Computer Vision and Deep Learning as Tools for Leveraging Dynamic Phenological Classification in Vegetable Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Acquisition and Processing
2.2. Deep Learning Approach
2.2.1. Object Detection Models
2.2.2. Models Training
2.2.3. Models Performance Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lieth, H. Phenology and Seasonality Modeling. In Ecological Studies; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar] [CrossRef]
- Liang, L. Phenology. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Ruml, M.; Vulić, T. Importance of phenological observations and predictions in agriculture. J. Agric. Sci. 2005, 50, 217–225. [Google Scholar] [CrossRef]
- Chmielewski, F.M. Phenology in Agriculture and Horticulture. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 539–561. [Google Scholar] [CrossRef]
- Martín-Forés, I.; Casado, M.A.; Castro, I.; del Pozo, A.; Molina-Montenegro, M.; Miguel, J.M.D.; Acosta-Gallo, B. Variation in phenology and overall performance traits can help to explain the plant invasion process amongst Mediterranean ecosystems. NeoBiota 2018, 41, 67–89. [Google Scholar] [CrossRef]
- Kato, A.; Carlson, K.M.; Miura, T. Assessing the inter-annual variability of vegetation phenological events observed from satellite vegetation index time series in dryland sites. Ecol. Indic. 2021, 130, 108042. [Google Scholar] [CrossRef]
- Kasampalis, D.A.; Alexandridis, T.K.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of Remote Sensing on Crop Models: A Review. J. Imaging 2018, 4, 52. [Google Scholar] [CrossRef]
- Fu, Y.; Li, X.; Zhou, X.; Geng, X.; Guo, Y.; Zhang, Y. Progress in plant phenology modeling under global climate change. Sci. China Earth Sci. 2020, 63, 1237–1247. [Google Scholar] [CrossRef]
- Kephe, P.; Ayisi, K.; Petja, B. Challenges and opportunities in crop simulation modelling under seasonal and projected climate change scenarios for crop production in South Africa. Agric. Food Secur. 2021, 10, 10. [Google Scholar] [CrossRef]
- Hufkens, K.; Melaas, E.K.; Mann, M.L.; Foster, T.; Ceballos, F.; Robles, M.; Kramer, B. Monitoring crop phenology using a smartphone based near-surface remote sensing approach. Agric. For. Meteorol. 2019, 265, 327–337. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, S.; Fu, Y.H.; Xiao, Y.; Wu, W.; Wang, H.; Beurs, K.d. Comparison of Multi-Methods for Identifying Maize Phenology Using PhenoCams. Remote Sens. 2022, 14, 244. [Google Scholar] [CrossRef]
- Chacón-Maldonado, A.M.; Molina-Cabanillas, M.A.; Troncoso, A.; Martínez-Álvarez, F.; Asencio-Cortés, G. Olive Phenology Forecasting Using Information Fusion-Based Imbalanced Preprocessing and Automated Deep Learning. In Proceedings of the Hybrid Artificial Intelligent Systems Conference, Salamanca, Spain, 5–7 September 2022. [Google Scholar] [CrossRef]
- Milicevic, M.; Zubrinic, K.; Grbavac, I.; Obradovic, I. Application of Deep Learning Architectures for Accurate Detection of Olive Tree Flowering Phenophase. Remote Sens. 2020, 12, 2120. [Google Scholar] [CrossRef]
- Jing, H.; Xiujuan, W.; Haoyu, W.; Xingrong, F.; Mengzhen, K. Prediction of crop phenology—A component of parallel agriculture management. In Proceedings of the 2017 Chinese Automation Congress, Jinan, China, 20–22 October 2017; pp. 7704–7708. [Google Scholar] [CrossRef]
