of soil nutrients and microbes in seasonal wet meadow in Zhalong wetland. Chin. J. Appl. Eco. 2011, 22, 1717–1724. [Google Scholar]
- Lin, C.; Wang, F.; Li, Q.H.; He, C.M.; Li, Y.; Liu, Q.P.; Lin, L.H.; Lin, X.J. Nutrient content and enzyme activity of cold-waterlogged soil in fields with open drainage ditches. Fujian J. Agri. Sci. 2014, 29, 1010–1014. [Google Scholar]
- Yang, X.W.; Liu, J.; Hou, M.Y.; Cheng, X.M.; Huang, X.X. Enzyme activities and stoichiometric characteristics of rhizometric and non-rhizosphere soil in different ancient tea gardens in Fengqing County. Chin. J. Appl. Eco. 2023, 29, 1–13. [Google Scholar]
- Zhou, P.; Wei, L.; Wei, X.M.; Zhu, Z.K.; Yuan, H.C.; Li, Q.Y.; Wu, J.S. Responses of β-1,4-Glucosidase activity to temperature changes in paddy soil. Res. Environ. Sci. 2018, 31, 1282–1288. [Google Scholar]
- Xu, W.X.; Li, J.Q.; Lei, M.; Xue, X.X.; Wang, J.J.; Liu, W.J.; Tang, S.R. Effects of kudzu mulching on physical and chemical properties and enzyme activities of surface soil in young rubber plantation. Plant Nutri. Ferti. Sci. 2020, 26, 1740–1748. [Google Scholar]
- Wang, M.; Yan, Z.R.; Zhao, Z.W.; Wu, Y.; Chen, W.J.; Yang, Y.X.; Liu, G.B.; Xue, W. Variation characteristics of specific soil enzyme activities during vegetation succession on the Loess Plateau. J. Soil Wat. Conserv. 2021, 35, 181–187. [Google Scholar]
- Aponte, H.; Medina, J.; Butler, B.; Meier, S.; Cornejo, P.; Kuzyakov, Y. Soil quality indices for metal (loid) contamination: An enzymatic perspective. Land Degrad. Dev. 2020, 31, 2700–2719. [Google Scholar] [CrossRef]
- Liang, X.R.; Cao, G.J.; Geng, Y.H.; Dong, H.; Li, H.; Shen, K.H.; Liu, S.H. Characteristics of soil enzyme activity in maize straw return under different drip irrigation methods. J. Jilin Agri. Uni. 2023, 45, 1–12. [Google Scholar]
- Guo, C.; Sheng, M.Y.; He, Y.; Wang, L.J.; Shi, Q.L.; Luo, N.N. Effects of land use types on soil c, n, p stoichiometric characteristics and enzyme activities in karst area of Southwest China. Chin. J. Soil Sci. 2023, 54, 1–10. [Google Scholar]
- Guo, Z.W.; Li, Y.S.; Wang, H.; Chen, M.N.; Fan, Q.L.; Yang, N.; Xi, J.L.; Zhang, J.C. Effects of long-term cotton straw return and application of manure on soil nutrients and enzyme activity in cotton field. Chin. J. Eco-Agri. 2023, 31, 1–8. [Google Scholar]
- Dong, X.; Zhang, Y.; Munyampirwa, T.; Tao, H.N.; Shen, Y.Y. Effects of long-term conservation tillage on soil carbon content and invertase activity in dry farmland on the Loess Plateau. Sci. Agri. Sin. 2023, 56, 907–919. [Google Scholar]
- Xiong, K.N.; Chi, N.Y.K.; Shen, X.Y. Research on photosynthetic leguminous forage in the karst rocky desertification regions of Southwestern China. Pol. J. Environ. Stud. 2017, 26, 2319–2329. [Google Scholar] [CrossRef]
- Li, S.L.; Xu, S.; Wang, T.J.; Yue, F.J.; Peng, T.; Zhong, J.; Wang, L.C.; Chen, J.A.; Wang, S.J.; Chen, X.; et al. Effects of agricultural activities coupled with karst structures on riverine biogeochemical cycles and environmental quality in the karst region. Agr. Ecosyst. Environ. 2020, 303, 107120. [Google Scholar] [CrossRef]
