Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Strategy
2.2. Study Area
2.3. Tillage Method Experiment
2.4. Soil Sampling and Basic Chemical and Mechanical Analysis
2.5. Sample Analysis
2.5.1. Dry Sieving
2.5.2. Wet Screening
2.6. Data Analysis
2.6.1. Fractal Dimension of Soil Aggregates
2.6.2. Characteristic Parameters of Soil Aggregate Composition
2.6.3. Rate of Structural Damage to Soil Aggregates
2.6.4. Aggregate Stability Index
- (1)
- In the process of aggregate screening, large aggregates are granulated to form small aggregates, and the combination of small aggregates to form large aggregates is an impossible event.
- (2)
- When the large aggregates are sieved to collect small aggregates, it is assumed that they can only be decomposed into particles in the next lower size category. After multiple cycles of continuous screening, such an effect will be observed.
- (3)
- All aggregate particles have the same probability of being fractured, whether a particle is in a particular category when sieving is initiated or whether it results from the fracturing of a particle of larger size.
2.6.5. K Value of Soil Erodibility
2.6.6. Comprehensive Evaluation of Soil Stability and Erosion Resistance
3. Results
3.1. Basic Physicochemical Properties of Soil for Different Tillage Methods
3.2. Characteristics of SAS for Different Tillage Methods
3.3. WAS for Different Tillage Methods
3.4. SMS for Different Tillage Methods
3.5. Soil Erodibility for Different Tillage Methods
3.6. Correlations between Soil Stability Indicators and Basic Physicochemical Properties of Soil
3.7. Soil Stability and Erosion Resistance
4. Discussion
4.1. Effects of Tillage Methods on the Distribution of Soil Aggregate Fractions
4.2. Effects of Different Tillage Methods on Soil Erodibility
4.3. Mechanism of Tillage Measure’s Effect on the Erosive Soil Stability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, D.M.; Jin, H.F.; Jiang, G.Y. Degradation effect of soil erosion on tillage-layer quality of slope farmland and its evaluation trend. Trans. CSAE 2019, 35, 118–126. [Google Scholar]
- Xia, R.; Shi, D.; Ni, S.; Wang, R.; Zhang, J.; Song, G. Effects of soil erosion and soil amendment on soil aggregate stability in the cultivated-layer of sloping farmland in the Three Gorges Reservoir area. Soil Tillage Res. 2022, 223, 105447. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macro-aggregate turnover and micro-aggregate formation: A mechanism for C sequestra-tion under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Karami, A.; Homaee, M.; Afzalinia, S.; Ruhipour, H.; Basirat, S. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agric. Ecosyst. Environ. 2012, 148, 22–28. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. Eur. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Nsabimana, G.; Bao, Y.; He, X.; Nambajimana, J.D.D.; Yang, L.; Li, J.; Uwiringiyimana, E.; Nsengumuremyi, P.; Ntacyabukura, T. Soil aggregate stability response to hydraulic conditions in water level fluctuation zone of the Three Gorges Reservoir, China. Catena 2021, 204, 105387. [Google Scholar] [CrossRef]
