Preharvest Treatments with Low-Risk Plant Protection Products Can Help Apple Growers Fulfill the Demands of Supermarket Chains Regarding Pesticide Residues and Marketing Apples under 0-Residue Brands
Abstract
:1. Introduction
- (a)
- The fruit should not contain more than 3–5 residues of pesticide a.s. detected at a level higher than 0.01 mgkg−1. Some ESCs started to implement a limit of 0.005 mg kg−1 for counting the number of allowed found residues (=No. a.s.);
- (b)
- The concentration of each a.s. may not exceed 33–70% of its MRL (=% MRL);
- (c)
- The cumulative sum of the MRL % values of all found a.s. should not exceed the sum 60–80% (=∑% MRL of all detected a.s. together);
- (d)
- The concentration of each a.s. should not exceed 50–80% of its ARFD (=% ARFD);
- (e)
- The cumulative sum of the ARFD % values of all found a.s. should not exceed the sum 60–80% (=∑% ARFD of all detected a.s. together).
2. Materials and Methods
2.1. Preparations Used to Speed Up the Disintegration of Pesticide Residues on Apples
2.2. Apple Orchard, Application of Pesticides, and Tested Plant Protection Products
2.3. Analysis of Pesticide Residues and Data on MRL and ARFD Indicators
2.4. Trial Design and Statistical Methods
3. Results
3.1. Reduction of Residue Concentration in Apples Treated with Different Alternative Products Sprayed Four Times Preharvest
3.2. Effects of Tested Preparations on Pesticide Residue Related ESC Fruit Quality Requirements
4. Discussion
4.1. Discussion on Effects of Applied Preparations on Pesticide Residue Concentration
4.2. Discussion about Residue Related Fruit Quality Parameters with Respect to Supermarket Chain Demands
4.3. Discussion about the Feasibility of Our Residue Removal Approach
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabrera, L.C.; Pastor, P.M. The 2020 European Union report on pesticide residues in Food. EFSA J. 2022, 20, 2–57. [Google Scholar] [CrossRef]
- Boccaletti, S.; Nardella, M. Consumer willingness to pay for pesticide-free fresh fruit and vegetables in Italy. Int. Food Agribus. Manag. Rev. 2000, 3, 297–310. [Google Scholar] [CrossRef]
- Buzby, J.C.; Skees, J.R. Consumers want reduced exposure to pesticides on food. Charting the Costs of Food Safety. Food Rev. 1994, 202, 19–22. [Google Scholar] [CrossRef]
- EU Pesticide Data Base 2022. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed on 15 February 2023).
- The Expert Committee on Pesticide Residues in Food (PRiF) Annual Report 2020. Department for Environment, Food and Rural Affairs, 2020. Available online: https://www.gov.uk/government/publications/expert-committee-on-pesticide-residues-in-food-prif-annual-report (accessed on 20 February 2023).
- Apple Best Practice Guide. Agriculture and Horticulture Development Board: Kenilworth, UK, 2022. Available online: https://apples.ahdb.org.uk/zero-residue-production/ (accessed on 18 February 2023).
- CleanFruit–Standardisation of Innovative Pest Control Strategies to Produce Zero Residue Fruit for Baby Food and Other Fruit Produce. EIT Food: Leuven, Belgium, 2022. Available online: https://www.eitfood.eu/innovation/projects/cleanfruit/ (accessed on 18 February 2023).
- Damos, P.; Escudero Colomar, L.A.; Ioriatti, C. Integrated Fruit Production and Pest Management in Europe: The Apple Case Study and How Far We Are From the Original Concept? Insects 2015, 6, 626–657. [Google Scholar] [CrossRef]
- Mathis, M.; Blom, J.F.; Nemecek, T.; Bravin, E.; Jeanneret, P.; Daniel, O.; De Baan, L. Comparison of exemplary crop protection strategies in Swiss apple production: Multi-criteria assessment of pesticide use, ecotoxicological risks, environmental and economic impacts. Sustain. Prod. Consum. 2022, 31, 512–528. [Google Scholar] [CrossRef]
- EFSA 2016 European Union Report on Pesticide. 2018. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/5348 (accessed on 18 February 2023).
- EFSA National Summary Reports on Pesticide Residue Analysis Performed in 2017. 2019. Available online: https://www.efsa.europa.eu/en/supporting/pub/en-6487 (accessed on 18 February 2023).
- Bhilwadikar, T.; Pounraj, S.; Manivannan, S.; Rastogi, N.K.; Negi, P.S. Decontamination of Microorganisms and Pesticides from Fresh Fruits and Vegetables: A Comprehensive Review from Common Household Processes to Modern Techniques. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1003–1038. [Google Scholar] [CrossRef] [PubMed]
- Higa, T.; Parr, J.F. Beneficial and Effective Microorganisms for a Sustainable Agriculture and Environment; International Nature Farming Research Center: Atami, Japan, 1994; Available online: https://www.the-compost-gardener.com/support-files/em-1-higa-paper.pdf (accessed on 18 February 2023).
- Zakaria, Z.; Gairola, S.; Shariff, N.M. Effective Microorganisms (EM) Technology for Water Quality Restoration and Potential for Sustainable Water Resources and Management. In Proceedings of the 2010 International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, ON, Canada, 5–8 July 2010; Available online: https://www.researchgate.net/publication/232805617_Effective_Microorganisms_EM_Technology_for_Water_Quality_Restoration_and_Potential_for_Sustainable_Water_Resources_and_Management (accessed on 18 February 2023).
- Institut Dr. Wagner. Parkring 2, A-8403 Lebring, Austria. Available online: https://institut-wagner.at/ (accessed on 4 April 2023).
- EFSA Technical Report; Pesticide Residue Intake Model-EFSA PRIMo Revision 3.1. 2019. Available online: https://www.efsa.europa.eu/en/supporting/pub/en-1605 (accessed on 18 February 2023).