- Wang, K.L.; Yue, Y.M.; Chen, H.S.; Zeng, F.P. Mechanisms and realization pathways for integration of scientifific poverty alleviation and ecosystem services enhancement. Bull. Chin. Acad. Sci. 2020, 35, 1264–1272. [Google Scholar]
- Pei, G.T.; Sun, J.F.; He, T.X.; Hu, B.Q. Effects of long-term human disturbances on soil microbial diversity and community structure in a karst grassland ecosystem of northwestern Guangxi, China. Chin. J. Plant Ecol. 2021, 45, 74–84. [Google Scholar] [CrossRef]
- Liu, M.; Bai, X.Y.; Tan, Q.; Luo, G.J.; Zhao, C.W.; Wu, L.H.; Hu, Z.Y.; Ran, C.; Deng, Y.H. Monitoring impacts of ecological engineering on ecosystem services with geospatial techniques in karst areas of SW China. Geocarto Int. 2022, 7, 5091–5115. [Google Scholar] [CrossRef]
- Chen, B.J.; Fan, B.; Wang, X.C.; Zhang, Z.H. Effects of different degradable material non-woven on the soil stoichiometric characteristics of carbon, nitrogen and phosphorus in alpine artificial grassland. Acta Agrestia Sin. 2021, 29, 2752–2762. [Google Scholar]
- Liu, M.J.; Zhang, Y.L.; Jia, Y.S.; Cheng, Q.M.; Li, Y.Y.; Si, Q.; Shi, R.R.; Wang, Y.; Yuan, N. Effect of mixed sowing of grass and legume on soil C.; N and P contents. Chin. J. Grassl. 2021, 43, 50–57. [Google Scholar]
- Renzeng, W.; Jiang, L.L.; Jia, S.G.; Tsechoe, D. Analysis of the influence of nitrogen and phosphorus addition on the ecological function of barley artificial grassland production. Plat. Sci. Res. 2018, 2, 7–13. [Google Scholar]
- Ou, Y.S.; Wang, X.; Li, J.; Jia, H.X.; Zhao, Y.F.; Huang, Z.; Hong, M.M. Content and ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus in artificial grassland under different restoration years. Chin. J. Appl. Environ. Biol. 2019, 25, 38–45. [Google Scholar]
- Renzeng, W.; Jiang, L.L.; Wang, S.P.; Jia, S.G. The effect of nitrogen and phosphorus addition on ecological and produce function of elymus nutans artificial grassland. Plat. Sci. Res. 2020, 4, 55–61. [Google Scholar]
- Liu, W.X.; Liu, L.L.; Yang, X.; Deng, M.F.; Wang, Z.; Wang, P.D.; Yang, S.; Li, P.; Peng, Z.Y.; Yang, L.; et al. Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland. Global Chang. Biol. 2021, 37, 3939–3950. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Cao, Z.Y.; Chang, J.J.; Zhang, Y.; Zhu, G.L.; Zong, N.; He, Y.Y.; Zhang, J.J.; He, N.P. Elevational gradient affect functional fractions of soil organic carbon and aggregates stability in a Tibet alpine meadow. Catena 2017, 156, 139–148. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Zeglin, L.H. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef]
- Wang, J.J.; Huang, G.; Lü, K.; Su, Y.G. Soil enzyme activity and stoichiometry of different vegetation types in tropical and subtropical forest. Chin. J. Appl. Environ. Biol. 2023, 29, 42–51. [Google Scholar]
- Jiao, P.Y.; Guo, W.C.; Ze, L.; Liu, X.; Hu, Y.L.; Wang, Y.Z. Soil enzyme stoichiometric characteristics of pinus massoniana plantations at different stand ages in mid-subtropical areas. Environ. Sci. 2022, 43, 1059–1068. [Google Scholar]
- Saiya-Cork, K.R.; Sinsabaugh, R.L.; Zak, D.R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 2002, 34, 1309–1315. [Google Scholar] [CrossRef]