- Abbas, F.; Zhu, Z.; An, S. Evaluating aggregate stability of soils under different plant species in Ziwuling Mountain area using three renowned methods. Catena 2021, 207, 105616. [Google Scholar] [CrossRef]
- Dimoyiannis, D. Wet aggregate stability as affected by excess carbonate and other soil properties. Land Degrad. Dev. 2012, 23, 450–455. [Google Scholar] [CrossRef]
- Jin, H.F.; Shi, D.M.; Zeng, X.Y.; Wang, S.S.; Lou, Y.B.; Duan, T. Soil-reinforcement mechanisms by the root system in bio-embankments of sloping farmland in the purple hilly area. China J. MT Sci. 2019, 16, 2285–2298. [Google Scholar] [CrossRef]
- Dou, Y.X.; Yang, Y.; An, S.S.; Zhu, Z.L. Effects of different vegetation restoration methods on soil aggregate stability and erodi-bility on the Loess Plateau, China. Catena 2020, 185, 104294. [Google Scholar] [CrossRef]
- Mosaddeghi, M.; Mahboubi, A.; Safadoust, A. Short-term effects of tillage and manure on some soil physical properties and maize root growth in a sandy loam soil in western Iran. Soil Tillage Res. 2009, 104, 173–179. [Google Scholar] [CrossRef]
- Schjønning, P.; Thomsen, I.K.; Petersen, S.O.; Kristensen, K.; Christensen, B.T. Relating soil microbial activity to water content and tillage-induced differences in soil structure. Geoderma 2011, 163, 256–264. [Google Scholar] [CrossRef]
- Portella, C.M.R.; Guimarães, M.D.F.; Feller, C.; de Batista Fonseca, I.C.; Filho, J.T. Soil aggregation under different management systems. Rev. Bras. Ciência Solo 2012, 36, 1868–1877. [Google Scholar] [CrossRef]
- Hajabbasi, M.; Hemmat, A. Tillage impacts on aggregate stability and crop productivity in a clay-loam soil in central Iran. Soil Tillage Res. 2000, 56, 205–212. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Wang, A.N.W.; Smucker, A.J.M.; Rivers, M.L. Long-term differences in tillage and land use affect intra-aggregate pore heterogeneity. Soil Sci. Soc. Am. J. 2011, 75, 1658–1666. [Google Scholar] [CrossRef]
- Peth, S.; Horn, R.; Beckmann, F.; Donath, T.; Fischer, J.; Smucker, A.J.M. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography. Soil Sci. Soc. Am. J. 2008, 72, 897–907. [Google Scholar] [CrossRef]
- Schlueter, S.; Grossmann, C.; Diel, J.; Wu, G.M.; Sabine, T.; Annette, D.; Jan, R. Long-term effects of conventional and reduced tillage on soil structure, soil ecological and soil hydraulic properties. Geoderma 2018, 332, 10–19. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Prakash, V.; Kundu, S.; Gupta, H. Effect of tillage and crop rotations on pore size distribution and soil hydraulic conductivity in sandy clay loam soil of the Indian Himalayas. Soil Tillage Res. 2006, 86, 129–140. [Google Scholar] [CrossRef]
- An, J.; Zhang, Y.; Yu, N. Quantifying the effect of soil physical properties on the compressive characteristics of two arable soils using uniaxial compression tests. Soil Tillage Res. 2015, 145, 216–223. [Google Scholar] [CrossRef]
- Bogunovic, I.; Bilandzija, D.; Andabaka, Z.; Stupic, D.; Comino, J.R.; Cacic, M.; Brezinscak, L.; Maletic, E.; Pereira, P. Soil compaction under different management practices in a Croatian vineyard. Arab. J. Geosci. 2017, 10, 340. [Google Scholar] [CrossRef]
