Modelling 2050 Water Retention Scenarios for Irrigated and Non-Irrigated Crops for Adaptation to Climate Change Using the SWAT Model: The Case of the Bystra Catchment, Poland
Abstract
:1. Introduction
2. Material and Methods
2.1. Characterization of the Study Area
2.2. Description of SWAT Model and SUFI-2 Model
2.3. Data Used in the SWAT Model and SWAT-CUP Program
2.4. SWAT Model and SUFI-2 Algorithm
2.5. Meteorogical Data
2.6. SWAT CUP Calibration and Validation Results
2.7. Climate Change Scenarios
3. Results
3.1. Variants 1–3 and Adaptation Scenarios 1–5
3.2. Analysis of Variants 1–3 with Adaptation Scenarios 1–5
3.3. Comparison
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Havrylenko, S.B.; Bodoque, J.M.; Srinivasan, R.; Zucarelli, G.V.; Mercuri, P. Assessment of the soil water content in the Pampas region using SWAT. Catena 2016, 137, 298–309. [Google Scholar] [CrossRef]
- IUNG-PIB. Ocena Retencji Wody w Glebie i Zagrożenia Suszą w Oparciu o Bilans Wodny dla Obszaru Województwa Dolnośląskiego; Zakład Gleboznawstwa Erozji i Ochrony Gruntów: Puławy, Poland, 2013. [Google Scholar]
- Maltese, A.; Bates, P.; Capodici, F.; Cannarozzo, M.; Ciraolo, G.; La Loggia, G. Critical analysis of thermal inertia approaches for surface soil water content retrieval. Hydrol. Sci. J. 2013, 58, 1144–1161. [Google Scholar] [CrossRef]
- Somorowska, U. Soil water storage in Poland over the years 2000–2015 in response to precipitation variability as retrieved from GLDAS Noah simulations. Geogr. Pol. 2017, 90, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, J.; Chen, Y.; Wang, A.; De Maeyer, P. The Spatiotemporal Response of Soil Moisture to Precipitation and Temperature Changes in an Arid Region, China. Remote Sens. 2018, 10, 468. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Theoretical Documentation; Version 2012; Soil and Water Assessment Tool Theoretical Documentation: Temple, TX, USA, 2012. [Google Scholar]
- Neitsh, S.I.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinvasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Piniewski, M.; Szcześniak, M.; Huang, S.; Kundzewicz, Z.W. Projections of runoff in the Vistula and the Odra river basins with the help of the SWAT model. Hydrol. Res. 2018, 49, 303–317. [Google Scholar] [CrossRef]
- Zare, M.; Azam, S.; Sauchyn, D. Evaluation of Soil Water Content Using SWAT for Southern Saskatchewan, Canada. Water 2022, 14, 249. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Piniewski, M.; Kardel, I.; Szcześniak, M.; Benestad, R.; Srinivasan, R.; Ignar, S.; Okruszko, T. Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland. Water 2017, 9, 156. [Google Scholar] [CrossRef] [Green Version]
- Badora, D.; Wawer, R.; Nieróbca, A.; Król-Badziak, A.; Kozyra, J.; Jurga, B.; Nowocień, E. Modelling the Hydrology of an Upland Catchment of Bystra River in 2050 Climate Using RCP 4.5 and RCP 8.5 Emission Scenario Forecasts. Agriculture 2022, 12, 403. [Google Scholar] [CrossRef]
- Kozyra, J.; Żyłowska, K.; Nieróbca, A.; Matyka, M.; Smagacz, J.; Jadczyszyn, T.; Wawer, R. Zmiany Klimatu a Rolnictwo w Polsce Ocena Zagrożeń i Sposoby Adaptacji; Fundacja Na Rzecz Zrównoważonego Rozwoju: Warszawa, Poland, 2019; p. 59. [Google Scholar]
- Skoulikaris, C.; Makris, C.; Katirtzidou, M.; Baltikas, V.; Krestenitis, Y. Assessing the Vulnerability of a Deltaic Environment due to Climate Change Impact on Surface and Coastal Waters: The Case of Nestos River (Greece). Environ. Model. Assess. 2021, 26, 459–486. [Google Scholar] [CrossRef]
- Doroszewski, A.; Jadczyszyn, J.; Kozyra, J.; Pudełko, R.; Stuczyński, T.; Mizak, K.; Łopatka, A.; Koza, P.; Górski, T.; Wróblewska, E. Podstawy systemu monitoringu suszy rolniczej. Woda-Sr.-Obsz. Wiej. 2012, 12, 78–91. [Google Scholar]
- KLIMADA 2.0–Baza Wiedzy o Zmianach Klimatu, Scenariusze Zmian Klimatu. 2019. Available online: https://klimada2.ios.gov.pl (accessed on 2 February 2021).
