Plant Cell Cultures: Biofactories for the Production of Bioactive Compounds
Abstract
:1. Introduction
2. Production of Therapeutic Recombinant Proteins from Cell Cultures
Name of the Therapeutic Protein | Plant Cells Used as Hosts | Yield of Therapeutic Protein | Reference |
---|---|---|---|
Hyaluronic acid (recombinant human hyaluronic acid synthase2, rhHAS2) (A polysaccharide used in pharmaceutical, biomedical, and cosmetic fields) | Nicotiana tabacum hairy root cultures | 65.72 ng/kg fresh weight | [46] |
Miraculin protein in transgenic carrot callus suspensions using air-lift bioreactors | Daucus carota suspension cultures using air-lift bioreactors | 0.024 µg/µL (0.98% of TSP) at 6 days | [47] |
L-Asparaginase II | Solanum tuberosum hairy root cultures | 301.27 international units of activity/mg of protein | [48] |
Human α1-antitrypsin | Nicotiana tabacum BY-2 cell cultures | 34.7 mg/L medium | [49] |
Anti-CD20scFv-Fc (tumor-targeting antibody) (enhancing the secretion of a glycoengineered anti-CD20 scFv-Fc antibody) | Nicotiana benthamiana hairy root cultures | 334 mg/L medium | [50] |
Human epidermal growth factor (hEGF) | Arachis hypogaea hairy root cultures | 10.7 µg/g weight | [51] |
Human alpha-L-iduronidase (IDUA) | Brassica rapa hairy roots | Not known | [52] |
Human gastric lipase (hGL) (therapeutic enzyme used for pancreatic enzyme deficiency, it contributes to fatty acid release from ingested triglycerides) | Brassica rapa subspecies rapa hairy root cultures | 528 units of hGL/g dry weight of tissue | [53] |
Virus-like particle harboring recombinant protein shells of Johnson grass chlorotic stripe mosaic virus (JgCSMV) and their use as drug carriers | Nicotiana tabacum hairy roots | Not known | [54] |
Recombinant human erythropoietin (rhEPO) (glycoprotein hormone that influences the production of erythrocytes through erythropoiesis. EPO is used for the treatment of anemia) | Nicotiana tabacum hairy root cultures | 66.75 ng/g of total soluble protein | [55] |
Bevacizumab monoclonal antibody | Oryza sativa callus cultures | 160.7–242.8 mg/kg of transgenic rice callus | [56] |
Tumor-targeting antibody with a human-compatible glycosylation profile | Nicotiana benthamiana hairy root cultures | 2–3 mg/L medium | [57] |
MAP30 protein of Momordica charantia (valuable type I ribosome-inactivating protein (RIP) with anti-tumor and anti-HIV activities) | Nicotiana tabacum hairy root cultures | Not known | [58] |
Human pro-insulin | Fragaria x ananassa Duch. hairy root cultures | 160 ng in 100 mg of tissue (0.14% of the total soluble protein) | [59] |
Human serum albumin | Oryza sativa cell suspension cultures | 45 mg/L in a bioreactor | [60] |
Monoclonal antibody M12 for cancer treatment | Nicotiana tabacum hairy root cultures | 5.9 mg/L medium | [61] |
Thaumatin sweetener (intensely sweet protein) | Nicotiana tabacum hairy root cultures | 2.63 mg/L medium | [62] |
Bovine trypsins | Oryza sativa cv. Dongjin cell suspension cultures | 15 mg/L at 5 days of incubation | [63] |
Human growth hormone | Nicotiana tabacum BY-2 cell cultures | 5.2% total soluble proteins | [64] |
Cytotoxic T cells surface antigen (hCTLA4Ig) | Fed-batch cultivation of Oryza sativa cells | 76.5 mg/L medium | [65] |
Human epidermal growth factor (hEGF) | Hairy root cultures of Nicotiana tabacum | 2 µg/g fresh weight | [66] |
Human interleukin-12 (hIL-12), a heterodimeric cytokine) | Oryza sativa cell suspensions | 31 mg/L | [67] |
Human acetylcholinesterase (a bio-scavenger of organophosphate toxins used as pesticides and chemical warfare nerve agents) | Nicotiana benthamiana hairy root cultures | 3.3% total soluble proteins | [68] |
Human growth hormone | Oryza sativa cv. Donjin 57 cell suspensions | 57 mg/L | [69] |
Human collagen α1 chain industrially important protein | Hordeum vulgare cell cultures | 2–9 mg/L medium | [70] |
Human interferon α-2b | Nicotiana tabacum cv. BY-2 cells as arabinogalactan-protein fusions | 28 mg/L | [71] |
Human CTLA4ig (cytotoxic T-lymphocyte antigen 4 immunoglobulin (hCTLA4I g) fusion protein, a novel immunosuppressive agent) | Oryza sativa cell suspensions | 31.4 mg/L suspension cultures | [72] |
Human secreted alkaline phosphatase | Nicotiana tabacum cv. NT-1 cell suspensions | 27 mg/L | [73] |
Human antibody 14D9 | Nicotiana tabacum hairy root cultures | 64.03 µg/mL of medium | [74] |
Human α-1-antitrypsin | Oryza sativa cell cultures |
100–247 mg/L (4–10% of the total extracellular protein) | [75] |
Human serum albumin | Oryza sativa cell cultures | 76.4 mg/L in 4-day-old cultures | [76] |
Human interferon gamma | Oryza sativa cell suspension cultures | 17.4 ng/mL media and 131.6 ng/g cell in culture medium and intracellularly | [77] |
Human granulocyte-macrophage colony-stimulating factor | Oryza sativa cell suspension cultures | 129 mg/L at day 13 | [78] |
Antimicrobial human lysozyme | Oryza sativa cv. Taipie grains | 0.6% of the brown rice weight or 45% of total soluble proteins | [79] |
Human α-1 antitrypsin | Oryza sativa cultured cells | 200 mg/L | [80] |
Human 1-antitrypsin | Oryza sativa callus and suspension cultures | 4.6–5.7 mg/g dry cell weight | [81] |
Human erythropoietin | Nicotiana tabacum cv. BY-2 | 1 picogram on dry weight basis | [82] |
Human serum albumin | Nicotiana tabacum and Solanum tuberosum suspension cultures | Not known | [83] |
3. Specialty Molecules
4. Metabolic Engineering for Enhanced Production
5. Biotransformation and Production of Physiologically Active Compounds
6. Plant Stem Cells for the Production of Cosmetics
7. Plant Stem Cells for the Production of Food Ingredients
8. Regulatory Issues Related to Food Ingredients or Foods Prepared through Plant Suspension Cultures
9. Bioprinting
10. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motolinia-Alcantara, E.A.; Castillo-Araiza, C.O.; RodríguezMonroy, M.; Román-Guerrero, A.; Cruz-Sosa, F. Engineering considerations to produce bioactive compounds from plant cell suspension culture in bioreactors. Plants 2021, 10, 2762. [Google Scholar] [CrossRef]