- Ghadernejad, K.; Shahgholi, G.; Mardani, A.; Chiyaneh, H.G. Prediction effect of farmyard manure, multiple passes and moisture content on clay soil compaction using adaptive neuro-fuzzy inference system. J. Terramech. 2018, 77, 49–57. [Google Scholar] [CrossRef]
- Ekelöf, J.; Guamán, V.; Jensen, E.S.; Persson, P. Inter-Row Subsoiling and Irrigation Increase Starch Potato Yield, Phosphorus Use Efficiency and Quality Parameters. Potato Res. 2015, 58, 15–27. [Google Scholar] [CrossRef]
- Perfect, E.; Kay, B.D.; van Loon, W.K.P.; Sheard, R.W.; Pojasok, T. Rates of change in soil structural stability under forages and corn. Soil Sci. Soc. Am. J. 1990, 54, 179–186. [Google Scholar] [CrossRef]
- Howard, R.F.; Singer, M.J. Measuring forest soil bulk density using irregular hole, paraffin clod, and air permeability, Cali-fornia. Forest 1981, 2, 316–322. [Google Scholar]
- Bonsu, M.; Laryea, K.B. Scaling the saturated hydraulic conductivity of an Alfonso. Eur. J. Soil Sci. 1989, 40, 731–742. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Soil survey laboratory methods manual. In Soil Survey Investigations; Report No. 42; U.S. Department of Agriculture, National Resources Conservation Services, National Soil Survey Centre: Washington, DC, USA, 1996. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Shindo, H. Effects of different levels of compost application on amounts and distribution of organic nitrogen forms in soil particle size fractions subjected mainly to double cropping. Agric. Sci. 2014, 2, 213–219. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Series No. 9, Part 2; Soil Science Society of America, Inc.: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Lu, R.K. Soil Analytical Methods of Agronomic Chemical; China Agricultural Science and Technology Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Pi, H.; Huggins, D.R.; Sharratt, B. Dry aggregate stability of soils influenced by crop rotation, soil amendment, and tillage in the Columbia Plateau. Aeolian Res. 2019, 40, 65–73. [Google Scholar] [CrossRef]
- Leonard, A.L.; Catherine, M.W.; Takele, B.Z. Effect of subsoiling and injection of pelletized organic matter on soil quality and productivity. Can. J. Soil Sci. 2012, 92, 269–276. [Google Scholar]
- Meng, Q.; Sun, Y.; Zhao, J.; Zhou, L.; Ma, X.; Zhou, M.; Gao, W.; Wang, G. Distribution of carbon and nitrogen in water-stable aggregates and soil stability under long-term manure application in solonetzic soils of the Songnen plain, northeast China. J. Soils Sediments 2014, 14, 1041–1049. [Google Scholar] [CrossRef]
- Gizachew, T.G.; Thomas, K.; Lars, J.M.; Katrin, R.; Holger, K. Effects of loosening combined with straw incorporation into the upper subsoil on soil properties and crop yield in a three-year field experiment. Soil Tillage Res. 2022, 223, 105466. [Google Scholar]
- Filipe, B.K.; H´ector, M.; Patricia, L.F.; Matías, D.; Juan, G.; Lucas, G. Influence of edaphic and management factors on soils ag-gregates stability under no-tillage in Mollisols and Vertisols of the Pampa Region, Argentina. Soil Tillage Res. 2021, 209, 104901. [Google Scholar]