- Kundzewicz, Z.; Kozyra, J. Ograniczenie wpływu zagrożeń klimatycznych w odniesieniu do rolnictwa i obszarów wiejskich. Pol. J. Agron. 2011, 7, 68–81. [Google Scholar]
- Kundzewicz, Z. Zmiany klimatu, ich przyczyny i skutki–możliwości przeciwdziałania i adaptacji. Stud. BAS 2012, 1, 9–30. [Google Scholar]
- IPCC. Climate Change 2007: Synthesis Report. In Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; 104p. [Google Scholar]
- Parry, M.L.; Canziani, O.F.; Palukitof, J.P.; van der Linden, P.J.; Hanson, C.E. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Chang; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Available online: https://www.ipcc.ch/publications_and_data/ar4/wg2/en/contents.html (accessed on 12 December 2015).
- Wawer, R.; Kolasińska, K. (Eds.) KODEKS DOBRYCH PRAKTYK WODNYCH w rolnictwie, Europejski Fundusz Rolny na rzecz Rozwoju Obszarów Wiejskich: Europa inwestująca w obszary wiejskie.” Publikacja współfi nansowana ze środków Unii Europejskiej w ramach pomocy technicznej PROW 2014–2020. Materiał został opracowany na zlecenie Ministerstwa Rolnictwa i Rozwoju Wsi. Instytucja Zarządzająca Programem Rozwoju Obszarów Wiejskich na lata 2014–2020–Minister Rolnictwa i Rozwoju Wsi. 2022. Available online: https://www.gov.pl/web/rolnictwo/kodeks-dobrych-praktyk-wodnych-w-rolnictwie (accessed on 2 December 2022).
- Kundzewicz, Z.W.; Piniewski, M.; Mezghani, A.; Okruszko, T.; Pińskwar, I.; Kardel, I.; Hov, Ø.; Szcześniak, M.; Szwed, M.; Benestad, R.E.; et al. Assessment of climate change and associated impact on selected sectors in Poland. Acta Geophys. 2018, 66, 1509–1523. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Kovats, R.S.; Valentini, R.; Bouwer, L.M.; Georgopoulou, E.; Jacob, D.; Martin, E.; Rounsevell, M.; Soussana, J.F. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C., Dokken, D., Mastrandrea, M., Mach, K., Bilir, T., Chatterjee, M., Ebi, K., Estrada, Y., Genova, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1267–1326. [Google Scholar]
- Ministry of the Environment. Strategiczny plan adaptacji dla sektorów i obszarów wrażliwych na zmiany klimatu do roku 2020 z perspektywą do roku 2030, Dokument został opracowany przez Ministerstwo Środowiska na podstawie analiz wykonanych przez Instytut Ochrony Środowiska-Państwowy Instytut Badawczy w ramach projektu pn. “Opracowanie i wdrożenie Strategicznego Planu Adaptacji dla sektorów i obszarów wrażliwych na zmiany klimatu-KLIMADA”, realizowanego na zlecenie MŚ w latach 2011–2013 ze środków Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej. 2013. Available online: https://bip.mos.gov.pl/fileadmin/user_upload/bip/strategie_plany_programy/Strategiczny_plan_adaptacji_2020.pdf (accessed on 15 October 2022).