- Giordano, M.; Petropoulos, S.A.; Rouphael, Y. Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress. Agriculture 2021, 11, 463. [Google Scholar] [CrossRef]
- Dhondt, S.; Wuyts, N.; Inzé, D. Cell to whole-plant phenotyping: The best is yet to come. Trends Plant Sci. 2013, 18, 428–439. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Maktedar, D.D. A role of computer vision in fruits and vegetables among various horticulture products of agriculture fields: A survey. Inf. Process. Agric. 2020, 7, 183–203. [Google Scholar] [CrossRef]
- Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef]
- Narvaez, F.; Reina, G.; Torres-Torriti, M.; Kantor, G.; Cheein, F. A Survey of Ranging and Imaging Techniques for Precision Agriculture Phenotyping. IEEE/ASME Trans. Mechatron. 2017, 22, 2428–2439. [Google Scholar] [CrossRef]
- Roy, A.M.; Bose, R.; Bhaduri, J. A fast accurate fine-grain object detection model based on YOLOv4 deep neural network. Neural Comput. Appl. 2022, 34, 1–27. [Google Scholar] [CrossRef]
- Jin, X.; Che, J.; Chen, Y. Weed Identification Using Deep Learning and Image Processing in Vegetable Plantation. IEEE Access 2021, 9, 10940–10950. [Google Scholar] [CrossRef]
- Aguiar, A.S.; Magalhães, S.A.; dos Santos, F.N.; Castro, L.; Pinho, T.; Valente, J.; Martins, R.; Boaventura-Cunha, J. Grape bunch detection at different growth stages using deep learning quantized models. Agronomy 2021, 11, 1890. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Yang, B.; Xu, Y. Applications of deep-learning approaches in horticultural research: A review. Hortic. Res. 2021, 8, 123. [Google Scholar] [CrossRef]
- Katal, N.; Rzanny, M.; Mäder, P.; Wäldchen, J. Deep Learning in Plant Phenological Research: A Systematic Literature Review. Front. Plant Sci. 2022, 13, 805738. [Google Scholar] [CrossRef]
- Potgieter, A.B.; Zhao, Y.; Zarco-Tejada, P.J.; Chenu, K.; Zhang, Y.; Porker, K.; Biddulph, B.; Dang, Y.P.; Neale, T.; Roosta, F.; et al. Evolution and application of digital technologies to predict crop type and crop phenology in agriculture. Silico Plants 2021, 3, diab017. [Google Scholar] [CrossRef]
- Yang, W.; Feng, H.; Zhang, X.; Zhang, J.; Doonan, J.; Batchelor, W.D.; Xiong, L.; Yan, J. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives. Mol. Plant 2020, 13, 187–214. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.; Sandhu, K.S.; Singh, J. Deep learning: As the new frontier in high-throughput plant phenotyping. Euphytica 2022, 218, 1–22. [Google Scholar] [CrossRef]
- Yalcin, H. Plant phenology recognition using deep learning: Deep-Pheno. In Proceedings of the 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Han, J.; Shi, L.; Yang, Q.; Huang, K.; Zha, Y.; Jin, Y. Real-time detection of rice phenology through convolutional neural network using handheld camera images. Precis. Agric. 2021, 22, 154–178. [Google Scholar] [CrossRef]
- d’Andrimont, R.; Yordanov, M.; Martinez-Sanchez, L.; van der Velde, M. Monitoring crop phenology with street-level imagery using computer vision. Comput. Electron. Agric. 2022, 196, 106866. [Google Scholar] [CrossRef]