- Zhang, Y.; Dalal, R.C.; Bhattacharyya, R.; Meyer, G.; Wang, P.; Menzies, N.W.; Kopittke, P.M. Effect of long-term no-tillage and nitrogen fertilization on phosphorus distribution in bulk soil and aggregates of a Vertisol. Soil Tillage Res. 2020, 205, 104760. [Google Scholar] [CrossRef]
- Wang, X.; Qi, J.-Y.; Zhang, X.-Z.; Li, S.-S.; Virk, A.L.; Zhao, X.; Xiao, X.-P.; Zhang, H.-L. Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system. Soil Tillage Res. 2019, 194, 104339. [Google Scholar] [CrossRef]
- Wang, Y.X.; Chen, S.P.; Zhang, D.X.; Yang, L.; Cui, T.; Jing, H.R.; Li, Y.H. Effects of subsoiling depth, period interval and com-bined tillage practice on soil properties and yield in the Huang-Huai-Hai Plain, China. J. Integr. Agric. 2020, 19, 1596–1608. [Google Scholar] [CrossRef]
- Martin, H.T.; Egon, B.N.; Mathieu, L.; Ana, F.; Chris, K.; Marianne, Z.; Schjønninga, P. Sustainable soil manage-ment-Farmers’perspectives on subsoil compaction and the opportunities and barriers for intervention. IEEE Int. Conf. Smart Cloud 2018, 89, 427–437. [Google Scholar]
- Liu, K.; Han, T.; Huang, J.; Huang, Q.; Li, D.; Hu, Z.; Yu, X.; Muhammad, Q.; Ahmed, W.; Hu, H.; et al. Response of soil aggregate-associated potassium to long-term fertilization in red soil. Geoderma 2019, 352, 160–170. [Google Scholar] [CrossRef]
- Mao, X.; Van Zwieten, L.; Zhang, M.; Qiu, Z.; Yao, Y.; Wang, H. Soil parent material controls organic matter stocks and retention patterns in subtropical China. J. Soils Sediments 2020, 20, 2426–2438. [Google Scholar] [CrossRef]
- Pirmoradian, N.; Sepaskhah, A.R.; Hajabbasi, M.A. Application of Fractal Theory to quantify Soil Aggregate Stability as influenced by Tillage Treatments. Biosyst. Eng. 2005, 90, 227–234. [Google Scholar] [CrossRef]
- Tian, S.; Wang, Y.; Ning, T.; Li, N.; Zhao, H.; Wang, B.; Li, Z.; Chi, S. Continued No-Till and Subsoiling Improved Soil Organic Carbon and Soil Aggregation Levels. Agron. J. 2014, 106, 212–218. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Q.; Zhang, X.; Wei, K.; Chen, L.; Liang, W. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Tillage Res. 2012, 124, 196–202. [Google Scholar] [CrossRef]
- Gao, L.; Becker, E.; Liang, G.; Houssou, A.A.; Wu, H.; Wu, X.; Cai, D.; Degré, A. Effect of different tillage systems on aggregate structure and inner distribution of organic carbon. Geoderma 2017, 288, 97–104. [Google Scholar] [CrossRef]
- Quan, X.; He, J.; Cai, Q.; Sun, L.; Li, X.; Wang, S. Soil erosion and deposition characteristics of slope surfaces for two loess soils using indoor simulated rainfall experiment. Soil Tillage Res. 2020, 204, 104714. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Yan, H.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Bin Wang, B.; Bin Peng, B.; Guan, K.; Jaegermeyr, J.; et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef]
- Lipiec, J.; Kus, J.; Nosalewicz, A.; Turski, M. Tillage system effects on stability and sorptivity of soil aggregates. Int. Agrophys. 2006, 20, 189–193. [Google Scholar]