- Ioannidou, S.; Cascio, C.; Gilsenan, M.B. European Food Safety Authority open access tools to estimate dietary exposure to food chemicals. Environ. Int. 2021, 149, 106357. [Google Scholar] [CrossRef]
- Warton, D.I.; Hui, F.K. The arcsine is asinine: The analysis of proportions in ecology. Ecology 2011, 92, 3–10. [Google Scholar] [CrossRef]
- Lysimachou, A. Business as Usual for Pesticide Cocktails in EU Food. Pesticide Action Network Europe-LIFE. 2020. Available online: https://www.pan-europe.info (accessed on 2 March 2023).
- Roynel, S. How to Best Address Cocktails Effects in the Pesticide Legislation? Towards the Implementation of a Mixture Assessment Factor (MAF): PAN Europe’s Position Paper. 2021. Available online: https://www.pan-europe.info/sites/pan-europe.info/files/public/resources/briefings/CRA_Towards%20the%20implementation%20of%20a%20MAF.pdf (accessed on 2 March 2023).
- Romanazzi, G.; Orçonneau, Y.; Moumni, M.; Davillerd, Y.; Marchand, P.A. Basic Substances, a Sustainable Tool to Complement and Eventually Replace Synthetic Pesticides in the Management of Pre and Postharvest Diseases: Reviewed Instructions for Users. Molecules 2022, 27, 3584. [Google Scholar] [CrossRef]
- Đorđević, T.; Đurović-Pejčev, R. Food processing as a means for pesticide residue dissipation. Pestic. Phytomed. 2016, 31, 89–105. [Google Scholar] [CrossRef]
- Kaushik, G.; Satya, S.; Naik, S.N. Food processing a tool to pesticide residue dissipation—A review. Food Res. Int. 2009, 42, 26–40. [Google Scholar] [CrossRef]
- Łozowicka, B.; Jankowska, M. Comparison of the effects of water and thermal processing on pesticide removal in selected fruit and vegetables. J. Elem. 2016, 21, 1. [Google Scholar] [CrossRef]
- Natividad, M.; Ormad, M.P.; Mosteo, R.; Ovelleiro, J.L. Photocatalytic Degradation of Pesticides in Natural Water: Effect of Hydrogen Peroxide. Int. J. Phot. 2012, 7, 1–11. [Google Scholar] [CrossRef]
- Skanes, B.; Ho, J.; Warriner, K.; Prosser, R.S. Degradation of boscalid, pyraclostrobin, fenbuconazole, and glyphosate residues by an advanced oxidative process utilizing ultraviolet light and hydrogen peroxide. J. Photochem. Photobiol. 2021, 418, 113382. [Google Scholar] [CrossRef]
- Steinborn, A.; Alder, L.; Spitzke, M.; Dork, D.; Anastassiades, M. Development of a QuEChERS-Based Method for the Simultaneous Determination of Acidic Pesticides, Their Esters, and Conjugates Following Alkaline Hydrolysis. J. Agric. Food. Chem. 2017, 65, 1296–1305. [Google Scholar] [CrossRef]
- Wu, Y.; An, Q.; Li, D.; Wu, J.; Pan, C. Comparison of Different Home/Commercial Washing Strategies for Ten Typical Pesticide Residue Removal Effects in Kumquat, Spinach and Cucumber. Int. J. Environ. Res. 2019, 16, 472. [Google Scholar] [CrossRef]
- Yang, T.; Doherty, J.; Zhao, B.; Kinchla, A.J.; Clark, J.M.; He, L. Effectiveness of Commercial and Homemade Washing Agents in Removing Pesticide Residues on and in Apples. J. Agric. Food. Chem. 2017, 65, 9744–9752. [Google Scholar] [CrossRef]
- Idi, A.; Md Nor, M.H.; Wahab, M.F.A.; Ibrahim, Z. Photosynthetic bacteria: An eco-friendly and cheap tool for bioremediation. Rev. Environ. Sci. Biotechnol. 2015, 14, 271–285. [Google Scholar] [CrossRef]
- Podbielska, M.; Książek, P.; Szpyrka, E. Dissipation kinetics and biological degradation by yeast and dietary risk assessment of fluxapyroxad in apples. Sci. Rep. 2020, 10, 21212. [Google Scholar] [CrossRef]
- Szpyrka, E.; Matyaszek, A.; Słowik-Borowiec, M. Dissipation of chlorantraniliprole, chlorpyrifos-methyl and indoxacarb—Insecticides used to control codling moth (Cydia pomonella L.) and leafrollers (Tortricidae) in apples for production of baby food. Environ. Sci. Pollut. Res. 2017, 24, 12128–12135. [Google Scholar] [CrossRef]
- Sadło, S.; Walorczy, S.; Grodzicki, P.; Piechowicz, B. Usage of the relationship between the application rates of the active ingredient of fungicides and their residue levels in mature apples to creating a coherent system of MRLs. J. Plant. Dis. Prot. 2016, 123, 101–108. [Google Scholar] [CrossRef]
- Sadło, S.; Grodzicki, P.; Piechowicz, B. Dissipation of captan, boscalid and trifloxystrobin residues in apples of four varieties within 2 months before their harvest. J. Plant. Dis. Prot. 2017, 124, 177–184. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, X.; Liu, F.; Pan, C. Residue Distribution, Dissipation Behavior, and Removal of Four Fungicide Residues on Harvested Apple after Waxing Treatment. J. Agric. Food. Chem. 2019, 67, 2307–2312. [Google Scholar] [CrossRef]
- Ticha, J.; Hajslova, J.; Jech, M.; Honzicek, J.; Lacina, O.; Kohoutkova, J.; Kocourek, V.; Lansky, M.; Kloutvorova, J.; Falta, V. Changes of pesticide residues in apples during cold storage. Food Control 2007, 19, 247–256. [Google Scholar] [CrossRef]
- Riccio, R.; Trevisan, M.; Capri, E. Effect of surface waxes on the persistence of chlorpyrifos-methyl in apples, strawberries and grapefruits. Food. Addit. Contam. 2006, 23, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhao, B.; Hou, R.; Zhang, Z.; Kinchla, A.J.; Clark, J.M.; He, L. Evaluation of the Penetration of Multiple Classes of Pesticides in Fresh Produce Using Surface-Enhanced Raman Scattering Mapping. J. Food. Sci. 2016, 81, 2891–2901. [Google Scholar] [CrossRef] [PubMed]
- Zarebska, M.; Hordyjewicz-Baran, Z.; Wasilewski, T.; Zajszły-Turko, E.; Stanek, N. A New LC-MS Method for Evaluating the Efficacy of Pesticide Residue Removal from Fruit Surfaces by Washing Agents. Processes 2022, 4, 793. [Google Scholar] [CrossRef]
- Curkovic, T.S. Detergents and Soaps as Tools for IPM in Agriculture. Integrated Pest Management (IPM). 2016. Available online: https://www.intechopen.com/chapters/51590 (accessed on 22 February 2023).