- Zafar, T.; Shrivastava, V.K.; Shaik, B. Pharmaceutical Biotechnology in Herbal Neuroprotection; Springer: Singapore, 2018; pp. 221–228. [Google Scholar]
- Elkordy, A.A.; Haj-Ahmad, R.R.; Awaad, A.S.; Zaki, R.M. An overview on natural product drug formulations from conventional medicines to nanomedicines: Past, present and future. J. Drug Deliv. Sci. Technol. 2021, 63, 102459. [Google Scholar] [CrossRef]
- Shriram, V.; Vinay Kumar Kavi Kishor, P.B.; Suryawanshi, S.B.; Upadhyay, A.K.; Bhat, M.K. Cytotoxic activity of 9,10-dihydro-2,5-dimethoxyphenanthrene-1,7-diol from Eulophia nuda against human cancer cells. J. Ethnopharmacol. 2010, 128, 251–253.5. [Google Scholar] [CrossRef] [PubMed]
- Madhavi, D.; Abhayankar, G.; Reddy, V.D.; Kavi Kishor, P.B. Carbohydrate and elicitor enhanced withanolide (withaferin A and withanolide A) accumulation in hairy root cultures of Withania somnifera (L.). Indian J. Exp. Biol. 2012, 50, 484–490. [Google Scholar]
- Ochoa-Villarreal, O.V.M.; Howat, S.; Hong, S.M.; Jang, M.O.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Plant cell culture strategies for the production of natural products. BMB Rep. 2016, 49, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Jawahar, G.; Punita, D.L.; Rajasheker, G.; Manoharachary, C.; Venkatachalam, P.; Kavi Kishor, P.B. Feeding elicitors and precursors enhance colchicine accumulation in morphogenic cultures of Gloriosa superba L. Plant Cell Tiss. Organ Cult. 2018, 135, 235–245. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.S.; Rookes, J.E.; Cahill, D.M.; Lenka, S.K. Next-generation metabolic engineering approaches towards development of plant cell suspension cultures as specialized metabolite producing biofactories. Biotechnol. Adv. 2020, 45, 107635. [Google Scholar] [CrossRef]
- Moscatiello, R.; Baldan, B.; Navazio, L. Plant Cell Suspension Cultures. In Plant Mineral Nutrients. Methods in Molecular Biology (Methods and Protocols); Maathuis, F., Ed.; Humana Press: Totowa, NJ, USA, 2013; p. 953. [Google Scholar] [CrossRef]
- Gandra, J.; Patel, H.K.; Kumar, S.A.; Doma, M.; Deepthi, Y.; Bhalothia, P.; Jalaja, N.; Chimakurthy, J.; Polavarapu, R.; Katam, R.; et al. Metabolomic and proteomic signature of Gloriosa superba leaves treated with mercuric chloride and phenylalanine, a precursor of colchicine alkaloid. Ind. Crops Prod. 2022, 178, 114557. [Google Scholar] [CrossRef]
- Komaraiah, P.; Ramakrishna, S.V.; Reddanna, P.; Kavi Kishor, P.B. Enhanced production of plumbagin in immobilized cells of Plumbago rosea by elicitation and in situ adsorption. J. Biotechnol. 2003, 101, 181–187. [Google Scholar] [CrossRef]
- Cortese, E.; Carraretto, L.; Baldan, B.; Navazio, L. Arabidopsis photosynthetic and heterotrophic cell suspension cultures. Methods Mol. Biol. 2021, 2200, 167–185. [Google Scholar] [PubMed]
- Narayani, M.; Shrivastava, S. Elicitation: A stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochemical. Rev. 2017, 16, 1227–1252. [Google Scholar] [CrossRef]
- Chodisetti, B.; Rao, K.; Gandi, S.; Giri, A. Gymnemic acid enhancement in the suspension cultures of Gymnema sylvestre by using the signaling molecules—Methyl jasmonate and salicylic acid. Vitr. Cell. Dev. Biol.-Plant 2015, 51, 88–92. [Google Scholar] [CrossRef]
- Chodisetti, B.; Rao, K.; Suryakala, G.; Archana, G. Improved Gymnemic acid production in the suspension cultures of Gymnema sylvestre through biotic elicitation. Plant Biotechnol. Rep. 2013, 7, 519–525. [Google Scholar] [CrossRef]
- Veerashree, V.; Anuradha, C.M.; Vadlapudi, K. Elicitor-enhanced production of gymnemic acid in cell suspension cultures of Gymnema sylvestre R. Br. Plant Cell Tiss Organ Cult. 2012, 108, 27–35. [Google Scholar] [CrossRef]
- Chen, H.; Chena, F.; Chiu, F.C.; Lo, C.M. The effect of yeast elicitor on the growth and secondary metabolism of hairy root cultures of Salvia miltiorrhiza . Enzym. Microb. Technol. 2001, 28, 100–105. [Google Scholar] [CrossRef]
- Deepthi, S.; Satheeshkumar, K. Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn. Plant Cell Tissue Organ Cult. 2016, 124, 483–493. [Google Scholar] [CrossRef]
- Flores-Sanchez, I.J.; Ortega-Lopez, J.; del Carmen Montes-Horcasitas, M.; Ramos-Valdivia, A.C. Biosynthesis of sterols and triterpenes in cell suspension cultures of Uncaria tomentosa . Plant Cell Physiol. 2002, 43, 1502–1509. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Chattopadhyay, S. Stimulation of Menthol Production in Mentha piperita Cell Culture. Vitr. Cell. Dev. Biol. Plant. 2008, 4, 518–524. [Google Scholar] [CrossRef]
- Wilson, S.A.; Roberts, S.C. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol. J. 2012, 10, 249–268. [Google Scholar] [CrossRef]
- Santos Rita, B.; Rita, A.; Rainer, F.; Markus, S.; Holland, T.H. Putting the spotlight back on plant suspension cultures. Front. Plant Sci. 2016, 7, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eibl, R.; Meier, P.; Stutz, I.; Schildberger, D.; Hühn, T.; Eibl, D. Plant cell culture technology in the cosmetics and food industries: Current state and future trends. Appl. Microbiol. Biotechnol. 2018, 102, 8661–8675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasteva, G.; Georgiev, V.; Pavlov, A. Recent applications of plant cell culture technology in cosmetics and foods. Eng. Life Sci. 2021, 21, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Kerbler, S.M.; Fernie, A.R.; Zhang, Y. Plant cell cultures as heterologous bio-factories for secondary metabolite production. Plant Commun. 2021, 2, 100235. [Google Scholar] [CrossRef] [PubMed]
- Acikgoz, M.A. Establishment of cell suspension cultures of Ocimum basilicum L. and enhanced production of pharmaceutical active ingredients. Ind. Crops Prod. 2020, 148, 112278. [Google Scholar] [CrossRef]
- Garcia-Perez, P.; Miras-Moreno, B.; Lucini, L.; Gallego, P.P. The metabolomics reveals intraspecies variability of bioactive compounds in elicited suspension cell cultures of three Bryophyllum species. Ind. Crops Prod. 2021, 163, 113322. [Google Scholar] [CrossRef]