- Modaka, K.; Ghosh, A.; Bhattacharyya, R.; Biswas, D.R.; Das, T.K.; Das, S.; Singh, G. Response of oxidative stability of aggre-gate-associated soil organic carbon and deep soil carbon sequestration to zero-tillage in subtropical India. Soil Tillage Res. 2019, 195, 104370. [Google Scholar] [CrossRef]
- Mohammad, S.A.; Nicholas, M.H. Quantitative soil quality indexing of temperate arable management systems. Soil Tillage Res. 2015, 150, 57–67. [Google Scholar]
- Kuang, N.; Tan, D.; Li, H.; Gou, Q.; Li, Q.; Han, H. Effects of subsoiling before winter wheat on water consumption characteristics and yield of summer maize on the North China Plain. Agric. Water Manag. 2020, 227, 5786. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.-J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Schlüter, S.; Sammartino, S.; Koestel, J. Exploring the relationship between soil structure and soil functions via pore-scale imaging. Geoderma 2020, 370, 4370. [Google Scholar] [CrossRef]
- Meurer, K.; Barron, J.; Chenu, C.; Coucheney, E.; Fielding, M.; Hallett, P.; Herrmann, A.M.; Keller, T.; Koestel, J.; Larsbo, M.; et al. A framework for modelling soil structure dynamics in-duced by biological activity. Glob. Chang. Biol. 2020, 26, 5382–5403. [Google Scholar] [CrossRef]
- Miller, J.J.; Beasley, B.W.; Drury, C.F.; Larney, F.; Hao, X. Influence of long-term (9 yr) composted and stockpiled feedlot manure application on selected soil physical properties of a clay loam soil in Southern Alberta. Compos. Sci. Util. 2014, 23, 1–10. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Wang, R.; Zhang, Y.; Wang, X.; Li, J. Direct and indirect linkages between soil aggregates and soil bacterial communities under tillage methods. Geoderma 2019, 354, 113879. [Google Scholar] [CrossRef]
- Mikha, M.M.; Rice, C.W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Sci. Soc. Am. J. 2004, 68, 809–816. [Google Scholar] [CrossRef]
- Pinheiro, E.; Pereira, M.; Anjos, L. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil Tillage Res. 2004, 77, 79–84. [Google Scholar] [CrossRef]
- Luis, A.; Pires, B. Modelling the aggregate structure of a bulk soil to quantify fragmentation properties and energy demand of soil tillage tools in the formation of seedbeds. Biosyst. Eng. 2020, 197, 203–215. [Google Scholar]
Soil Layer (cm) | pH | Bulk Density (g/cm3) | Organic Matter (g/kg) | Clay (%) | Silt (%) | Sand (%) |
---|---|---|---|---|---|---|
0–10 | 4.76 | 1.20 | 15.34 | 42.34 | 41.35 | 16.31 |
10–20 | 4.69 | 1.29 | 14.71 | 40.36 | 43.3 | 16.34 |
20–30 | 4.79 | 1.39 | 12.36 | 41.51 | 42.55 | 15.94 |
30–40 | 4.81 | 1.37 | 8.3 | 41.1 | 43.12 | 15.78 |
Model | Code | Tillage Method |
---|---|---|
Conventional tillage | CT | Plowing at a depth of 20 cm followed by rotary tillage twice at a depth of 15 cm before planting crops. This is the common local tillage method. |
Compaction | CM | Following the same method as CT but with a tractor surface contact pressure of 100 kPa to thoroughly compact the sloping farmland to simulate the compaction of soil by large machinery. |