- Doroszewski, A.; Jóźwicki, T.; Wróblewska, E.; Kozyra, J. Susza Rolnicza w Polsce w Latach 1961–2010; Wyd. IUNG: Puławy, Poland, 2014; p. 144. [Google Scholar]
- Doroszewski, A. Lecture: Susza Rolnicza w Polsce w 2015 Roku; WMO: Warsaw, Poland, 2016. [Google Scholar]
- Badora, D.; Wawer, R.; Nieróbca, A.; Król-Badziak, A.; Kozyra, J.; Jurga, B.; Nowocień, E. Simulating the Effects of Agricultural Adaptation Practices onto the Soil Water Content in Future Climate Using SWAT Model on Upland Bystra River Catchment. Water 2022, 14, 2288. [Google Scholar] [CrossRef]
- Chałubińska, A.; Wilgat, T. Podział fizjograficzny woj. Lubelskiego. In Przewodnik V Ogólnopolskiego Zjazdu Polskiego Towarzystwa Geograficznego; The Polish Geographical Society: Warsaw, Poland, 1954; pp. 3–44. [Google Scholar]
- Jahn, A. Wyżyna Lubelska. Rzeźba i czwartorzęd. Prace Geograficzne. IG PAN 1956, 7, 399–406. [Google Scholar]
- Sadurska, E. Charakterystyka fizycznogeograficzna Dorzecza Bystrej; Wyd. IUNG: Puławy, Poland, 1980; p. 29. [Google Scholar]
- Jurga, B.; Wawer, R.; Kęsik, K. Zlewnia Rzeki Bystrej Jako Przykład Wyżynnej Zlewni Rolniczej o Wysokich Zdolnościach Buforowych Względem Fosforu-Studium Przypadku, Rolnictwo XXI Wieku–Problemy i Wyzwania, Pod Redakcją Dety Łuczyckiej; Idea Knowledge Future: Wrocław, Poland, 2018; pp. 143–154. ISBN 978-83-945311-9-5. [Google Scholar]
- Wawer, R.; Nowocień, E.; Podolski, B.; Capała, M. Ocena zagrożenia erozją wodną powierzchniową zlewni rzeki Bystrej z wykorzystaniem modelowania przestrzennego. Przegląd Nauk. SGGW Inżynieria I Kształtowanie Sr. 2008, 17, 20–28. [Google Scholar]
- Ziemnicki, S.; Pałys, S. Erozja wodna w zlewni rzeki Bystrej. Zesz. Probl. Postępów Nauk. Rol. 1977, 193, 44–71. [Google Scholar]
- Wawer, R.; Nowocień, E.; Kozyra, J. Lecture: Hydrologia i denudacja w zlewni rzeki Bystrej. Conference: Problemy Gospodarowania Zasobami Środowiska W Dolinach Rzecznych. 27-29.05.2015 r. Wrocław-Pierwoszów. 2015. Available online: https://bazawiedzy.upwr.edu.pl/info/conference/UPWr3e96f2d52a5a400db9bfabe965f5a1d7/Record%2Bdetails%2B%25E2%2580%2593%2BConferences%2B%2528events%2529%2B%25E2%2580%2593%2BWroc%25C5%2582aw%2BUniversity%2Bof%2BEnvironmental%2Band%2BLife%2BSciences+title?affil=&r=publication&ps=20&lang=en&pn=1 (accessed on 7 January 2021).
- SMGP, Szczegółowa mapa Geologiczna Polski, arkusz 747–Nałęczów (M-34-33-A). 2006. Available online: http://bazadata.pgi.gov.pl/data/smgp/arkusze_skany/smgp0747.jpg (accessed on 7 January 2021).