- Berrie, A. The Zero Residue Management System for Apples. Horticulture Development Company: Kenilworth, UK, 2011. Project Publication. Available online: https://projectblue.blob.core.windows.net/media/Default/Horticulture/Publications/The%20zero%20residue%20management%20system%20for%20apples.pdf (accessed on 22 February 2023).
- Rozman, Č.; Unuk, T.; Pažek, K.; Lešnik, M.; Prišenk, J.; Vogrin, A.; Tojnko, S. Multi Criteria Assessment of Zero Residue Apple Production. Erwerbs Obstbau 2013, 55, 51–62. [Google Scholar] [CrossRef]
- Gölles, M.; Bravin, E.; Naef, A. Evaluation of the low-residue apple crop protection. Acta Hortic. 2015, 1105, 341–346. [Google Scholar] [CrossRef]
- U.S. Drug and Food Administration, GRAS Products. Generally Recognized as Safe. 2022. Available online: https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras (accessed on 22 February 2023).
- EFSA Conclusion on Pesticides Peer Review, Peer Review of the Pesticide Risk Assessment of the Active Substance Potassium Hydrogen Carbonate, Report. 2021. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/6593 (accessed on 18 February 2023).
- Oliveira, L.; Eça, K.; Aquino, A.; Vasconcelos, L. Hydrogen Peroxide (H2O2) for Postharvest Fruit and Vegetable; Postharvest Disinfection of Fruits and Vegetables; Academic Press: Cambridge, MA, USA, 2018; pp. 91–99. [Google Scholar] [CrossRef]
- Mahajan, P.V.; Caleb, O.J.; Singh, Z.; Watkins, C.B.; Geyer, M. Postharvest treatments of fresh produce. Philos. Trans. A Math. Phys. Eng. Sci. 2017, 13, 372. [Google Scholar] [CrossRef]
- Deising, H.B.; Gase, I.; Kubo, Y. The unpredictable risk imposed by microbial secondary metabolites: How safe is biological control of plant diseases? J. Plant Dis. Prot. 2017, 124, 413–419. [Google Scholar] [CrossRef]
- Deising, H.B. Revisiting wishful thinking: The need of molecular tools to accurately assess the risks associated with microbial biocontrol agents. J. Plant Dis. Prot. 2018, 125, 131–132. [Google Scholar] [CrossRef]
- Bunyavanich, S.; Berin, M.C. Food allergy and the microbiome: Current understandings and future directions. J Allergy Clin Immunol 2019, 144, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Alabouvette, C.; Cordier, C. Risks of Microbial Biocontrol Agents and Regulation: Are They in Balance? Regulation of Biological Control Agents; Springer Science and Business Media B.V.: Dordrecht, The Netherlands, 2011; pp. 157–173. [Google Scholar] [CrossRef]
- Tamura, H.; Knoche, M.; Bukovac, M.J. Evidence for surfactant solubilization of plant epicuticular wax. J. Agric. Food Chem. 2001, 49, 1809–1816. [Google Scholar] [CrossRef] [PubMed]
Formulation | Active Substance | Application Date | ADT (°C) | CP (mm) | NDAH (day) | ||||
---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||
Affirm (1) | Emamectin | 27. 7. | 28. 7. | 20.4 | 20.8 | 161 | 102 | 49 | 50 |
Bellis (3) | Boscalid | 28. 6. | 1. 7. | 20.8 | 20.5 | 239 | 245 | 78 | 77 |
Coragen (5) | Chlorantraniliprole | 28. 6. | 1. 7. | 20.8 | 20.5 | 239 | 245 | 78 | 77 |
Delan (3) | Dithianon | 31. 5. | 28. 3. | 21.1 | 17.4 | 327 | 461 | 106 | 172 |
Delegate (6) | Spinetoram | 18. 7. | 19. 7. | 20.9 | 20.8 | 176 | 140 | 58 | 59 |
Dithane (6) | Mancozeb | 12. 4. | 17. 4. | 18.3 | 18.4 | 506 | 447 | 155 | 152 |
Envidor (2) | Spirodiclofen | 13. 5. | 15. 5. | 19.9 | 19.4 | 438 | 382 | 124 | 124 |