- Kreis, W. Exploiting plant cell culture for natural product formation. J. Appl. Bot. Food Qual. 2019, 92, 216–225. [Google Scholar] [CrossRef]
- Hakkinen, S.T.; Oksman-Caldentey, K.M. Progress and prospects of hairy root research. In Hairy Roots: An Effective Tool of Plant Biotechnology; Srivastava, V., Mehrotra, S., Mishra, S., Eds.; Springer: Singapore, 2018; pp. 3–19. [Google Scholar] [CrossRef]
- Nielsen, E.; Temporiti, M.E.E.; Cella, R. Improvement of phytochemical production by plant cells and organ culture and by genetic engineering. Plant Cell Rep. 2019, 38, 1199–1215. [Google Scholar] [CrossRef]
- Nourani, A.; Popova, E.; Titova, M. Biotechnology based on cell cultures of higher plants. E3S Web Conf. 2021, 265, 04012. [Google Scholar] [CrossRef]
- Furusaki, S.; Takeda, T. Bioreactors for Plant Cell Culture, Reference Module in Life Sciences; Elsevier: Dordrecht, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Werner, S.; Maschke, R.W.; Eibl, D.; Eibl, R. Bioreactor technology for sustainable production of plant cell-derived products. In Bioprocessing of Plant In Vitro Systems. Reference Series in Phytochemistry; Pavlov, A., Bley, T., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Kowalczyk, T.; Merecz-Sadowska, A.; Picot, L.; Brčić Karačonji, I.; Wieczfinska, J.; Śliwiński, T.; Sitarek, P. Genetic manipulation and bioreactor culture of plants as a tool for industry and its applications. Molecules 2022, 27, 795. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Zagorskayaa, A.A.; Deinekoa, E.V. Suspension-cultured plant cells as a platform for obtaining recombinant proteins. Russ. J. Plant Physiol. 2017, 64, 795–807. [Google Scholar] [CrossRef]
- Subroto, M.A.; Hamill, J.; Doran, P. Development of shooty teratomas from several solanaceous plants: Growth kinetics, stoichiometry and alkaloid production. J. Biotechnol. 1996, 45, 45–57. [Google Scholar] [CrossRef]
- Fazili, M.A.; Bashir, I.; Ahmad, M.; Yaqoob, U.; Geelani, S.N. In vitro strategies for the enhancement of secondary metabolite production in plants: A review. Bull. Natl. Res. Cent. 2022, 46, 35. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.K.; Jin, Y.W.; Park, J.H.; Yoo, Y.M. Cultured cambial meristematic cells as a source of plant natural products. Nat. Biotechnol. 2010, 28, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Chen, S.; Wang, X.; Zhang, R. A novel strategy to enhance terpenoids production using cambial meristematic cells of Tripterygium wilfordii Hook. f. Plant Methods 2019, 15, 129. [Google Scholar] [CrossRef] [Green Version]
- Marchev, A.S.; Yordanova, Z.P.; Georgiev, M.I. Green (cell) factories for advanced production of plant secondary metabolites. Crit. Rev. Biotechnol. 2020, 40, 443–458. [Google Scholar] [CrossRef]
- Moon, S.H.; Pandurangan, M.; Kim, D.H.; Venkatesh, J.; Patel, R.V.; Mistry, B.M. A rich source of potential bioactive compounds with anticancer activities by Catharanthus roseus cambium meristematic stem cell cultures. J. Ethnopharmacol. 2018, 217, 107–117. [Google Scholar] [CrossRef]
- Kesik-Brodacka, M. Progress in biopharmaceutical development. Biotechnol. Appl. Biochem. 2018, 65, 306–322. [Google Scholar] [CrossRef] [Green Version]
- Tak, H.; Negi, S.; Ganapathi, T.R.; Bapat, V.A. Molecular farming: Prospects and limitation. In Banana: Genomics and Transgenic Approaches for Genetic Improvement; Mohandas, K.V., Ravishankar, G.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Burnett, J.B.M.; Burnett, A.C. Therapeutic recombinant protein production in plants: Challenges and opportunities. Plants People Planet. 2020, 2, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Nazeri, A.; Niazi, A.; Afsharifar, A.; Taghavi, S.V.; Moghadam, A.; Aram, F. Heterologous production of hyaluronic acid in Nicotiana tabacum hairy roots expressing a human hyaluronan synthase 2. Sci. Rep. 2021, 11, 17966. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Han, J.E.; Lee, H.; Jung, Y.J.; Murthy, H.N.; Park, S.Y. Large-scale production of recombinant miraculin protein in transgenic carrot callus suspension cultures using air-lift bioreactors. AMB Expr. 2020, 10, 140. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Niazi, A.; Aram, F.; Hassani, F.; Ghasemi, Y. Transformation of the L-asparaginase II gene to potato hairy roots for production of recombinant protein. J. Crop. Sci. Biotechnol. 2020, 23, 81–88. [Google Scholar] [CrossRef]
- Zhang, N.; Wright, T.; Caraway, P.; Xu, J. Enhanced secretion of human α1-antitrypsin expressed with a novel glycosylation module in tobacco BY-2 cell culture. Bioengineered 2019, 10, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Lonoce, C.; Salem, R.; Marusic, C.; Jutras, P.V.; Scaloni, A.; Salzano, A.M.; Lucretti, S.; Steinkellner, H.; Benvenuto, E.; Donini, M. Production of a tumour-targeting antibody with a human-compatible glycosylation profile in N. benthamiana hairy root cultures. Biotechnol. J. 2016, 11, 1209–1220. [Google Scholar] [CrossRef]
- Yao, Q.; Yu, Z.; Liu, P.; Zheng, H.; Xu, Y.; Sai, S.; Wu, Y.; Zheng, C. High efficient expression and purification of human epidermal growth factor in Arachis hypogaea L. Int. J. Mol. Sci. 2019, 20, 2045. [Google Scholar] [CrossRef] [Green Version]
- Cardon, F.; Pallisse, R.; Bardor, M.; Caron, A.; Vanier, J.; Ele Ekouna, J.P.; Lerouge, P.; Boitel-Conti, M.; Guillet, M. Brassica rapa hairy root based expression system leads to the production of highly homogenous and reproducible profiles of recombinant human alpha-L-iduronidase. Plant. Biotechnol. J. 2019, 17, 505–516. [Google Scholar] [CrossRef] [Green Version]
- Ekouna, J.P.E.; Boitel-Conti, M.; Lerouge, P.; Bardor, M.; Guerineau, F. Enhanced production of recombinant human gastric lipase in turnip hairy roots. Plant Cell Tissue Organ Cult. 2017, 131, 601–610. [Google Scholar] [CrossRef]