- Kalarus, K. Wpływ Materiału Macierzystego na Właściwości gleb Wykształconych na Lessie; Uniwersytet Jagieloński, Wydział Biologii i Nauk o Ziemi: Kraków, Poland, 2009. [Google Scholar]
- Maruszczak, H. Podstawowe Cechy Genetyczne i Stratygraficzne Lessów Polski Południowo-Wschodniej; Przewodnik sympozjum krajowego litologia i stratygrafia lessów w Polsce: Lublin, Poland, 1972; pp. 89–136. [Google Scholar]
- Maruszczak, H. Definicja i klasyfikacja lessów oraz utworów lessopodobnych. Przegląd Geol. 2000, 48, 580–586. [Google Scholar]
- Piest, R.F.; Ziemnicki, S. Comparative Erosion Rates of Loeass Soils in Poland and Iowa. Trans. Asae 1979, 22, 822–827. [Google Scholar] [CrossRef]
- Bajkiewicz-Grabowska, E.; Mikulski, Z. Hydrologia Ogólna, Pod Redakcją Krystyny Wojtala; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2010; ISBN 978-83-01-14579-8. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool. Theoretical Documentation. 2005. Available online: https://swatmodel.tamu.edu/media/1292/swat2005theory.pdf (accessed on 2 January 2021).
- Abbaspour, K.C.; Vejdani, M.; Haghighat, S. SWAT-CUP calibration and uncertainty programs for SWAT. In Proceedings of the International Congress on Modelling and Simulation (MODSIM’07), Christchurch, New Zealand, 10–13 December 2007; pp. 1596–1602. Available online: https://www.mssanz.org.au/MODSIM07/papers/24_s17/SWAT-CUP_s17_Abbaspour_.pdf (accessed on 3 December 2021).
- Abbaspour, K.C. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs—A User Manual. Swiss Fed. Inst. Aquat. Sci. Technol. 2015, 8. [Google Scholar]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R.A. Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2018, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Bilondi, M.P.; Abbaspour, K.C.; Ghahraman, B. Application of three different calibration-uncertainty analysis methods in a semi-distributed rainfall-spływ model application. Middle-East J. Sci. Res. 2013, 15, 1255–1263. [Google Scholar]
- Yang, W.; Andréasson, J.; Phil Graham, L.; Olsson, J.; Rosberg, J.; Wetterhall, F. Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrol. Res. 2010, 41, 211–229. [Google Scholar] [CrossRef]
- CODGiK, Centralny Ośrodek Dokumentacji Geodezyjnej I Kartograficznej. 2013. Available online: https://www.codgik.gov.pl/ (accessed on 2 February 2022).
- IUNG-PIB. Digital Soil-Mapy Rolnicze 1:25000 i 1:100000; IUNG: Puławy, Poland, 2010. [Google Scholar]
- Jadczyszyn, J.; Smreczak, B. Mapa glebowo-rolnicza w skali 1:25 000 i jej wykorzystanie na potrzeby współczesnego rolnictwa. ZESZYT 2017, 51, 9–27. [Google Scholar] [CrossRef]
- CLC, CORIN–Land Cover-CLC 2018, Główny Inspektorat Ochrony Środowiska. 2018. Available online: https://clc.gios.gov.pl/index.php/clc-2018/o-clc2018 (accessed on 25 June 2022).
- MPHP, Komputerowa Mapa Podziału Hydrograficznego Polski. 2017. Available online: https://danepubliczne.gov.pl/dataset?q=zlewnia&sort=metadata_modified+desc (accessed on 4 June 2021).
- OSM, Open Street Map. 2018. Available online: http://download.geofabrikolandroland.html (accessed on 15 April 2020).
- Geoportal, Instytucja odpowiedzialna: Główny Urząd Geodezji i Kartografii. 2020. Available online: https://mapy.geoportal.gov.pl/wss/service/PZGIK/ORTO/WMS/HighResolution (accessed on 5 March 2022).
- IMGW. Instytut Meteorologii i Gospodarki Wodnej PIB. 2019. Available online: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/ (accessed on 3 March 2022).
- KPOŚK, Krajowy Program Oczyszczania Ścieków Komunalnych. 2017. Available online: https://www.kzgw.gov.pl/index.php/pl/materialy-informacyjne/programy/krajowy-program-oczyszczania-sciekow-komunalnych (accessed on 5 March 2021).