Faban (3) | Dithianon + | 13. 5. | 15. 5. | 19.9 | 19.4 | 438 | 382 | 124 | 124 |
Pyrimethanil | |||||||||
Geoxe (1) | Fludioxonil | 31. 8. | 1. 9. | 17.2 | 18.3 | 51 | 11 | 14 | 15 |
Imidan (6) | Phosmet | 26. 5. | 25. 5. | 20.8 | 19.7 | 405 | 351 | 111 | 114 |
Laser (8) | Spinosad | 28. 6. | 1. 7. | 20.8 | 20.5 | 239 | 245 | 78 | 77 |
Luna (2) | Fluopyram + | 21. 6. | 19. 6. | 20.9 | 20.5 | 313 | 281 | 85 | 89 |
Tebuconazole | |||||||||
Merpan (6) | Captan | 7. 9. | 9. 9. | 15.5 | 19.5 | 24 | 0 | 7 | 7 |
Mospilan (2) | Acetamprid | 27. 4. | 27. 4. | 19.0 | 18.7 | 493 | 430 | 140 | 142 |
Movento (2) | Spirotetramat | 31. 5. | 30. 5. | 21.1 | 19.9 | 327 | 348 | 106 | 109 |
Nativo (2) | Trifloxystrobin + | 13. 6. | 12. 6. | 21.1 | 20.4 | 324 | 321 | 93 | 96 |
Tebuconazole | |||||||||
Ovitex (4) | Oil | 16. 3. | 20. 3. | 17.0 | 16.8 | 620 | 468 | 182 | 180 |
Penncozeb (9) | Propineb | 16. 3. | 20. 3. | 17.0 | 16.8 | 620 | 468 | 182 | 180 |
Pirimor (6) | Pirimicarb | 13. 6. | 12. 6. | 21.1 | 20.4 | 324 | 321 | 93 | 96 |
Score (1) | Difenoconazole | 17. 5. | 25. 5. | 20.3 | 19.7 | 408 | 351 | 120 | 114 |
Sercadis (3) | Fluxapyroxad + | 5. 6. | 4. 6. | 21.2 | 20.1 | 325 | 344 | 101 | 104 |
Difenconazole | |||||||||
Sivanto (2) | Flupiradifuron | 5. 6. | 4. 6. | 21.2 | 20.1 | 325 | 344 | 101 | 104 |
Stroby (3) | Krezoxym-methyl | 17. 5. | 20. 5. | 20.3 | 19.6 | 408 | 361 | 120 | 119 |
Syllit (7) | Dodin | 26. 5. | 25. 5. | 20.8 | 19.7 | 405 | 351 | 111 | 114 |
Teppeki (4) | Flonicamid | 12. 4. | 17. 4. | 18.3 | 18.4 | 506 | 477 | 155 | 152 |
Tercel (3) | Dithianon + | 10. 5. | 10. 5. | 19.8 | 19.2 | 441 | 398 | 127 | 129 |
Pyraclostrobin | |||||||||
Topas (1) | Penconazole | 26.4. | 10. 4. | 18.9 | 18.1 | 493 | 456 | 141 | 159 |
Active Substance: | Season 2019 | Season 2020 | ||||
---|---|---|---|---|---|---|
Control C | Treated T | RR% | Control C | Treated T | RR% | |
Acetamprid | 0.012 ± 0.001 a | 0.011 ± 0.000 a | 5.7 | 0.025 ± 0.010 a | 0.021 ± 0.011 a | 16.4 |
Boscalid | 0.037 ± 0.002 a | 0.023 ± 0.006 b | 37.8 | 0.042 ± 0.010 a | 0.014 ± 0.002 b | 67.7 |
Captan | 0.209 ± 0.022 a | 0.071 ± 0.042 b | 65.9 | 0.293 ± 0.067 a | 0.054 ± 0.031 b | 81.7 |
Chlorantraniliprole | 0.040 ± 0.019 a | 0.013 ± 0.003 a | 68.2 | 0.030 ± 0.015 a | 0.010 ± 0.000 a | 68.1 |
Difenconazole | 0.007 ± 0.001 a | 0.003 ± 0.000 b | 57.1 | 0.012 ± 0.002 a | 0.006 ± 0.001 b | 52.8 |
Dithianon | 0.208 ± 0.037 a | 0.050 ± 0.016 b | 76.0 | 0.253 ± 0.078 a | 0.099 ± 0.015 b | 61.1 |
Dodine | 0.022 ± 0.004 a | 0.008 ± 0.001 b | 62.6 | 0.060 ± 0.019 a | 0.009 ± 0.001 b | 85.4 |
Emamectin | 0.006 ± 0.001 a | 0.003 ± 0.002 a | 54.7 | 0.007 ± 0.001 a | 0.001 ± 0.001 b | 80.9 |
Flonicamid | 0.004 ± 0.002 a | 0.005 ± 0.001 a | −7.7 | 0.012 ± 0.000 a | 0.004 ± 0.001 b | 68.6 |
Fludioxonil | 0.061 ± 0.008 a | 0.025 ± 0.005 b | 58.8 | 0.103 ± 0.027 a | 0.007 ± 0.003 b | 92.8 |
Fluopyram | 0.024 ± 0.004 a | 0.012 ± 0.001 b | 47.9 | 0.048 ± 0.006 a | 0.025 ± 0.008 b | 48.2 |
Flupyradifurone | 0.014 ± 0.006 a | 0.006 ± 0.002 a | 58.1 | 0.018 ± 0.005 a | 0.007 ± 0.001 b | 63.5 |
Fluxapiroxad | 0.029 ± 0.002 a | 0.026 ± 0.005 a | 10.4 | 0.034 ± 0.002 a | 0.022 ± 0.003 b | 35.6 |
Kresoxim-Methyl | 0.004 ± 0.001 a | 0.004 ± 0.001 a | 0.0 | 0.009 ± 0.002 a | 0.003 ± 0.001 b | 71.4 |