- Alemzadeh, E.; Izadpanah, K.; Ahmadi, F. Generation of recombinant protein shells of Johnson grass chlorotic stripe mosaic virus in tobacco plants and their use as drug carrier. J. Virol. Methods 2017, 248, 148–153. [Google Scholar] [CrossRef]
- Gurusamy, P.D.; Schäfer, H.; Ramamoorthy, S.; Wink, M. Biologically active recombinant human erythropoietin expressed in hairy root cultures and regenerated plantlets of Nicotiana tabacum L. PLoS ONE 2017, 12, e0182367. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yang, X.; Luo, D.; Yu, W. Efficient production of a bioactive bevacizumab monoclonal antibody using the 2a self-cleavage peptide in transgenic rice callus. Front. Plant Sci. 2016, 7, 1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Yang, D.; Qiang, Z.; Meng, Y.; Li, R.; Fan, X.; Zhao, W.; Meng, Y. Ribosome-inactivating protein MAP30 isolated from Momordica charantia L. induces apoptosis in hepatocellular carcinoma cells. Recent Pat. Anticancer Drug Discov. 2022. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, A.; Niazi, A.; Afsharifar, A.; Taghavi, S.M. Expression of a recombinant anti-HIV and anti-tumor protein, MAP30, in Nicotiana tabacum hairy roots: A pH-stable and thermophilic antimicrobial protein. PLoS ONE 2016, 11, e0159653. [Google Scholar] [CrossRef] [Green Version]
- Tavizi, A.; Javaran, M.J.; Moieni, A.; Mohammadi-Dehcheshmeh, M.; Mohebodini, M.; Ebrahimie, E. Root and shoot parts of strawberry: Factories for production of functional human pro-insulin. Mol. Biol. Rep. 2015, 42, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.K.; Li, Y.T.; Lu, C.F.; Huang, L.F. Enhancement of recombinant human serum albumin in transgenic rice cell culture system by cultivation strategy. New Biotechnol. 2015, 32, 328–334. [Google Scholar] [CrossRef]
- Häkkinen, S.; Raven, N.; Henquet, M.; Laukkanen, M.-L.; Anderlei, T.; Pitkänen, J.-P.; Twyman, R.M.; Bosch, D.; Oksman-Caldentey, K.-M.; Schillberg, S.; et al. Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody. Biotechnol. Bioeng. 2014, 111, 336–346. [Google Scholar] [CrossRef]
- Pham, N.B.; Schäfer, H.; Wink, M. Production and secretion of recombinant thaumatin in tobacco hairy root cultures. Biotechnol. J. 2012, 7, 537–545. [Google Scholar] [CrossRef]
- Kim, N.S.; Yu, H.Y.; Chung, N.D.; Shin, Y.J.; Kwon, T.H.; Yang, M.S. Production of functional recombinant bovine trypsin in transgenic rice cell suspension cultures. Protein Expr. Purif. 2011, 76, 121–126. [Google Scholar] [CrossRef]
- Xu, J.; Okada, S.; Tan, L.; Goodrum, K.J.; Kopchick, J.J.; Kieliszewski, M.J. Human growth hormone expressed in tobacco cells as an arabinogalactan-protein fusion glycoprotein has a prolonged serum life. Transgenic Res. 2010, 19, 849–867. [Google Scholar] [CrossRef]
- Park, C.I.; Lee, S.J.; Kang, S.H.; Jung, H.S.; Kim, D.I.; Lim, S.M. Fed-batch cultivation of transgenic rice cells for the production of hCTLA4Ig using concentrated amino acids. Process. Biochem. 2010, 45, 67–74. [Google Scholar] [CrossRef]
- Parsons, J.; Wirth, S.; Dominguez, M.; Bravo-Almonacid, F.; Giulietti, A.; Talou, J.R. Production of human epidermal growth factor (hEGF) by In vitro cultures of Nicotiana tabacum: Effect of tissue differentiation and sodium nitroprusside addition. Int. J. Biotechnol. Biochem. 2010, 6, 131–138. [Google Scholar]
- Shin, Y.J.; Lee, N.J.; Kim, J.; An, X.H.; Yang, M.S.; Kwon, T.H. High-level production of bioactive heterodimeric protein human interleukin-12 in rice. Enzym. Microb. Technol. 2010, 46, 347–351. [Google Scholar] [CrossRef]
- Woods, R.R.; Geyer, B.C.; Mor, T.S. Hairy-root organ cultures for the production of human acetylcholinesterase. BMC Biotechnol. 2008, 8, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.G.; Baek, M.Y.; Lee, E.K.; Kwon, T.H.; Yang, M.S. Expression of human growth hormone in transgenic rice cell suspension culture. Plant Cell Rep. 2008, 27, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Anneli, R.; Wahlström, E.H.; Holkeri, H.; Anders, H.; Katri, E.; Baez, J.; Kristiina, M.; Anna, N. Production of a recombinant industrial protein using barley cell cultures. Protein Expr. Purif. 2008, 59, 274–281. [Google Scholar] [CrossRef]
- Xu, J.; Tan, L.; Goodrum, K.J.; Kieliszewski, M.J. High-yields and extended serum half-life of human interferon α2b expressed in tobacco cells as arabinogalactan-protein fusions. Biotechnol. Bioeng. 2007, 97, 997–1008. [Google Scholar] [CrossRef]
- Lee, S.J.; Park, C.I.; Park, M.Y.; Jung, H.S.; Ryu, W.S.; Lim, S.M.; Tan, H.K.; Kwon, T.H.; Yang, M.S.; Kim, D.I. Production and characterization of human CTLA4Ig expressed in transgenic rice cell suspension cultures. Protein Expr. Purif. 2007, 51, 293–302. [Google Scholar] [CrossRef]
- Becerra-Arteaga, A.; Mason, H.S.; Shuler, M.L. Production, secretion, stability and n-glycosylation of human secreted alkaline phosphatase in tobacco NT1 cell suspension cultures. Biotechnol. Prog. 2006, 22, 1643–1649. [Google Scholar] [CrossRef]
- Martinez, C.; Petruccelli, S.; Giulietti, A.M.; Alvarez, M.A. Expression of the antibody 14D9 in Nicotiana tabacum hairy root roots. Electron. J. Biotechnol. 2005, 8, 170–176. [Google Scholar] [CrossRef] [Green Version]
- McDonald, K.A.; Hong, L.M.; Trombly, D.M.; Xie, Q.; Jackman, A.P. Production of human α-1-antitrypsin from transgenic rice cell culture in a membrane bioreactor. Biotechnol. Prog. 2005, 21, 728–734. [Google Scholar] [CrossRef]
- Huang, L.F.; Liu, Y.K.; Lu, C.A.; Hsieh, S.L.; Yu, S.M. Production of human serum albumin by sugar starvation induced promoter and rice cell culture. Transgenic Res. 2005, 14, 569–581. [Google Scholar] [CrossRef]
- Chen, T.L.; Lin, Y.L.; Lee, Y.L.; Yang, N.S.; Chan, M.T. Expression of bioactive human interferon gamma in transgenic rice cell suspension cultures. Transgenic Res. 2004, 13, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.J.; Hong, S.Y.; Kwon, T.H.; Jang, Y.S.; Yang, M.S. High level of expression of recombinant human granulocyte-macrophage colony stimulating factor in transgenic rice cell suspension culture. Biotechnol. Bioeng. 2003, 82, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Nandi, S.; Wu, L.; Yalda, D.; Bartley, G.; Rodriguez, R.; Lonnerda, L.B.; Huang, N. Expression of natural antimicrobial human lysozyme in rice grains. Mol. Breeding 2002, 10, 83–94. [Google Scholar] [CrossRef]