- Taylor, S.D.; Browning, D.M. Classification of Daily Crop Phenology in PhenoCams Using Deep Learning and Hidden Markov Models. Remote Sens. 2022, 14, 286. [Google Scholar] [CrossRef]
- Wang, X.; Tang, J.; Whitty, M. DeepPhenology: Estimation of apple flower phenology distributions based on deep learning. Comput. Electron. Agric. 2021, 185, 106123. [Google Scholar] [CrossRef]
- Molina, M.Á.; Jiménez-Navarro, M.J.; Martínez-Álvarez, F.; Asencio-Cortés, G. A Model-Based Deep Transfer Learning Algorithm for Phenology Forecasting Using Satellite Imagery. In Proceedings of the Hybrid Artificial Intelligent Systems, Bilbao, Spain, 22–24 September 2021; pp. 511–523. [Google Scholar] [CrossRef]
- Pearse, G.; Watt, M.S.; Soewarto, J.; Tan, A.Y. Deep Learning and Phenology Enhance Large-Scale Tree Species Classification in Aerial Imagery during a Biosecurity Response. Remote Sens. 2021, 13, 1789. [Google Scholar] [CrossRef]
- Correia, D.L.; Bouachir, W.; Gervais, D.; Pureswaran, D.; Kneeshaw, D.D.; De Grandpré, L. Leveraging Artificial Intelligence for Large-Scale Plant Phenology Studies From Noisy Time-Lapse Images. IEEE Access 2020, 8, 13151–13160. [Google Scholar] [CrossRef]
- Mann, H.M.R.; Iosifidis, A.; Jepsen, J.U.; Welker, J.M.; Loonen, M.J.J.E.; Høye, T.T. Automatic flower detection and phenology monitoring using time-lapse cameras and deep learning. Remote Sens. Ecol. Conserv. 2022, 8, 765–777. [Google Scholar] [CrossRef]
- Chavan, T.; Nandedkar, A. AgroAVNET for crops and weeds classification: A step forward in automatic farming. Comput. Electron. Agric. 2018, 154, 361–372. [Google Scholar] [CrossRef]
- Ofori, M.; El-Gayar, O. Towards Deep Learning for Weed Detection: Deep Convolutional Neural Network Architectures for Plant Seedling Classification. In Proceedings of the Americas Conference on Information Systems, Virtual, 10–14 August 2020. [Google Scholar]
- Samiei, S.; Rasti, P.; Vu, J.; Buitink, J.; Rousseau, D. Deep learning-based detection of seedling development. Plant Methods 2020, 16, 103. [Google Scholar] [CrossRef]
- Meier, U. (Ed.) Growth Stages of Mono- and Dicotyledonous Plants; Julius Kühn-Institut: Quedlinburg, Germany, 2018. [Google Scholar]
- Everingham, M.; Gool, L.V.; Williams, C.K.I.; Winn, J.M.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
- Padilla, R.; Passos, W.L.; Dias, T.L.B.; Netto, S.L.; da Silva, E.A.B. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, 10, 279. [Google Scholar] [CrossRef]
- Terra, F.; Rodrigues, L.; Magalhães, S.; Santos, F.; Moura, P.; Cunha, M. PixelCropRobot, a cartesian multitask platform for microfarms automation. In Proceedings of the 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA), Goa, India, 20–22 September 2021; pp. 382–387. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. Lect. Notes Comput. Sci. 2016, 9905, 21–37. [Google Scholar] [CrossRef]
- Magalhães, S.A.; Castro, L.; Moreira, G.; dos Santos, F.N.; Cunha, M.; Dias, J.; Moreira, A.P. Evaluating the Single-Shot MultiBox Detector and YOLO Deep Learning Models for the Detection of Tomatoes in a Greenhouse. Sensors 2021, 21, 3569. [Google Scholar] [CrossRef]