Mancozeb | 0.040 ± 0.008 a | 0.025 ± 0.010 a | 38.8 | 0.070 ± 0.022 a | 0.010 ± 0.001 b | 86.2 |
Phosmet | 0.009 ± 0.001 a | 0.004 ± 0.002 b | 50.0 | 0.011 ± 0.003 a | 0.001 ± 0.001 b | 87.3 |
Pyraclostrobin | 0.028 ± 0.011 a | 0.012 ± 0.004 a | 55.9 | 0.044 ± 0.017 a | 0.009 ± 0.000 b | 79.4 |
Pirimicarb | 0.012 ± 0.001 a | 0.007 ± 0.002 b | 44.4 | 0.024 ± 0.007 a | 0.008 ± 0.003 b | 67.9 |
Pyrimethanil | 0.009 ± 0.001 a | 0.010 ± 0.004 a | −7.4 | 0.039 ± 0.010 a | 0.038 ± 0.012 a | 2.5 |
Spinosad | 0.006 ± 0.001 a | 0.002 ± 0.001 b | 69.4 | 0.008 ± 0.002 a | 0.000 ± 0.000 b | 100.0 |
Spinetoram | 0.006 ± 0.001 a | 0.001 ± 0.001 b | 82.3 | 0.012 ± 0.004 a | 0.000 ± 0.000 b | 100.0 |
Spirodiclofen | 0.040 ± 0.018 a | 0.012 ± 0.002 a | 70.6 | 0.060 ± 0.011 a | 0.023 ± 0.005 b | 60.9 |
Spirotetramat | 0.011 ± 0.001 a | 0.007 ± 0.002 a | 39.4 | 0.025 ± 0.002 a | 0.016 ± 0.004 b | 38.2 |
Tebuconazole | 0.026 ± 0.010 a | 0.013 ± 0.002 a | 50.6 | 0.033 ± 0.006 a | 0.020 ± 0.002 b | 38.8 |
Thiacloprid | 0.006 ± 0.001 a | 0.007 ± 0.000 a | −15.8 | 0.017 ± 0.001 a | 0.015 ± 0.002 a | 15.9 |
Trifloxystrobin Avg. %RRa Avg. %RRb | 0.019 ± 0.006 a | 0.008 ± 0.003 a | 56.8 43.5 50.5 | 0.021 ± 0.003 a | 0.011 ± 0.001 b | 46.0 62.2 62.2 |
Active Substance: | Season 2019 | Season 2020 | ||||
---|---|---|---|---|---|---|
Control C | Treated T | RR | Control C | Treated T | RR | |
Acetamprid | 0.012 ± 0.001 a | 0.014 ± 0.001 a | −17.1 | 0.025 ± 0.010 a | 0.055 ± 0.002 b | −121.6 |
Boscalid | 0.037 ± 0.002 a | 0.038 ± 0.004 a | −2.7 | 0.042 ± 0.010 a | 0.033 ± 0.002 a | 22.0 |
Captan | 0.209 ± 0.022 a | 0.071 ± 0.012 b | 66.0 | 0.293 ± 0.067 a | 0.036 ± 0.008 b | 87.6 |
Chlorantraniliprole | 0.040 ± 0.019 a | 0.016 ± 0.001 a | 59.0 | 0.030 ± 0.015 a | 0.027 ± 0.011 a | 8.0 |
Difenconazole | 0.007 ± 0.001 a | 0.006 ± 0.001 a | 14.3 | 0.012 ± 0.002 a | 0.011 ± 0.001 a | 5.6 |
Dithianon | 0.208 ± 0.037 a | 0.050 ± 0.016 b | 76.0 | 0.253 ± 0.078 a | 0.072 ± 0.004 b | 71.7 |
Dodine | 0.022 ± 0.004 a | 0.015 ± 0.005 a | 31.8 | 0.060 ± 0.019 a | 0.031 ± 0.013 a | 47.9 |
Emamectin | 0.006 ± 0.001 a | 0.003 ± 0.002 a | 54.7 | 0.007 ± 0.001 a | 0.000 ± 0.000 b | 100.0 |
Flonicamid | 0.004 ± 0.002 a | 0.008 ± 0.002 a | −84.6 | 0.012 ± 0.000 a | 0.010 ± 0.002 a | 11.4 |
Fludioxonil | 0.061 ± 0.008 a | 0.039 ± 0.002 a | 36.0 | 0.103 ± 0.027 a | 0.045 ± 0.005 b | 56.2 |
Fluopyram | 0.024 ± 0.004 a | 0.023 ± 0.002 a | 4.2 | 0.048 ± 0.006 a | 0.039 ± 0.010 a | 19.3 |
Flupyradifurone | 0.014 ± 0.006 a | 0.004 ± 0.002 a | 58.1 | 0.018 ± 0.005 a | 0.009 ± 0.003 a | 48.7 |
Fluxapiroxad | 0.029 ± 0.002 a | 0.020 ± 0.003 b | 29.7 | 0.034 ± 0.002 a | 0.022 ± 0.000 b | 35.6 |
Kresoxim-methyl | 0.004 ± 0.001 a | 0.006 ± 0.002 a | −58.3 | 0.009 ± 0.001 a | 0.006 ± 0.002 a | 39.3 |
Mancozeb | 0.040 ± 0.008 a | 0.035 ± 0.006 a | 14.0 | 0.070 ± 0.022 a | 0.045 ± 0.017 a | 35.2 |
Phosmet | 0.009 ± 0.001 a | 0.004 ± 0.002 b | 50.0 | 0.011 ± 0.003 a | 0.001 ± 0.001 b | 90.5 |
Pyraclostrobin | 0.028 ± 0.011 a | 0.012 ± 0.004 a | 55.9 | 0.044 ± 0.017 a | 0.013 ± 0.003 a | 70.2 |
Pirimicarb | 0.012 ± 0.001 a | 0.008 ± 0.003 a | 30.6 | 0.024 ± 0.007 a | 0.012 ± 0.002 a | 51.4 |
Pyrimethanil | 0.009 ± 0.001 a | 0.010 ± 0.004 a | −7.4 | 0.039 ± 0.010 a | 0.054 ± 0.005 a | −37.3 |
Spinosad | 0.006 ± 0.001 a | 0.003 ± 0.000 b | 52.5 | 0.008 ± 0.002 a | 0.002 ± 0.001 b | 78.3 |