- Huang, J.; Sutliff, T.D.; Wu, L.; Nandi, S.; Benge, K.; Terashima, M.; Ralston, A.H.; Drohan, W.; Huang, N.; Rodriguez, R.L. Expression and purification of functional human α-1-antitrypsin from cultured plant cells. Biotechnol. Progr. 2001, 17, 126–133. [Google Scholar] [CrossRef]
- Terashima, M.; Murai, Y.; Kawamura, M.; Nakanishi, S.; Stoltz, T.; Chen, L.; Drohan, W.; Rodriguez, R.L.; Katoh, S. Production of functional human 1 -antitrypsin by plant cell culture. Appl. Microbiol. Biotechnol. 1999, 52, 516–523. [Google Scholar] [CrossRef]
- Matsumoto, S.; Ikura, K.; Ueda, M.; Sasaki, R. Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol. Biol. 1995, 27, 1163–1172. [Google Scholar] [CrossRef]
- Sijmons, P.C.; Dekker, B.M.M.; Schrammeijer, B.; Verwoerd, T.C.; van den Elzen, P.J.M.; Hoekema, A. Production of correctly processed human serum albumin in transgenic plants. Nat. Biotechnol. 1990, 8, 217–221. [Google Scholar] [CrossRef]
- Huang, T.K.; McDonald, K.A. Bioreactor systems for In vitro production of foreign proteins using plant cell cultures. Biotechnol. Adv. 2012, 30, 398–409. [Google Scholar] [CrossRef]
- Gengenbach, B.B.; Keil, L.L.; Opdensteinen, P.; Muschen, C.R.; Melmer, G.; Lentzen, H.; Buhrmann, J.; Buyel, J.F. Comparison of microbial and transient expression (tobacco plants and plant cell packs) for the production and purification of the anticancer mistletoe lectin viscumin. Biotechnol. Bioeng. 2019, 116, 2236–2249. [Google Scholar] [CrossRef] [Green Version]
- Rosales-Mendoza, S.; Tello-Olea, M.A. Carrot cells: A pioneering platform for biopharmaceuticals production. Mol. Biotechnol. 2015, 57, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Gerszberg, A.; Hnatuszko-Konka, K. Compendium on food crop plants as a platform for pharmaceutical protein production. Int. J. Mol. Sci. 2022, 23, 3236. [Google Scholar] [CrossRef]
- Ghag, S.B.; Adki, V.S.; Ganapathi, T.R.; Bapat, V.A. Plant platforms for efficient heterologous protein production. Biotechnol. Bioprocess Eng. 2021, 26, 546–567. [Google Scholar] [CrossRef]
- Yao, J.; Weng, Y.; Dickey, A.; Wang, K.Y. Plants as factories for human pharmaceuticals: Applications and challenges. Int. J. Mol. Sci. 2015, 16, 28549–28565. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.B.S.; Ganapathi, T.R.; Srinivas, L.; Revathi, C.J.; Bapat, V.A. Secretion of hepatitis B surface antigen in transformed tobacco cell suspension cultures. Biotechnol. Lett. 2005, 27, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Sadoch, J.; Pyc, M.; Urbanowicz, A.; Iglewski, A.; Pilarski, R. High throughput evolutionary optimization of the induction medium towards recombinant protein production in BY-2 tobacco. Biotechnol. Bioeng. 2021, 118, 676–689. [Google Scholar] [CrossRef] [PubMed]
- Lico, C.; Santi, L.; Baschieri, S.; Noris, E.; Marusic, C.; Donini, M.; Pedrazzini, E.; Maga, G.; Franconi, R.; Di Bonito, P.; et al. Plant molecular farming as a strategy against COVID19-the Italian perspective. Front. Plant Sci. 2020, 11, 609910. [Google Scholar] [CrossRef]
- Imamura, T.; Isozumi, N.; Higashimura, Y.; Ohki, S.; Mori, M. Production of ORF8 protein from SARS-CoV-2 using an inducible virus-mediated expression system in suspension-cultured tobacco BY-2 cells. Plant Cell Rep. 2021, 40, 433–436. [Google Scholar] [CrossRef]
- Musiychuk, K.; Sivalenka, R.; Jaje, J.; Bi, H.; Flores, R.; Shaw, B.; Jones, R.M.; Golovina, T.; Schnipper, J.; Khandker, L.; et al. Plant-produced human recombinant erythropoietic growth factors support erythroid differentiation in vitro . Stem Cells Dev. 2013, 22, 2326–2340. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Karki, U.; Abeygunaratne, H.; Unnold Cofre, C.; Xu, J. Plant cell-secreted stem cell factor stimulates expansion and differentiation of hematopoietic stem cells. Process. Biochem. 2021, 100, 39–48. [Google Scholar] [CrossRef]
- Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules 2021, 26, 1109. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Gordon, M.C. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrar, M.C.; Jacobs, T.F. Paclitaxel; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Dou, J.; Weathers, P. Specialty molecules from plants and In vitro cultures as new drugs: Regulatory considerations from flask to patient. Plant Cell Tiss. Org. Cult. 2022, 149, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Fett-Neto, A.G.; DiCosmo, F.; Reynolds, W.; Sakata, K. Cell culture of Taxus as a source of the antineoplastic drug taxol and related taxanes. Nat. Biotechnol. 1992, 10, 1572–1575. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.E.; Jeong, J.H.; Shin, C.K. Hormone-independent embryogenic callus production from ginseng cotyledons using high concentrations of NH4NO3 and progress towards bioreactor production. Plant Cell Tiss. Org. Cult. 2003, 72, 229–235. [Google Scholar] [CrossRef]
- Gantait, S.; Mitra, M.; Chen, J.T. Biotechnological interventions for ginsenosides production. Biomolecules 2020, 10, 538. [Google Scholar] [CrossRef] [Green Version]
- Lyu, X.; Lyu, Y.; Yu, H.W.; Chen, W.N.; Ye, L.; Yang, R. Biotechnological advances for improving natural pigment production: A state-of-the-art review. Bioresour. Bioprocess. 2022, 9, 8. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Akita, M.; Sakamoto, K.; Liu, H.; Shigeoka, T.; Koyano, T.; Kawamura, M.; Furuya, T. Large-scale production of anthocyanin by Aralia cordata cell suspension cultures. Appl. Microbiol. Biotechnol. 1993, 40, 215–218. [Google Scholar] [CrossRef]