- Moreira, G.; Magalhães, S.A.; Pinho, T.; dos Santos, F.N.; Cunha, M. Benchmark of Deep Learning and a Proposed HSV Colour Space Models for the Detection and Classification of Greenhouse Tomato. Agronomy 2022, 12, 356. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020. [Google Scholar] [CrossRef]
- Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. The Balanced Accuracy and Its Posterior Distribution. In Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 3121–3124. [Google Scholar] [CrossRef]
Common Name | Binomial Name |
---|---|
Arugula | Eruca vesicaria subsp. sativa |
Carrot | Daucus carota subsp. sativus |
Coriander | Coriandrum sativum |
Lettuce | Lactuca sativa |
Radish | Raphanus sativus |
Spinach | Spinacia oleracea |
Swiss chard | Beta vulgaris subsp. vulgaris var. cicla |
Turnip | Brassica rapa |
Crop | Phenophase | BBCH 1-Scale Code | No. of Plants | No. of Images |
---|---|---|---|---|
Arugula | coty_arugula | 10 | 281 | 312 |
minus9_arugula | 11–18 | 631 | ||
plus9_arugula | 19 2 | 66 | ||
Carrot | coty_carrot | 10 | 774 | 533 |
smallleaves_carrot | 11–13 | 830 | ||
carrot | 14–49 | 955 | ||
Coriander | coty_coriander | 10 | 743 | 321 |
smallleaves_coriander | 11–13 | 382 | ||
coriander | 14–19 2 | 654 | ||
Lettuce | coty_lettuce | 10 | 856 | 1426 |
minus9_lettuce | 11–18 | 3878 | ||
plus9_lettuce | 19–48 | 428 | ||
ready_lettuce | 49 | 625 | ||
Radish | coty_radish | 10 | 869 | 494 |
smallleaves_radish | 11–13 | 904 | ||
bigleaves_radish | 14–49 | 314 | ||
root_radish | 45–49 | 244 | ||
Spinach | spinach | 10–18 | 200 | 270 |
big_spinach | 19 2 | 93 | ||
Swiss chard | coty_chard | 10 | 55 | 454 |
chard | 10–19 2 | 633 | ||
Turnip | coty_turnip | 10 | 283 | 313 |
smallleaves_turnip | 11–13 | 400 | ||
turnip | 14–49 | 550 | ||
Total | 4123 |
Crop | Phenophase | Train | Validation | Test | |||
---|---|---|---|---|---|---|---|
Plants | Images | Plants | Images | Plants | Images | ||
Arugula | coty_arugula | 172 | 188 | 40 | 62 | 69 | 62 |
minus9_arugula | 440 | 93 | 98 | ||||
plus9_arugula | 45 | 12 | 9 | ||||
Carrot | coty_carrot | 486 | 321 | 157 | 106 | 131 | 106 |
smallleaves_carrot | 492 | 173 | 165 | ||||
carrot | 563 | 180 | 212 | ||||
Coriander | coty_coriander | 331 | 163 | 188 | 64 | 224 | 94 |
smallleaves_coriander | 191 | 73 | 118 | ||||
coriander | 326 | 158 | 170 | ||||
Lettuce | coty_lettuce | 486 | 665 | 226 | 471 | 144 | 290 |
minus9_lettuce | 2420 | 889 | 569 | ||||
plus9_lettuce | 248 | 99 | 81 | ||||
ready_lettuce | 348 | 166 | 111 | ||||
Radish | coty_radish | 650 | 347 | 166 | 98 | 53 | 49 |
smallleaves_radish | 664 | 190 | 52 | ||||
bigleaves_radish | 218 | 57 | 39 | ||||
root_radish | 163 | 47 | 34 | ||||
Spinach | spinach | 122 | 162 | 37 | 54 | 41 | 54 |
big_spinach | 53 | 24 | 16 | ||||
Swiss chard | coty_chard | 32 | 319 | 12 | 90 | 11 | 45 |
chard | 441 | 129 | 63 | ||||
Turnip | coty_turnip | 101 | 158 | 66 | 93 | 116 | 62 |
smallleaves_turnip | 197 | 111 | 92 | ||||
turnip | 246 | 224 | 80 |
Crop | Train | Validation |
---|---|---|
Arugula | 2750 | 682 |
Carrot | 2889 | 954 |
Coriander | 1789 | 703 |
Lettuce | 9292 | 3798 |
Radish | 3461 | 980 |
Spinach | 1620 | 540 |
Swiss chard | 3190 | 1800 |
Turnip | 2054 | 1209 |
DL Model | Input Size (px) | Batch Size |
---|---|---|
SSD Inception v2 | 32 | |
SSD MobileNet v2 | 24 | |
SSD MobileNet v2 | 24 | |