Spinetoram | 0.006 ± 0.001 a | 0.003 ± 0.001 b | 43.8 | 0.012 ± 0.004 a | 0.004 ± 0.002 a | 63.9 |
Spirodiclofen | 0.040 ± 0.018 a | 0.011 ± 0.001 a | 73.1 | 0.060 ± 0.011 a | 0.037 ± 0.007 a | 37.7 |
Spirotetramat | 0.011 ± 0.001 a | 0.014 ± 0.002 a | −27.3 | 0.025 ± 0.002 a | 0.020 ± 0.002 b | 22.4 |
Tebuconazole | 0.026 ± 0.010 a | 0.011 ± 0.000 a | 57.1 | 0.033 ± 0.006 a | 0.023 ± 0.006 a | 39.6 |
Thiacloprid | 0.006 ± 0.001 a | 0.008 ± 0.000 a | −21.1 | 0.017 ± 0.001 a | 0.016 ± 0.001 a | 9.6 |
Trifloxystrobin | 0.019 ± 0.006 a | 0.010 ± 0.004 a | 47.7 | 0.021 ± 0.003 a | 0.012 ± 0.002 b | 40.3 |
Avg. %RRa | 24.5 | 35.9 | ||||
Avg. %RRb | 44.9 | 45.5 |
Active Substance: | Season 2019 | Season 2020 | ||||
---|---|---|---|---|---|---|
Control C | Treated T | RR | Control C | Treated T | RR | |
Acetamprid | 0.012 ± 0.001 a | 0.008 ± 0.000 b | 27.7 | 0.025 ± 0.010 a | 0.021 ± 0.002 a | 13.1 |
Boscalid | 0.037 ± 0.002 a | 0.017 ± 0.002 b | 53.4 | 0.042 ± 0.010 a | 0.028 ± 0.006 a | 33.6 |
Captan | 0.209 ± 0.022 a | 0.167 ± 0.016 a | 20.1 | 0.293 ± 0.067 a | 0.185 ± 0.006 a | 36.8 |
Chlorantraniliprole | 0.040 ± 0.019 a | 0.018 ± 0.003 a | 54.8 | 0.030 ± 0.015 a | 0.015 ± 0.001 a | 50.1 |
Difenconazole | 0.007 ± 0.001 a | 0.007 ± 0.002 a | 0.0 | 0.012 ± 0.002 a | 0.012 ± 0.002 a | 0.0 |
Dithianon | 0.208 ± 0.037 a | 0.018 ± 0.009 b | 91.6 | 0.253 ± 0.078 a | 0.097 ± 0.020 a | 61.7 |
Dodine | 0.022 ± 0.004 a | 0.013 ± 0.000 b | 41.9 | 0.060 ± 0.019 a | 0.034 ± 0.006 a | 43.7 |
Emamectin | 0.006 ± 0.001 a | 0.002 ± 0.000 b | 61.1 | 0.007 ± 0.001 a | 0.002 ± 0.001 b | 76.2 |
Flonicamid | 0.004 ± 0.002 a | 0.007 ± 0.000 a | −54.0 | 0.012 ± 0.000 a | 0.013 ± 0.001 a | -14.3 |
Fludioxonil | 0.061 ± 0.008 a | 0.033 ± 0.000 b | 45.9 | 0.103 ± 0.027 a | 0.048 ± 0.008 a | 53.4 |
Fluopyram | 0.024 ± 0.004 a | 0.018 ± 0.004 a | 24.9 | 0.048 ± 0.006 a | 0.049 ± 0.003 a | −1.8 |
Flupyradifurone | 0.014 ± 0.006 a | 0.005 ± 0.000 a | 64.6 | 0.018 ± 0.005 a | 0.010 ± 0.002 a | 45.2 |
Fluxapiroxad | 0.029 ± 0.002 a | 0.015 ± 0.000 b | 46.9 | 0.034 ± 0.002 a | 0.021 ± 0.004 b | 38.6 |
Kresoxim-methyl | 0.004 ± 0.001 a | 0.005 ± 0.000 a | −25.9 | 0.009 ± 0.002 a | 0.006 ± 0.000 a | 32.1 |
Mancozeb | 0.040 ± 0.008 a | 0.022 ± 0.001 b | 44.9 | 0.070 ± 0.022 a | 0.028 ± 0.007 a | 59.7 |
Phosmet | 0.009 ± 0.001 a | 0.004 ± 0.000 b | 58.2 | 0.011 ± 0.003 a | 0.002 ± 0.002 b | 77.2 |
Pyraclostrobin | 0.028 ± 0.011 a | 0.015 ± 0.002 a | 47.9 | 0.044 ± 0.017 a | 0.016 ± 0.004 a | 64.1 |
Pirimicarb | 0.012 ± 0.001 a | 0.008 ± 0.001 b | 32.4 | 0.024 ± 0.007 a | 0.012 ± 0.002 a | 48.9 |
Pyrimethanil | 0.009 ± 0.001 a | 0.008 ± 0.000 a | 7.7 | 0.039 ± 0.010 a | 0.040 ± 0.004 a | −1.7 |
Spinosad | 0.006 ± 0.001 a | 0.003 ± 0.002 a | 51.4 | 0.008 ± 0.002 a | 0.002 ± 0.001 b | 68.1 |
Spinetoram | 0.006 ± 0.001 a | 0.003 ± 0.000 b | 45.1 | 0.012 ± 0.004 a | 0.002 ± 0.001 b | 85.2 |
Spirodiclofen | 0.040 ± 0.018 a | 0.019 ± 0.007 a | 51.6 | 0.060 ± 0.011 a | 0.041 ± 0.001 a | 31.5 |
Spirotetramat | 0.011 ± 0.001 a | 0.009 ± 0.001 a | 16.1 | 0.025 ± 0.002 a | 0.019 ± 0.001 b | 26.8 |
Tebuconazole | 0.026 ± 0.010 a | 0.010 ± 0.000 a | 62.3 | 0.033 ± 0.006 a | 0.021 ± 0.001 b | 35.0 |
Thiacloprid | 0.006 ± 0.001 a | 0.006 ± 0.000 a | 10.1 | 0.017 ± 0.001 a | 0.016 ± 0.001 a | 5.9 |
Trifloxystrobin | 0.019 ± 0.006 a | 0.009 ± 0.000 a | 50.0 | 0.021 ± 0.003 a | 0.012 ± 0.001 b | 42.3 |