- Yazaki, K. Lithospermum erythrorhizon cell cultures: Present and future aspects. Plant Biotechnol. J. 2017, 34, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Aitken-Christie, J.; Kozai, T.; Smith, M.A.L. (Eds.) Automation and Environmental Control in Plant Tissue Culture; Springer: Dordrecht, Germany, 1995. [Google Scholar]
- Georgiev, M.I.; Weber, J.; Maciuk, A. Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl. Microbiol. Biotechnol. 2009, 83, 809–823. [Google Scholar] [CrossRef]
- Tekoah, Y.; Shulman, A.; Kizhner, T.; Ruderfer, I.; Fux, L.; Nataf, Y.; Bartfeld, D.; Ariel, T.; Gingis-Velitski, S.; Hanania, U.; et al. Large-scale production of pharmaceutical proteins in plant cell culture-the protalix experience. Plant Biotech. J. 2015, 13, 1199–1208. [Google Scholar] [CrossRef]
- Satish, L.; Rency, A.S.; Muthubharathi, B.C.; Shamili, S.; Rameshkumar, R.; Swamy, M.K.; Ramesh, M. Transgenic plant cell cultures: A promising approach for secondary metabolite production. In Natural Bio-Active Compounds: Volume 3: Biotechnology, Bioengineering, and Molecular Approaches; Akhtar, M.S., Swamy, M.K., Eds.; Springer: Singapore, 2019; pp. 79–122. [Google Scholar]
- Wawrosch, C.; Zotchev, S.B. Production of bioactive plant secondary metabolites through in vitro technologies—status and outlook. Appl. Microbiol. Biotechnol. 2021, 105, 6649–6668. [Google Scholar] [CrossRef] [PubMed]
- Nett, R.S.; Lau, W.; Sattely, E.S. Discovery and engineering of colchicine alkaloid biosynthesis. Nature 2020, 584, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Birchfield, A.S.; McIntosh, C.A. Metabolic engineering and synthetic biology of plant natural products-A mini review. Curr. Plant Biol. 2020, 24, 100163. [Google Scholar] [CrossRef]
- Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol. Rep. 2020, 26, e00450. [Google Scholar] [CrossRef] [PubMed]
- Jamil, S.; Rohani, E.R.; Baharum, S.N.; Noor, N.M. Metabolite profiles of callus and cell suspension cultures of mangosteen. 3 Biotech 2018, 8, 322. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, Y.; Wang, X.; Yue, Z.; Yang, X.; Chen, X.; Zhang, X.; Shen, D.; Wang, H.; Song, J.; et al. Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L.) based on comparative genomic analysis. Sci. Rep. 2017, 7, 16040. [Google Scholar] [CrossRef] [Green Version]
- Pyne, M.E.; Narcross, L.; Martin, V.J.J. Engineering plant secondary metabolism in microbial systems. Plant Physiol. 2019, 179, 844–861. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.P.; Parajuli, P.; Koffas, M.A.G.; Sohng, J.K. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 2016, 34, 634–662. [Google Scholar] [CrossRef] [Green Version]
- Turanlı-Yıldız, B.; Hacısalihoğlu, B.; Çakar, Z.P. Advances in metabolic engineering of Saccharomyces cerevisiae for the production of industrially and clinically important chemicals. In Old Yeasts-New Quest; Lucas, C., Pais, C., Eds.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Ajikumar, P.K.; Xiao, W.H.; Tyo, K.E.J.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T.H.; Pfeifer, B.; Stephanopoulos, G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli . Science 2010, 330, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Grewal, P.S.; Modavi, C.; Russ, Z.N.; Harris, N.C.; Dueber, J.E. Bioproduction of a betalain color palette in Saccharomyces cerevisiae . Metab. Eng. 2018, 45, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.G.; Fowler, Z.L.; Hueller, T.; Schaffer, S.; Koffas, M.A.G. High-yield resveratrol production in engineered Escherichia coli . Appl. Environ. Microbiol. 2011, 77, 3451–3460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Lin, Y.; Li, L.; Linhardt, R.J.; Yan, Y. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab. Eng. 2015, 29, 217–226. [Google Scholar] [CrossRef]
- Li, M.; Schneider, K.; Kristensen, M.; Borodina, I.; Nielsen, J. Engineering yeast for high-level production of stilbenoid antioxidants. Sci. Rep. 2016, 6, 36827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Liu, F.; Li, Y.; Yu, B. Reconstructing biosynthetic pathway of the plant-derived cancer chemopreventive-precursor glucoraphanin in Escherichia coli . ACS Synth. Biol. 2018, 7, 121–131. [Google Scholar] [CrossRef]
- Lv, Y.; Marsafari, M.; Koffas, M.; Zhou, J.; Xu, P. Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis. ACS Synth. Biol. 2019, 8, 2514–2523. [Google Scholar] [CrossRef]
- Mora-Vasquez, S.; Wells-Abascal, G.G.; Espinosa-Leal, C.; Cardineau, G.A.; García-Lara, S. Application of metabolic engineering to enhance the content of alkaloids in medicinal plants. Metabolic Enginer. Commun. 2022, 14, e00194. [Google Scholar] [CrossRef]
- Rather, G.A.; Sharma, A.; Misra, P.; Kumar, A.; Kaul, V.; Lattoo, S.K. Molecular characterization and overexpression analyses of secologanin synthase to understand the regulation of camptothecin biosynthesis in Nothapodytes nimmoniana (Graham.) Mabb. Protoplasma 2020, 257, 391–405. [Google Scholar] [CrossRef]
- Singh, S.; Kamble, S.N.; Satdive, R.K.; Fulzele, D.P. Heterologous overexpression of Nothapodytes foetida strictosidine synthase enhances levels of anti-cancer compound camptothecin in Ophiorrhiza rugosa . Plant Cell Tiss. Org. Cult. 2020, 141, 67–76. [Google Scholar] [CrossRef]
- Pan, Q.; Wang, C.; Xiong, Z.; Wang, H.; Fu, X.; Shen, Q.; Peng, B.; Ma, Y.; Sun, X.; Tang, K. CrERF5, an AP2/ERF transcription factor, positively regulates the biosynthesis of bisindole alkaloids and their precursors in Catharanthus roseus . Front. Plant Sci. 2019, 10, 931. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Xie, C.; Ruan, Q.; Zhang, X.; Wu, C.; Han, B.; Qian, J.; Zhou, W.; Nützmann, H.W.; Kai, G. The transcription factor OpWRKY2 positively regulates the biosynthesis of the anticancer drug camptothecin in Ophiorrhiza pumila . Hortic. Res. 2021, 8, 7. [Google Scholar] [CrossRef]