Subsoil tillage | ST | Plowing at a depth of 20 cm followed by subsoil tillage at a depth of 30 cm and then rotary tillage at a depth of 10 cm before planting crops. |
No tillage | NT | No tillage for the entire year. |
Subsoil tillage + compaction | SCM | Subsoil tillage followed by mechanical compaction (i.e., ST followed by CM). |
Indicators | Code | Method/Instrument | Reference |
---|---|---|---|
Bulk density/g·cm3 | BD | Paraffin method | [25] |
Saturated hydraulic conductivity/mm·min | SHC | Falling-head permeameter method | [26] |
Clay/% | Clay | Robinson pipette method | [27] |
Soil shearing Strength/kg·cm2 | SS | Field survey method/tri-head shear tester of 14.10 pocket vane tester, Netherlands (http://www.chem17.com/st6381/Product_17988874.html accessed on 16 April 2023) | [10] |
Soil compactness meter | SC | TJSD-750 soil compaction meter, Tuopu Instrument Factory in Hangzhou, Zhejiang Province, China (http://www.top17.net/product/1309.html accessed on 16 April 2023) | [10] |
Organic matter/g·kg | OM | Dichromate oxidation method | [28] |
pH value | pH | Potentiometric method (1:1 soil:water ratio) | [10] |
Total nitrogen/g·kg | TN | Kjeldahl method | [29] |
Available phosphorus/mg·kg | AP | Olsen method | [30] |
Available kalium/mg·kg | AK | lmol/LNH4Ac extraction-flame photometry | [31] |
Methods Type | Soil Layer (cm) | BD (g/cm3) | SHC (mm/min) | Clay (%) | OM (g/kg) | TN (g/kg) | AP (mg/kg) | AK (mg/kg) |
---|---|---|---|---|---|---|---|---|
CT (conventional tillage) | 0–10 | 1.22 ± 0.03 Dc | 6.81 ± 0.21 Aa | 17.60 ± 0.31 Ba | 13.61 ± 0.87 Aa | 0.96 ± 0.33 Ba | 63.79 ± 4.28 Ca | 360.33 ± 8.82 Ba |
10–20 | 1.43 ± 0.01 Aab | 1.26 ± 0.11 Cb | 14.20 ± 0.11 Bb | 11.77 ± 0.42 Bb | 0.87 ± 0.19 Ca | 50.44 ± 5.63 Bb | 290.12 ± 6.43 Ab | |
20–30 | 1.48 ± 0.03Aa | 0.60 ± 0.32 Bb | 10.40 ± 1.33 Bc | 11.78 ± 0.55 Ab | 0.76 ± 0.33 Cb | 33.74 ± 3.41 Bc | 120.05 ± 7.20 Bc | |
30–40 | 1.40 ± 0.04 ABb | 0.00 ± 0.00Bc | 9.00 ± 0.67 Ac | 8.35 ± 0.30 Ac | 0.76 ± 0.41 Ab | 23.41 ± 3.29 Ad | 94.87 ± 5.11 Bc | |
ST (subsoil tillage) | 0–10 | 1.23 ± 0.13 Dc | 7.48 ± 1.01 Aa | 24.80 ± 2.01 Aa | 15.62 ± 0.91 Aa | 1.03 ± 0.07 Aa | 89.37 ± 0.90 Aa | 460.06 ± 7.67 Aa |
10–20 | 1.28 ± 0.17 Bb | 5.90 ± 0.52 Ab | 16.20 ± 2.12 Ab | 13.22 ± 0.51 ABa | 1.02 ± 0.06 Ba | 71.93 ± 1.78 Ab | 310.12 ± 4.51 Ab | |
20–30 | 1.31 ± 0.03 Bb | 3.68 ± 0.23 Abc | 11.00 ± 1.78 Bc | 12.38 ± 0.57 Aab | 0.94 ± 0.41 Aa | 40.46 ± 3.44 Ac | 242.35 ± 1.60 Ac | |
30–40 | 1.47 ± 0.02 Aa | 0.35 ± 0.01 Ac | 8.60 ± 1.43 Bd | 10.67 ± 0.28 Ab | 0.72 ± 0.25 Ab | 24.15 ± 2.65 Ad | 300.09 ± 1.52 Ab | |
CM (compaction) | 0–10 | 1.47 ± 0.04 Aa | 2.98 ± 0.41 Ca | 21.80 ± 3.45 Aa | 12.37 ± 0.89 Ba | 0.87 ± 0.09 Cab | 39.05 ± 3.54 Ea | 150.64 ± 4.87 Ca |
10–20 | 1.44 ± 0.07 Aa | 3.21 ± 0.26 Ba | 13.00 ± 1.41 Bb | 12.16 ± 0.14 Ba | 0.94 ± 0.27 Ba | 28.58 ± 5.34 Db | 114.22 ± 5.02 Bb | |
20–30 | 1.40 ± 0.05 Aa | 0.00 ± 0.00 Cb | 6.60 ± 2.41 Cc | 10.10 ± 1.28 Bab | 0.87 ± 0.21 Bab | 19.12 ± 2.35 Cbc | 133.69 ± 4.31 Ba | |
30–40 | 1.36 ± 0.01 Bab | 0.00 ± 0.00 Bb | 7.00 ± 0.58 Bc | 4.56 ± 0.09 Cb | 0.55 ± 0.04 Cb | 11.87 ± 2.43 Bc | 108.36 ± 3.55 Bb | |