Avg. %RRa | 35.8 | 38.9 | ||||
Avg. %RRb | 42.1 | 44.8 |
Active Substance: | Season 2019 | Season 2020 | ||||
---|---|---|---|---|---|---|
Control C | Treated T | RR | Control C | Treated T | RR | |
Acetamprid | 0.012 ± 0.001 a | 0.011 ± 0.001 a | 7.5 | 0.025 ± 0.010 a | 0.031 ± 0.005 a | −24.9 |
Boscalid | 0.037 ± 0.002 a | 0.024 ± 0.001 b | 35.3 | 0.042 ± 0.010 a | 0.028 ± 0.002 a | 35.1 |
Captan | 0.209 ± 0.022 a | 0.071 ± 0.000 b | 65.9 | 0.293 ± 0.067 a | 0.067 ± 0.013 b | 77.2 |
Chlorantraniliprole | 0.040 ± 0.019 a | 0.015 ± 0.002 a | 62.9 | 0.030 ± 0.015 a | 0.015 ± 0.005 a | 49.9 |
Difenconazole | 0.007 ± 0.001 a | 0.005 ± 0.001 a | 26.5 | 0.012 ± 0.002 a | 0.007 ± 0.001 b | 45.7 |
Dithianon | 0.208 ± 0.037 a | 0.050 ± 0.000 b | 76.0 | 0.253 ± 0.078 a | 0.060 ± 0.010 b | 76.4 |
Dodine | 0.022 ± 0.004 a | 0.015 ± 0.000 a | 31.8 | 0.060 ± 0.019 a | 0.033 ± 0.002 a | 44.9 |
Emamectin | 0.006 ± 0.001 a | 0.003 ± 0.001 b | 47.6 | 0.007 ± 0.001 a | 0.004 ± 0.001 a | 48.5 |
Flonicamid | 0.004 ± 0.002 a | 0.005 ± 0.002 a | −15.4 | 0.012 ± 0.001 a | 0.005 ± 0.003 b | 55.7 |
Fludioxonil | 0.061 ± 0.008 a | 0.030 ± 0.006 b | 50.6 | 0.103 ± 0.027 a | 0.052 ± 0.009 a | 49.6 |
Fluopyram | 0.024 ± 0.004 a | 0.015 ± 0.001 b | 38.8 | 0.048 ± 0.006 a | 0.034 ± 0.003 b | 30.6 |
Flupyradifurone | 0.014 ± 0.006 a | 0.013 ± 0.001 a | 10.9 | 0.018 ± 0.005 a | 0.014 ± 0.006 a | 22.6 |
Fluxapiroxad | 0.029 ± 0.002 a | 0.017 ± 0.001 b | 38.7 | 0.034 ± 0.002 a | 0.017 ± 0.001 b | 48.6 |
Kresoxim-Methyl | 0.004 ± 0.001 a | 0.002 ± 0.001 a | 47.2 | 0.009 ± 0.002 a | 0.004 ± 0.001 b | 62.4 |
Mancozeb | 0.041 ± 0.008 a | 0.028 ± 0.000 a | 30.6 | 0.070 ± 0.022 a | 0.039 ± 0.022 a | 44.7 |
Phosmet | 0.009 ± 0.001 a | 0.004 ± 0.000 b | 50.0 | 0.011 ± 0.003 a | 0.002 ± 0.001 b | 84.7 |
Pyraclostrobin | 0.028 ± 0.011 a | 0.017 ± 0.002 a | 38.9 | 0.044 ± 0.017 a | 0.027 ± 0.002 a | 39.1 |
Pirimicarb | 0.012 ± 0.001 a | 0.007 ± 0.000 b | 39.8 | 0.024 ± 0.007 a | 0.009 ± 0.001 b | 62.7 |
Pyrimethanil | 0.009 ± 0.001 a | 0.010 ± 0.000 a | −7.4 | 0.039 ± 0.010 a | 0.036 ± 0.004 a | 10.0 |
Spinosad | 0.006 ± 0.001 a | 0.005 ± 0.002 a | 22.7 | 0.008 ± 0.002 a | 0.001 ± 0.001 b | 85.2 |
Spinetoram | 0.006 ± 0.001 a | 0.005 ± 0.001 a | 9.6 | 0.012 ± 0.004 a | 0.004 ± 0.001 a | 65.2 |
Spirodiclofen | 0.040 ± 0.018 a | 0.010 ± 0.001 a | 74.4 | 0.060 ± 0.011 a | 0.027 ± 0.004 b | 55.6 |
Spirotetramat | 0.011 ± 0.001 a | 0.012 ± 0.002 a | −6.4 | 0.025 ± 0.002 a | 0.019 ± 0.001 b | 26.7 |
Tebuconazole | 0.026 ± 0.010 a | 0.011 ± 0.000 a | 57.1 | 0.033 ± 0.006 a | 0.028 ± 0.007 a | 14.8 |
Thiacloprid | 0.006 ± 0.001 a | 0.006 ± 0.001 a | 0.0 | 0.017 ± 0.001 a | 0.017 ± 0.003 a | 4.3 |
Trifloxystrobin | 0.019 ± 0.006 a | 0.013 ± 0.002 a | 30.9 | 0.021 ± 0.003 a | 0.016 ± 0.005 a | 23.1 |
Avg. %RRa | 33.3 | 43.8 | ||||
Avg. %RRb | 38.9 | 46.5 |
Variant: | No. a.s. >0.01 mg kg−1 | No. a.s. >0.005 mg kg−1 | No. a.s. >10% MRL | Σ % MRL | No. a.s. >10% ARFD | Σ % ARFD |
---|---|---|---|---|---|---|
2019 | ||||||
Control | 16.8 ± 1.31 a | 23.8 ± 0.25 a | 2.3 ± 0.48 a | 106.4 ± 7.76 a | 1.3 ± 0.25 a | 54.2 ± 1.83 a |
HP | 9.8 ± 0.48 b | 19.0 ± 1.35 b | 0.3 ± 0.25 b | 48.6 ± 9.01 b | 0.0 ± 0.00 b | 21.3 ± 2.93 b |
PBC | 10.8 ± 0.25 b | 21.0 ± 1.47 ab | 0.5 ± 0.29 b | 60.2 ± 8.55 b | 0.0 ± 0.00 b | 24.1 ± 3.52 b |