- Singh, P.; Prasad, R.; Tewari, R.; Jaidi, M.; Kumar, S.; Rout, P.K.; Rahman, L. Silencing of quinolinic acid phosphoribosyl transferase (QPT) gene for enhanced production of scopolamine in hairy root culture of Duboisia leichhardtii . Sci. Rep. 2018, 8, 13939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweizer, F.; Colinas, M.; Pollier, J.; Van Moerkercke, A.; Vanden Bossche, R.; de Clercq, R.; Goossens, A. An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus . Metab. Eng. 2018, 48, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Verma, P.; Mathur, A.; Mathur, A.K. Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus . Protoplasma 2018, 255, 1281–1294. [Google Scholar] [CrossRef]
- Georgiev, M.I.; Eibl, R.; Zhong, J.J. Hosting the plant cells In vitro: Recent trends in bioreactors. Appl. Microbiol. Biotechnol. 2013, 97, 3787–3800. [Google Scholar] [CrossRef]
- Moyano, E.; Palazón, J.; Bonfill, M.; Osuna, L.; Cusidó, R.M.; Oksman Caldentey, K.M.; Piñol, M.T. Biotransformation of hyoscyamine into scopolamine in transgenic tobacco cell cultures. J. Plant Physiol. 2007, 164, 521–524. [Google Scholar] [CrossRef]
- Pádua, R.M.; Meitinger, N.; Dias De Souza, J.F.; Waibel, R.; Gmeiner, P.; Braga, F.C.; Kreis, W. Biotransformation of 21-O-acetyl-deoxycorticosterone by cell suspension cultures of Digitalis lanata (strain W.1.4). Steroids 2012, 77, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Munkert, J.; Franco, M.S.; Nolte, E.; Silva, I.T.; Castilho, R.O.; Ottoni, F.M.; Schneider, N.F.Z.; Oliveira, M.C.; Taubert, H.; Bauer, W.; et al. Production of the cytotoxic cardenolide glucoevatromonoside by semisynthesis and biotransformation of evatromonoside by a Digitalis lanata cell culture. Planta Med. 2017, 83, 1035–1043. [Google Scholar] [CrossRef] [Green Version]
- Schneider, N.F.Z.; Cerella, C.; Lee, J.Y.; Mazumder, A.; Kim, K.R.; De Carvalho, A.; Pádua, R.M.; Munkert, J.; Kreis, W.; Kim, K.W.; et al. Cardiac glycoside glucoevatromonoside induces cancer type-specific cell death. Front. Pharmacol. 2018, 9, 70. [Google Scholar] [CrossRef]
- Asthana, G.S.; Asthana, A. Biotransformation of progesterone to 17a-hydroxyprogesterone by using plant cell suspension culture of Catharanthus roseus . Int. J. Pharm. Pharm. Sci. 2015, 7, 362–368. [Google Scholar]
- Khan, S.; Choudhary, M.I. Biotransformation of dydrogesterone by cell suspension cultures of Azadirachta indica . Turk. J. Chem. 2008, 32, 141–146. [Google Scholar]
- Morus, M.; Baran, M.; Rost-roszkowska, M.; Skotnicka-Graca, U. Plant stem cells as innovation in cosmetics. Acta Pol. Pharm. Drug Res. 2014, 71, 701–707. [Google Scholar]
- Barbulova, A.; Apone, F.; Colucci, G. Plant cell cultures as source of cosmetic active ingredients. Cosmetics 2014, 1, 94–104. [Google Scholar] [CrossRef]
- Rischer, H.; Szilvay, G.R.; Oksman-Caldentey, K.M. Cellular agriculture-industrial biotechnology for food and materials. Curr. Opin. Biotechnol. 2020, 61, 128–134. [Google Scholar] [CrossRef]
- Bianconi, M.; Ceriotti, L.; Cuzzocrea, S.; Esposito, E.; Pressi, G.; Sgaravatti, E.; Bertaiola, O.; Guarnerio, C.; Barbieri, E.; Semenzato, A.; et al. Red carrot cells cultured In vitro are effective, stable, and safe ingredients for skin care, nutraceutical, and food applications. Front. Bioeng. Biotechnol. 2020, 8, 57507. [Google Scholar] [CrossRef]
- Miastkowska, M.; Sikora, E. Anti-aging properties of plant stem cell extracts. Cosmetics 2018, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Tito, A.; Carola, A.; Bimonte, M.; Barbulova, A.; Arciello, S.; De Laurentiis, F.; Monoli, I.; Hill, J.; Gibertoni, S.; Colucci, G.; et al. A tomato stem cell extract containing antioxidant compounds and metal chelating factors protects skin cells from heavy metal-induced damages. Int. J. Cosmet. Sci. 2011, 33, 543–552. [Google Scholar] [CrossRef]
- Lequeux, C.; Lhoste, A.; Rovere, M.R.; Montastier, C.; Damour, O. Model of In vitro healing to test the influence of dedifferentiated Crithmum maritimum cells on dermal repair and epidermal regeneration. Skin Pharmacol. Physiol. 2011, 24, 75–80. [Google Scholar] [CrossRef]
- Schmid, D.; Schürch, C.; Blum, P.; Belser, E.; Züll, F. Plant stem cell extract for longevity of skin and hair. SÖFW J. 2008, 134, 30–35. [Google Scholar]
- Othman, E.M.; Naseem, M.; Awad, E.; Dandekar, T.; Stopper, H. The plant hormone cytokinin confers protection against oxidative stress in mammalian cells. PLoS ONE 2016, 11, e0168386. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Sardana, C.; Ozturk, M.; Sarwat, M. Plant stem cells and their applications: Special emphasis on their marketed products. 3 Biotech 2020, 10, 291. [Google Scholar] [CrossRef] [PubMed]
- Loake, V.I.P.; Ochoa-Villarreal, M. Cambial meristematic cells: A sustainable platform for the production of plant-derived anticancer drugs. In Biotechnology and Production of Anti-Cancer Compounds; Malik, S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 143–156. [Google Scholar]
- Nordlund, E.; Lille, M.; Silventoinen, P.; Nygren, H.; Seppänen-Laakso, T.; Mikkelson, A.; Marja, A.A.; Nohynek, L.; Puupponen-Pimiä, R.; Rischer, H. Plant cells as food-a concept taking shape. Food Res. Int. 2018, 107, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Matam, P.; Parvatam, G.; Shetty, N.P. Enhanced production of vanillin flavour metabolites by precursor feeding in cell suspension cultures of Decalepis hamiltonii Wight & Arn in shake flask culture. 3 Biotech 2017, 7, 376. [Google Scholar] [CrossRef]
- Gnehm, R. Scale-Up of Growth and Production of a Theobroma cacao Suspension Culture. Bachelor’s Thesis, Zurich University of Applied Sciences, Zurich, Switzerland, 2018. [Google Scholar]
- Nohynek, L.; Bailey, M.; Tähtiharju, J.; Seppänen-Laakso, T.; Rischer, H.; Oksman-Caldentey, K.M.; Puupponen-Pimiä, R. Cloudberry (Rubus chamaemorus) cell culture with bioacive substances: Establishment and mass propagation for industrial use. Eng. Life Sci. 2014, 14, 667–675. [Google Scholar] [CrossRef]
- Agarwal, S.; Saha, S.; Balla, V.K.; Pal, A.; Barui, A.; Bodhak, S. Current developments in 3D bioprinting for tissue and organ regeneration-A review. Front. Mech. Eng. 2020, 6, 589171. [Google Scholar] [CrossRef]