- Guan, S.Y.; Zhang, D.S.; Zhang, M.Z. Soil Enzymes and Their Research Methods; China Agriculture Press: Beijing, China, 1986; pp. 274–337. [Google Scholar]
- Zhou, L.; Liu, S.; Shen, H.; Zhao, M.; Xu, L.; Xing, A.; Fang, J. Soil extracellular enzyme activity and stoichiometry in China’s forests. Funct. Ecol. 2020, 34, 1461–1471. [Google Scholar] [CrossRef]
- Gianfreda, L.; Rao, M.A. The influence of pesticides on soil enzymes. In Soil Enzymology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 293–312. [Google Scholar]
- Zheng, S.M.; Xia, Y.H.; Hu, Y.J.; Chen, X.B.; Rui, Y.C.; Gunina, A.; He, X.Y.; Ge, T.D.; Wu, J.S.; Su, Y.R.; et al. Stoichiometry of carbon, nitrogen, and phosphorus in soil: Effects of agricultural land use and climate at a continental scale. Soil Till. Res. 2021, 209, 104903. [Google Scholar] [CrossRef]
- Tian, J.; Sheng, M.Y.; Wang, P.; Wen, P.C. Influence of land use change on litter and soil c, n, p stoichiometric characteristics and soil enzyme activity in karst ecosystem, Southwest China. Environ. Sci. 2019, 40, 4278–4286. [Google Scholar]
- Chi, Y.K.; Song, S.Z.; Zhao, D.G.; Wu, J.H. Effects of fertilization on plant-soil ecological stoichiometric characteristics of degraded artificial grassland in karst area. Fresen. Environ. Bull. 2022, 31, 10190–10198. [Google Scholar]
- Liao, Q.L.; Long, C.L.; Xue, F.; Zheng, L. Soil enzyme and nutrient characteristics of different terrains in Maolan karst forest. J. For. Environ. 2020, 40, 164–170. [Google Scholar]
- Hali, A.; Sun, Z.J.; He, P.X.; Liu, H.X. Effects of grazing exclusion on soil nitrogen content and its component characteristics in sagebrush desert grassland. J. Soil Wat. Conserv. 2022, 36, 222–230. [Google Scholar]
- Song, S.Z. Study on Coupling of Degraded Grassland Improvement and Semi-House Feeding Cattle and Sheep in the Karst Rocky Desertification Area. Master’s Thesis, Guizhou Normal University, Guiyang, China, 2019. [Google Scholar]
- Sun, C.L.; Wang, Y.W.; Wang, C.J.; Li, Q.J.; Wu, Z.H.; Yuan, D.S.; Zhang, J.L. Effects of land use conversion on soil extracellular enzyme activity and its stoichiometric characteristics in karst mountainous areas. Acta Ecol. Sin. 2021, 41, 4140–4149. [Google Scholar]
- Fan, D.D.; Liu, Y.J.; Cao, H.L.; Chen, H.; Kong, W.D.; Li, X.Z. On the effect of fencing on physicochemical property and microbial community of grassland soils. Sci. Tech. Rev. 2022, 40, 41–51. [Google Scholar]
- Lu, X.; Yan, Y.; Sun, J.; Zhang, X.; Chen, Y.; Wang, X.; Cheng, G. Short-term grazing exclusion has no impact on soil properties and nutrients of degraded alpine grassland in Tibet, China. Solid Earth 2015, 6, 1195–1205. [Google Scholar] [CrossRef]
- Wu, G.L.; Du, G.Z.; Liu, Z.H.; Thirgood, S. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai Tibetan Plateau. Plant Soil 2009, 319, 115–126. [Google Scholar] [CrossRef]
- Xiong, H.Q.; Duan, J.Y.; Wang, Y.; Zhang, X.S. Effects of continuous grazing and livestock exclusion on soil properties in a degraded Mu Us sandy grassland, Inner Mongolia, northern China. J. Arid Land Resour. Environ. 2012, 26, 152–157. [Google Scholar]