EM | 10.0 ± 0.41 b | 21.5 ± 0.65 ab | 1.0 ± 0.00 b | 52.7 ± 0.36 b | 0.0 ± 0.00 b | 23.2 ± 0.59 b |
LDC | 12.3 ± 0.85 b | 22.0 ± 0.41 ab | 1.0 ± 0.00 b | 59.3 ± 2.21 b | 0.0 ± 0.00 b | 20.9 ± 0.25 b |
2020 | ||||||
Control | 20.0 ± 2.35 a | 25.0 ± 0.71 a | 3.3 ± 0.95 a | 151.4 ± 26.64 a | 2.3 ± 0.25 a | 72.3 ± 3.96 a |
HP | 8.5 ± 1.04 b | 18.8 ± 0.63 c | 0.5 ± 0.29 b | 52.6 ± 2.45 b | 0.3 ± 0.25 b | 29.6 ± 5.85 b |
PBC | 15.5 ± 1.32 a | 21.5 ± 0.29 b | 1.3 ± 0.48 ab | 77.3 ± 2.60 b | 1.0 ± 0.00 b | 45.1 ± 1.83 b |
EM | 19.3 ± 0.48 a | 22.3 ± 0.25 b | 0.3 ± 0.25 b | 79.9 ± 9.18 b | 0.3 ± 0.25 b | 41.9 ± 0.48 b |
LDC | 15.3 ± 0.85 a | 21.0 ± 0.91 bc | 1.0 ± 0.00 b | 90.5 ± 2.76 b | 0.3 ± 0.25 b | 41.3 ± 3.02 b |
Variant: | HOFER | HOFER | METRO | METRO | KAUFLAND | KAUFLAND |
---|---|---|---|---|---|---|
Rule of Company | Max. ∑% MRL = 80% | Max. ∑% ARFD = 80% | Max. ∑% MRL = 80% | Max. ∑% ARFD = 100% | Max. ∑% MRL = 80% | Max. ∑% ARFD = 50% |
2019 | ||||||
Control | 106.4 ± 7.76 N | 54.2 ± 1.83 C | 106.4 ± 7.76 N | 54.2 ± 1.83 C | 106.4 ± 7.76 N | 54.2 ± 1.83 N |
HP | 48.6 ± 9.01 C | 21.3 ± 2.93 C | 48.6 ± 9.01 C | 21.3 ± 2.93 C | 48.6 ± 9.01 C | 21.3 ± 2.93 C |
PBC | 60.2 ± 8.55 C | 24.1 ± 3.52 C | 60.2 ± 8.55 C | 24.1 ± 3.52 C | 60.2 ± 8.55 C | 24.1 ± 3.52 C |
EM | 52.7 ± 0.36 C | 23.2 ± 0.59 C | 52.7 ± 0.36 C | 23.2 ± 0.59 C | 52.7 ± 0.36 C | 23.2 ± 0.59 C |
LDC | 59.3 ± 2.21 C | 20.9 ± 0.25 C | 59.3 ± 2.21 C | 20.9 ± 0.25 C | 59.3 ± 2.21 C | 20.9 ± 0.25 C |
2020 | ||||||
Control | 151.4 ± 26.6 N | 72.3 ± 3.96 C | 151.4 ± 26.6 N | 72.3 ± 3.96 C | 151.4 ± 26.6 N | 72.3 ± 3.96 N |
HP | 52.6 ± 2.45 C | 29.6 ± 5.85 C | 52.6 ± 2.45 C | 29.6 ± 5.85 C | 52.6 ± 2.45 C | 29.6 ± 5.85 C |
PBC | 77.3 ± 2.60 C | 45.1 ± 1.83 C | 77.3 ± 2.60 C | 45.1 ± 1.83 C | 77.3 ± 2.60 C | 45.1 ± 1.83 C |
EM | 79.9 ± 9.18 N | 41.9 ± 0.48 C | 79.9 ± 9.18 N | 41.9 ± 0.48 C | 79.9 ± 9.18 N | 41.9 ± 0.48 C |
LDC | 90.5 ± 2.76 N | 41.3 ± 3.02 C | 90.5 ± 2.76 N | 41.3 ± 3.02 C | 90.5 ± 2.76 N | 41.3 ± 3.02 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paušič, A.; Roškarič, M.; Lešnik, M. Preharvest Treatments with Low-Risk Plant Protection Products Can Help Apple Growers Fulfill the Demands of Supermarket Chains Regarding Pesticide Residues and Marketing Apples under 0-Residue Brands. Agronomy 2023, 13, 1151. https://doi.org/10.3390/agronomy13041151
Paušič A, Roškarič M, Lešnik M. Preharvest Treatments with Low-Risk Plant Protection Products Can Help Apple Growers Fulfill the Demands of Supermarket Chains Regarding Pesticide Residues and Marketing Apples under 0-Residue Brands. Agronomy. 2023; 13(4):1151. https://doi.org/10.3390/agronomy13041151
Chicago/Turabian StylePaušič, Andrej, Mihaela Roškarič, and Mario Lešnik. 2023. "Preharvest Treatments with Low-Risk Plant Protection Products Can Help Apple Growers Fulfill the Demands of Supermarket Chains Regarding Pesticide Residues and Marketing Apples under 0-Residue Brands" Agronomy 13, no. 4: 1151. https://doi.org/10.3390/agronomy13041151
APA StylePaušič, A., Roškarič, M., & Lešnik, M. (2023). Preharvest Treatments with Low-Risk Plant Protection Products Can Help Apple Growers Fulfill the Demands of Supermarket Chains Regarding Pesticide Residues and Marketing Apples under 0-Residue Brands. Agronomy, 13(4), 1151. https://doi.org/10.3390/agronomy13041151