- Gubser, G.; Vollenweider, S.; Eibl, D.; Eibl, R. Food ingredients and food made with plant cell and tissue cultures: State-of-the art and future trends. Eng. Life Sci. 2021, 21, 87–98. [Google Scholar] [CrossRef]
- Turck, D.; Bresson, J.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.; EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); et al. Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of regulation (EU) 2015/2283. EFSA J. 2016, 14, e04594. [Google Scholar]
- Stintzing, F.C.; Carle, R. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Technol. 2004, 15, 19–38. [Google Scholar] [CrossRef]
- Jovic, T.H.; Kungwengwe, G.; Mills, A.C.; Whitaker, I.S. Plant-derived biomaterials: A review of 3D bioprinting and biomedical applications. Front. Mech. Eng. 2019, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Landerneaua, S.; Lemarie, L.; Marquette, C.; Petiot, E. Green 3D bioprinting of plant cells: A new scope for 3D bioprinting. Bioprinting 2022, 27, e00216. [Google Scholar] [CrossRef]
- Broeck, L.V.D.; Schwartz, M.F.; Krishnamoorthy, S.; Tahir, M.A.; Spurney, R.J.; Madison, I.; Melvin, C.; Gobble, M.; Nguyen, T.; Peters, R.; et al. Establishing a reproducible approach to study cellular functions of plant cells with 3D bioprinting. Sci. Adv. 2022, 8, eabp9906. [Google Scholar] [CrossRef] [PubMed]
- Indurkar, A.; Pandit, A.; Jain, R.; Dandekar, P. Plant-based biomaterials in tissue engineering. Bioprinting 2021, 21, e00127. [Google Scholar] [CrossRef]
- Shukla, M.R.; Singh, A.S.; Piunno, K.; Saxena, P.K.; Jones, A.M.P. Application of 3D printing to prototype and develop novel plant tissue culture systems. Plant Methods 2017, 13, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Zhang, N. On the way to commercializing plant cell culture platform for biopharmaceuticals: Present status and prospect. Pharm. Bioprocess. 2014, 2, 499–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthulakshmi, V.M.; Srinivasan, A.; Srivastava, S. Antioxidant green factories: Toward sustainable production of vitamin e in plant In vitro cultures. ACS Omega 2023, 8, 3586–3605. [Google Scholar] [CrossRef]
Name of the Plant | Stem Cells Produced | Use in Pharmacy/Cosmetology | Reference |
---|---|---|---|
Zingiber officinale | Mix of cells that are dedifferentiated and cell cultures that are responsible for controlling the synthesis of active molecules inside the cell | Improvement of 50% in skin structure as a result of pore reduction and a mattifying effect. Reduction in the shininess of the skin and sebum with an increase in the synthesis of elastin fibers | [145] |
Solanum lycopersicon | Stem cells containing antioxidant compounds such as rutin, flavonoids, and metal-chelating factors | Protects skin cells from heavy metal-induced damages | [146] |
Crithmum maritimum | Dedifferentiated cells | Dermal repair and epidermal regeneration | [147] |
Malus domestica | Encapsulated extract of stem cells | Enhances the viability of umbilical cord blood stem cells, reverses the senescence signs in human fibroblast cells, and also increases the lifespan of isolated human hair follicles | [148] |
Apium graveolens | Callus culture extract | Works on regeneration of skin | Akott Evolution, SRL, Fizzonasco, Italy |
Calendula officinalis | Cell suspension culture extract | Anti-wrinkle and regeneration of skin | Innova BM, Sofia, Bulgaria |
Centella asiatica | Liposomal complex of cell suspension extract | Effective anti-aging, antioxidant, and anti-wrinkle | Infinitec, Barcelona, Spain |
Citrus aurantium | Callus culture extract | Anti-aging, helps in skin conditioning | Provital group, Barcelona, Spain |
Coffea species | Extracts from cell cultures | Energizes cells and acts against wrinkles | Vitalab, SRL, Napoli, Italy |
Coleus forskohlii | Extracts from cell suspension cultures | Anti-fat properties, acts against edema, good antioxidant | Vitalab, SRL, Italy |
Daucus carota | Extracts from callus cultures | Good antioxidant, skin nourishing effect | Radiant Inc., Dongnae-myeon, Republic of Korea |
Gardenia taitensis | Callus culture extract | Good anti-aging, anti-wrinkle, regenerative, and repairing activities | Biocosmethic, Bonnelles, France |
Ocimum basilicum | Hairy root culture extract | Reduction in hair loss, stimulation of dermal papilla cells | Mibelle AG Biochemistry, Buchs, Switzerland |
Oryza sativa | Extracts of callus cultures | Antioxidant and skin whitening | Sandream Impact LLC., Fairfield, NJ, USA |
Phaseolus radiatus | Meristem cell culture extract | Anti-aging, anti-wrinkle, skin repair from damage | Innovacos Corp., Mt Arlington, NJ, USA |
Saponaria pumila | Extracts from cell suspensions | Increases skin elasticity, firmness, density | Mibelle AG Biochemistry, Switzerland |
Solanum lycopersicum | Callus culture extract | Controls excessive sebum secretion, good condition of the skin | Sandream Impact LLC., Fairfield, NJ, USA |
Vitis vinifera | Cell suspension extract | Extends skin viability, anti-photo-aging | Mibelle AG Biochemistry, Switzerland |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bapat, V.A.; Kavi Kishor, P.B.; Jalaja, N.; Jain, S.M.; Penna, S. Plant Cell Cultures: Biofactories for the Production of Bioactive Compounds. Agronomy 2023, 13, 858. https://doi.org/10.3390/agronomy13030858
Bapat VA, Kavi Kishor PB, Jalaja N, Jain SM, Penna S. Plant Cell Cultures: Biofactories for the Production of Bioactive Compounds. Agronomy. 2023; 13(3):858. https://doi.org/10.3390/agronomy13030858
Chicago/Turabian StyleBapat, Vishwas Anant, P. B. Kavi Kishor, Naravula Jalaja, Shri Mohan Jain, and Suprasanna Penna. 2023. "Plant Cell Cultures: Biofactories for the Production of Bioactive Compounds" Agronomy 13, no. 3: 858. https://doi.org/10.3390/agronomy13030858
APA StyleBapat, V. A., Kavi Kishor, P. B., Jalaja, N., Jain, S. M., & Penna, S. (2023). Plant Cell Cultures: Biofactories for the Production of Bioactive Compounds. Agronomy, 13(3), 858. https://doi.org/10.3390/agronomy13030858