SSD ResNet 50 | 12 | |
YOLO v4 | 64 |
DL Model | Crop | RGB | Greyscale | ||
---|---|---|---|---|---|
Confidence Threshold (%)≥ | F1-Score (%) | Confidence Threshold (%)≥ | F1-Score (%) | ||
SSD Inception v2 (300 × 300 px) | Arugula | 23 | 87.8 | 42 | 69.6 |
Carrot | 20 | 58.8 | 87 | 48.4 | |
Coriander | 22 | 66.5 | 18 | 46.2 | |
Lettuce | 41 | 74.7 | 57 | 90.9 | |
Radish | 18 | 86.3 | 10 | 67.3 | |
Spinach | 35 | 93.2 | 13 | 94.0 | |
Swiss chard | 14 | 92.5 | 37 | 96.0 | |
Turnip | 17 | 65.6 | 10 | 51.9 | |
Mean | 78.2 | 70.5 | |||
SSD MobileNet v2 (300 × 300 px) | Arugula | 32 | 80.3 | 82 | 74.9 |
Carrot | 24 | 58.4 | 93 | 43.0 | |
Coriander | 38 | 68.2 | 33 | 32.0 | |
Lettuce | 85 | 73.9 | 39 | 87.0 | |
Radish | 34 | 82.2 | 52 | 56.2 | |
Spinach | 7 | 98.4 | 75 | 96.2 | |
Swiss chard | 37 | 92.9 | 98 | 93.3 | |
Turnip | 28 | 69.7 | 38 | 46.6 | |
Mean | 78.0 | 66.2 | |||
SSD MobileNet v2 (640 × 640 px) | Arugula | 31 | 81.6 | 92 | 59.7 |
Carrot | 32 | 62.5 | 91 | 40.5 | |
Coriander | 36 | 67.3 | 55 | 46.3 | |
Lettuce | 75 | 84.9 | 53 | 87.4 | |
Radish | 43 | 81.7 | 83 | 67.0 | |
Spinach | 89 | 98.3 | 70 | 95.5 | |
Swiss chard | 68 | 92.1 | 100 | 92.2 | |
Turnip | 53 | 67.9 | 11 | 50.4 | |
Mean | 79.5 | 67.4 | |||
SSD ResNet 50 (640 × 640 px) | Arugula | 60 | 88.6 | 53 | 83.2 |
Carrot | 42 | 69.7 | 41 | 64.5 | |
Coriander | 52 | 75.7 | 61 | 67.7 | |
Lettuce | 66 | 78.0 | 55 | 95.2 | |
Radish | 52 | 91.6 | 56 | 84.8 | |
Spinach | 85 | 98.3 | 90 | 98.2 | |
Swiss chard | 78 | 94.2 | 85 | 94.5 | |
Turnip | 55 | 70.3 | 43 | 64.0 | |
Mean | 83.3 | 81.5 | |||
YOLO v4 (416 × 416 px) | Arugula | 34 | 92.0 | 27 | 92.4 |
Carrot | 39 | 72.0 | 64 | 78.3 | |
Coriander | 53 | 78.3 | 49 | 83.0 | |
Lettuce | 75 | 64.9 | 75 | 93.2 | |
Radish | 60 | 82.7 | 79 | 92.8 | |
Spinach | 92 | 97.2 | 37 | 100 | |
Swiss chard | 49 | 94.4 | 51 | 95.4 | |
Turnip | 49 | 78.1 | 66 | 80.8 | |
Mean | 82.4 | 89.5 | |||
Overall Mean | 80.3 | 75.0 |
Model | F1-Score (%) | mAP (%) | BA (%) |
---|---|---|---|
RGB | 82.8 | 76.2 | 85.2 |
Greyscale | 88.1 | 83.5 | 88.8 |
RGB + greyscale | 83.0 | 76.6 | 81.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, L.; Magalhães, S.A.; da Silva, D.Q.; dos Santos, F.N.; Cunha, M. Computer Vision and Deep Learning as Tools for Leveraging Dynamic Phenological Classification in Vegetable Crops. Agronomy 2023, 13, 463. https://doi.org/10.3390/agronomy13020463
Rodrigues L, Magalhães SA, da Silva DQ, dos Santos FN, Cunha M. Computer Vision and Deep Learning as Tools for Leveraging Dynamic Phenological Classification in Vegetable Crops. Agronomy. 2023; 13(2):463. https://doi.org/10.3390/agronomy13020463
Chicago/Turabian StyleRodrigues, Leandro, Sandro Augusto Magalhães, Daniel Queirós da Silva, Filipe Neves dos Santos, and Mário Cunha. 2023. "Computer Vision and Deep Learning as Tools for Leveraging Dynamic Phenological Classification in Vegetable Crops" Agronomy 13, no. 2: 463. https://doi.org/10.3390/agronomy13020463
APA StyleRodrigues, L., Magalhães, S. A., da Silva, D. Q., dos Santos, F. N., & Cunha, M. (2023). Computer Vision and Deep Learning as Tools for Leveraging Dynamic Phenological Classification in Vegetable Crops. Agronomy, 13(2), 463. https://doi.org/10.3390/agronomy13020463