- Yao, M.J.; Rui, J.P.; Li, J.B.; Wang, J.M.; Cao, W.D.; Li, X.Z. Soil bacterial community shifts driven by restoration time and steppe types in the degraded steppe of Inner Mongolia. Catena 2018, 165, 228–236. [Google Scholar] [CrossRef]
- Hong, J.; Xu, X.; Pang, B.; Ma, X.X.; Wang, X.D. Significant soil acidification caused by grazing exclusion across China’s grasland areas. Land Degrad. Dev. 2021, 32, 535–545. [Google Scholar] [CrossRef]
- Ahmad, E.H.; Demisie, W.; Zhang, M. Effects of land use on concentrations and chemical forms of phosphorus in different-size aggregates. Eurasian Soil Sci. 2017, 50, 1435–1443. [Google Scholar] [CrossRef]
- Yan, L.J.; Wang, H.Y.; Li, G.; Wu, J.Q. Effects of four typical vegetations on soil nutrient and enzymes activities in loess hilly region. J. Soil Wat. Conserv. 2019, 33, 190–204. [Google Scholar]
- Ma, W.W.; Wang, Y.S.; Li, G.; Wu, J.Q.; Luo, Y.Z.; Chen, G.P. Variations of organic carbon storage in vegetation-soil systems during vegetation degradation in the Gahai wetland, China. Chin. J. Appl Ecol. 2018, 9, 3900–3906. [Google Scholar]
- Feng, D.F.; Bao, W.K. Review of the temporal and spatial patterns of soil C∶N∶P stoichiometry and its driving factors. Chin. J. Appl. Environ. Biol. 2017, 23, 400–408. [Google Scholar]
- Tian, H.Q.; Chen, G.S.; Zhang, C.; Melillo, J.M.; Charles, A.S. Hall. Pattern and variation of C:N:P rations in China, s soils: Synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Bui, E.N.; Henderson, B.L. C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant Soil 2013, 373, 553–568. [Google Scholar] [CrossRef]
- Jia, Y.; Xu, B.C.; Li, F.M.; Wang, X.L. Availability and contributions of soil phosphorus to forage production of seeded alfalfa in semiarid Loess Plateau. Acta Ecol. Sin. 2007, 27, 42–47. [Google Scholar]
- Reich, P.B.; Oleksyn, L. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef]
- Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Wu, L.F.; Wang, Z.Q.; Wang, Y.; Liu, Y.G.; Yang, B.; Zhang, Y.F. Relationship between soil C, N, P stoichiometric characteristics and enzyme activity in karst plateau soils with different degree of rocky desertification. Ecol. Environ. Sci. 2019, 28, 2332–2340. [Google Scholar]
- Liu, L.B.; Zhong, Q.L.; Ni, J. Ecosystem C:N:P stoichiometry and storages of a secondary plateau-surface karst forest in Guizhou Province, southwestern China. Acta Ecol. Sin. 2019, 39, 8606–8614. [Google Scholar]
- Liu, J.Y.; Wang, M.L.; Zhao, L.P.; Ge, X.Y.; Yang, J.J. Effect of Populus euphratica fertilizer island on soil eco-stoichiometry in arid area. Jiangsu Agri. Sci. 2020, 48, 282–287. [Google Scholar]
- Zhong, Z.K.; Yang, G.H.; Ren, C.J.; Han, X.H. Effects of farmland abandonment on soil enzymatic activity and enzymatic stoichiometry in the loess hilly region, China. Environ. Sci. 2021, 42, 411–421. [Google Scholar]
- Wei, K.T.; Yu, X.J.; Bai, M.M.; Ma, K.K.; Liu, Y.F.; Zhang, X.M. Effect of mixed sowing ratio on soil nutrient content and enzyme activity of medicago ruthenica-bromus inermis mixed grassland in Longzhong Loess Plateau. Chin. J. Grassl. 2023, 45, 56–66. [Google Scholar]