SCM (subsoil tillage + compaction) | 0–10 | 1.31 ± 0.01 Cb | 4.33 ± 0.15 Ba | 20.80 ± 0.74 Aa | 14.65 ± 0.22 Aa | 0.99 ± 0.31 Ba | 51.93 ± 3.29 Da | 330.21 ± 2.52 Ba |
10–20 | 1.42 ± 0.01 Aa | 2.64 ± 0.03 BCb | 18.40 ± 3.59 Aa | 14.36 ± 0.87 Aa | 0.97 ± 0.10 Ba | 40.86 ± 4.27 Cb | 129.25 ± 4.11 Bb | |
20–30 | 1.39 ± 0.03 Aa | 0.53 ± 0.19 Bbc | 14.60 ± 2.91 Ab | 9.50 ± 0.96 Bb | 0.71 ± 0.42 Cb | 35.22 ± 3.72 ABbc | 109.67 ± 0.98 Bb | |
30–40 | 1.36 ± 0.15 Ba | 0.00 ± 0.00 Bc | 9.60 ± 1.36 Ac | 6.13 ± 0.34 Bc | 0.64 ± 0.24 Bbc | 7.45 ± 4.26 BCc | 103.09 ± 2.32 Bb | |
NT (no tillage) | 0–10 | 1.37 ± 0.06 Ba | 3.98 ± 0.56 Ba | 17.20 ± 0.78 Ba | 16.89 ± 1.02 Aa | 1.24 ± 0.05 Aa | 71.25 ± 6.76 Ba | 430.25 ± 6.43 Aa |
10–20 | 1.41 ± 0.02 Aa | 2.87 ± 0.03 Bb | 16.80 ± 4.45 Aa | 15.61 ± 0.57 Aa | 1.04 ± 0.25 Ab | 41.06 ± 5.29 Cb | 230.28 ± 2.56 Bb | |
20–30 | 1.36 ± 0.11 Aa | 0.00 ± 0.00 Cc | 13.80 ± 2.03 Ab | 10.53 ± 0.44 ABb | 0.75 ± 0.03 Cc | 32.81 ± 3.64 Bc | 110.87 ± 0.43 Cc | |
30–40 | 1.26 ± 0.02 Cb | 0.00 ± 0.00 Bc | 10.60 ± 0.84 Ac | 6.30 ± 0.31 Bc | 0.66 ± 0.41 Bcd | 10.67 ± 2.73 Bd | 85.32 ± 0.45 Cc |
Characteristic Parameter | Soil Layer (cm) | CT | CM | ST | NT | SCM |
---|---|---|---|---|---|---|
CS | 0–10 | −0.82 | −0.94 | −1.03 | −0.73 | −0.92 |
10–20 | −0.80 | −0.50 | −0.92 | −0.38 | 0.11 | |
20–30 | −0.47 | −0.39 | −0.88 | −0.05 | −0.67 | |
30–40 | −0.82 | −0.28 | −0.61 | −0.55 | −0.77 | |
Range ability | 0.24 | 0.55 | 0.21 | 0.68 | 0.82 | |
CE | 0–10 | −1.63 | −1.72 | −1.70 | −1.63 | −1.64 |
10–20 | −1.69 | −1.63 | −1.69 | −1.70 | −1.68 | |
20–30 | −1.66 | −1.55 | −1.62 | −1.62 | −1.62 | |
30–40 | −1.54 | −1.64 | −1.66 | −1.57 | −1.67 | |
Range ability. | −0.04 | −0.04 | −0.02 | −0.03 | −0.02 |
Indicators | BD | SHC | Clay | OM | TN | AP | AK |
---|---|---|---|---|---|---|---|
FDA | 0.001 | 0.339 | −0.26 | −0.425 * | −0.149 | 0.291 | 0.319 |
RSD | −0.533 ** | 0.386 | −0.069 | 0.603 ** | −0.039 | 0.439 | 0.509 * |
ASI | 0.032 | −0.287 | 0.15 | 0.591 ** | 0.002 | −0.489 * | −0.565 ** |
SS | 0.660 ** | −0.692 ** | −0.262 | −0.176 | −0.176 | −0.231 | −0.597 ** |
SC | 0.819 ** | −0.546 * | −0.101 | −0.275 | −0.301 | −0.397 | −0.746 ** |
K | 0.163 | 0.069 | −0.665 ** | −0.074 | −0.134 | 0.204 | 0.179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Huang, S.; Shi, D.; Li, J.; Li, J.; Li, Y.; Zhu, H. Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China. Agronomy 2023, 13, 1310. https://doi.org/10.3390/agronomy13051310
Jin H, Huang S, Shi D, Li J, Li J, Li Y, Zhu H. Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China. Agronomy. 2023; 13(5):1310. https://doi.org/10.3390/agronomy13051310
Chicago/Turabian StyleJin, Huifang, Shangshu Huang, Dongmei Shi, Junkai Li, Jifu Li, Yanli Li, and Hai Zhu. 2023. "Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China" Agronomy 13, no. 5: 1310. https://doi.org/10.3390/agronomy13051310
APA StyleJin, H., Huang, S., Shi, D., Li, J., Li, J., Li, Y., & Zhu, H. (2023). Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China. Agronomy, 13(5), 1310. https://doi.org/10.3390/agronomy13051310