- Zhang, W.; Xu, Y.D.; Gao, D.X.; Wang, X.; Liu, W.C.; Deng, J.; Han, X.H.; Yang, G.H.; Feng, Y.Z.; Ren, G.X. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China. Soil Biol. Biochem. 2019, 134, 1–14. [Google Scholar] [CrossRef]
- Wang, Z.T.; Liu, T.X.; Tong, X.; Duan, L.M.; Li, D.F.; Liu, X.Y. Changes in vegetation characteristics and soil enzyme activities under different treatments in semi-arid meadow grassland. Acta Prata. Sin. 2023, 32, 41–55. [Google Scholar]
- Zechmeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Peñuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef]
- Xu, W.Y.; Long, Y.C.; Zhu, C.B.; Jiang, J.; Zhang, Y.; Zhou, S.Q. Soil ecoenzymatic stoichiometry and microbial diversity in different landscapes of Caohai wetland. Chin. J. Appl. and Environ. Biol. 2023, 29, 1–13. [Google Scholar]
- Tian, M.Y.; Yu, C.J.; Wang, J.K.; Ding, F.; Chen, Z.H.; Jiang, N.; Jiang, H.; Chen, L.J. Effect of nitrogen additions on soil pH, phosphorus contents and phosphatase activities in grassland. Chin. J. Appl. Ecol. 2020, 31, 2985–2992. [Google Scholar]
- Bo, Z.X.; You, C.M.; Hu, Z.M.; Guo, Q.; He, L.Y.; Du, Y.M.; Li, S.G.; Gan, Y.M. The influence of nitrogen and water addition on biomass in a typical steppe of Inner Mongolia. Chin. J. Appl. Environ. Biol. 2017, 23, 658–664. [Google Scholar]
- Gao, Z.B.; Wang, H.Y.; Lv, X.T.; Wang, Z.W. Effects of nitrogen and phosphorus addition on C:N:P stoichiometry in roots and leaves of four dominant plant species in a meadow steppe of Hulunbuir. Chin. J. Ecol. 2017, 36, 80–88. [Google Scholar]
- Sinsabaugh, R.L.; Hill, B.H.; Shah, J.J.F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 2009, 462, 795–798. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Shah, J.J.F. Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: The growth rate hypothesis in reverse. Biogeochemistry 2011, 102, 31–43. [Google Scholar] [CrossRef]
- Bonnie, G.W.; Samantha, R.W.; Robert, L.S. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochem 2014, 117, 101–113. [Google Scholar]
- Wang, W.F.; Li, C.H.; Huang, S.W.; Gao, W.; Tang, J.W. Effects of different fertilization patterns on soil enzyme activities in greenhouse vegetable field. Chin. J. Appl. Ecol. 2016, 27, 873–882. [Google Scholar]
- Cao, X.W.; Zhao, Y.Y.; Xiong, H.Q.; Duan, X.; Shu, S.M. Soil Enzymes and organic carbon under different vegetation models in rocky-desertification areas of karst in eastern part of Yunnan Province. J. Northeast For. Univ. 2015, 43, 79–83. [Google Scholar]
- Mo, X.; Chen, F.J.; You, C.; Liu, F.D. Characteristics and factors of soil enzyme activity for different plant communities in Yellow River Delta. Environ. Sci. 2020, 41, 895–904. [Google Scholar]
- Wang, Z.W.; Wan, S.Z.; Jiang, H.M.; Hu, Y.; Ma, S.Q.; Chen, Y.C.; Lu, X.Y. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau. Chin. J. Plant Ecol. 2021, 45, 528–538. [Google Scholar] [CrossRef]
- Li, N.; Huang, J.; Geng, Y.Q.; Dong, Y.; Zhang, C.Y. Research on soil enzyme activities of different land types in lakeside of Qinghai Lake, northwestern China. J. Beijing For. Uni. 2019, 41, 49–56. [Google Scholar]
- He, B.; Li, Q.; Feng, T.; Xue, X.H.; Li, W.J.; Liu, Y. Stoichiometry characteristics of C, N, and P in needle leaves, litter, and soil during stand development in A Pinus massoniana plantation in northwest Guizhou province. Ecol. Environ Sci. 2019, 28, 2149–2157. [Google Scholar]
- Soares, M.; Rousk, J. Microbial growth and carbon use efficiency in soil: Links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biol. Biochem. 2019, 131, 195–205. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Y.; Song, Y. Soil Properties of different planting combinations of zanthoxylum planispinum var. dintanensis plantations and their effect on stoichiometry. Agronomy 2022, 12, 2562. [Google Scholar] [CrossRef]
- Duda, G.P.; Lima, J.R.D.; Dos Santos, U.J.; Antonino, A.C.D.; Claude, H. Human disturbance affects enzyme activity, microbial biomass and organic carbon in tropical dry sub-humid pasture and forest soils. Arch. Agron. Soil Sci. 2020, 66, 458–472. [Google Scholar]
Items | Utilization Methods | ||
---|---|---|---|
GG | MG | EG | |
pH | 7.01 ± 0.06a | 6.78 ± 0.09ab | 6.53 ± 0.20b |
SOC (g/kg) | 19.48 ± 1.12ab | 17.37 ± 0.42b | 22.45 ± 1.39a |
TN (g/kg) | 2.19 ± 0.09a | 1.74 ± 0.10bc | 1.83 ± 0.09b |
TP (g/kg) | 0.85 ± 0.05b | 0.53 ± 0.01c | 1.26 ± 0.020a |
AN (mg/kg) | 118.49 ± 1.00a | 93.28 ± 1.41c | 104.62 ± 1.26b |
AP (mg/kg) | 12.00 ± 1.01a | 12.25 ± 1.36a | 15.97 ± 2.12a |
NH4+-N (mg/kg) | 34.34 ± 3.08a | 18.03 ± 0.85b | 35.94 ± 1.13a |
NO3−-N (mg/kg) | 98.25 ± 3.82a | 79.9 ± 5.07b | 87.72 ± 6.99a |
C:N | 8.91 ± 0.97c | 10.04 ± 0.67b | 12.31 ± 1.91a |
C:P | 22.78 ± 0.83b | 32.88 ± 0.79a | 17.91 ± 2.07c |
N:P | 2.58 ± 0.36b | 3.29 ± 0.27a | 1.46 ± 0.08c |
Items | Utilization Methods | ||
---|---|---|---|
GG | MG | EG | |
βG (IUg−1) | 6.11 ± 0.05a | 3.54 ± 0.05b | 5.36 ± 0.18a |
NAG (IUg−1) | 8.56 ± 0.11a | 5.36 ± 0.18b | 7.19 ± 0.14a |
ACP (IUg−1) | 6.79 ± 0.72a | 7.46 ± 0.84a | 7.66 ± 0.59a |
LAP (IUg−1) | 29.83 ± 4.28a | 31.27 ± 3.73a | 28.52 ± 3.22a |
C:NEEA | 0.50 ± 0.03a | 0.35 ± 0.02b | 0.47 ± 0.03a |
C:PEEA | 0.96 ± 0.09a | 0.64 ± 0.08b | 0.83 ± 0.06a |
N:PEEA | 1.93 ± 0.28a | 1.82 ± 0.25a | 1.76 ± 0.04a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Wang, X.; He, C.; Chi, Y. Effects of Utilization Methods on C, N, P Rate and Enzyme Activity of Artificial Grassland in Karst Desertification Area. Agronomy 2023, 13, 1368. https://doi.org/10.3390/agronomy13051368
Song S, Wang X, He C, Chi Y. Effects of Utilization Methods on C, N, P Rate and Enzyme Activity of Artificial Grassland in Karst Desertification Area. Agronomy. 2023; 13(5):1368. https://doi.org/10.3390/agronomy13051368
Chicago/Turabian StyleSong, Shuzhen, Xueling Wang, Cheng He, and Yongkuan Chi. 2023. "Effects of Utilization Methods on C, N, P Rate and Enzyme Activity of Artificial Grassland in Karst Desertification Area" Agronomy 13, no. 5: 1368. https://doi.org/10.3390/agronomy13051368
APA StyleSong, S., Wang, X., He, C., & Chi, Y. (2023). Effects of Utilization Methods on C, N, P Rate and Enzyme Activity of Artificial Grassland in Karst Desertification Area. Agronomy, 13(5), 1368. https://doi.org/10.3390/agronomy13051368