- Wawer, R.; Nowocień, E.; Podolski, B. Actual water erosion risk in Poland based upon Corine Land Cover 2006. EJPAU 2010, 13, art 13. [Google Scholar]
- Markowski, K. Rolnictwo w Województwie Lubelskim w 2019 r; Urząd Statystyczny w Lublinie: Lublin, Poland, 2020; ISSN 2080-0517. [Google Scholar]
- Forests of the Region, Regionalna Dyrekcja Lasów Państwowych w Lublinie. 2021. Available online: https://www.lublin.lasy.gov.pl/lasy-regionu (accessed on 13 May 2021).
- Abbaspour, K.C. SWAT-CUP Tutorial (2): Introduction to SWAT-CUP program, Parameter Estimator (SPE), rogram 2w2e GmbH. 2020. Available online: https://www.youtube.com/watch?v=nNsDPhOI7cc&ab_channel=2w2e (accessed on 5 March 2022).
- Kouchi, D.M.; Esmaili, K.; Faridhosseini, A.; Sanaeinejad, S.H.; Khalili, D.; Abbaspour, K.C. Sensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization Algorithms. Water 2017, 9, 384. [Google Scholar] [CrossRef] [Green Version]
- ADMS, System Monitorowania Suszy Rolniczej. 2013. Available online: https://susza.iung.pulawy.pl/system/ (accessed on 10 February 2022).
- Hennemuth, T.I.; Jacob, D.; Keup-Thiel, E.; Kotlarski, S.; Nikulin, G.; Otto, J.; Rechid, D.; Sieck, K.; Sobolowski, S.; Szabó, P. Guidance for EURO-CORDEX Climate Projections Data Use. Version1 0-201708; EURO-CORDEX Community: Hamburg, Germany, 2017; Available online: https://www.euro-cordex.net/imperia/md/content/csc/cordex/euro-cordex-guidelines-version1.0-2017.08.pdf (accessed on 15 June 2021).
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef]
- Landelius, T.; Dahlgren, P.; Gollvik, S.; Jansson, A.; Olsson, E. A high-resolution regional reanalysis for Europe. Part 2: 2D analysis of surface temperature, precipitation and wind. Q. J. R. Meteorol. Soc. 2016, 142, 2132–2142. [Google Scholar] [CrossRef] [Green Version]
- Schulzweida, U.; Kornblueh, L.; Quast, R. CDO user guide. Clim. Data Oper. Version 2006, 1, 205–209. [Google Scholar]
- Meinshausen, M.; Smith, S.J.; Calvin, K.V.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.-F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP Greenhouse Gas Concentrations and their Extension from 1765 to 2300. Clim. Chang. 2011, 109, 213. [Google Scholar] [CrossRef] [Green Version]
- PIK. Potsdam Institute for Climate Impact Research. 2012. Available online: https://www.pik-potsdam.de/~mmalte/rcps/ (accessed on 5 August 2021).
- Piniewski, M.; Szcześniak, M.; Kardel, I.; Berezowski, T.; Okruszko, T.; Srinivasan, R.; Vikhamar Schuler, D.; Kundzewicz, Z.W. Hydrological modelling of the Vistula and Odra river basins using SWAT. Hydrol. Sci. J. 2017, 62, 1266–1289. [Google Scholar] [CrossRef]
- Piniewski, M.; Marcinkowski, P.; O’Keeffe, J.; Szcześniak, M.; Nieróbca, A.; Kozyra, J.; Kundzewicz, Z.; Okruszko, T. Model-based reconstruction and projections of soil moisture anomalies and crop losses in Poland. Theor. Appl. Climatol. 2020, 140, 691–708. [Google Scholar] [CrossRef] [Green Version]
- Jalowska, A.M.; Yuan, Y. Evaluation of SWAT Impoundment Modeling Methods in Water and Sediment Simulations. JAWRA J. Am. Water Resour. Assoc. 2018, 55, 209–227. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Marek, G.W.; Marek, T.H.; Brauer, D.K.; Srinivasan, R. Assessing the Efficacy of the SWAT Auto-Irrigation Function to Simulate Irrigation, Evapotranspiration, and Crop Response to Management Strategies of the Texas High Plains. Water 2017, 9, 509. [Google Scholar] [CrossRef]
- Rocha, J.; Carvalho-Santos, C.; Diogo, P.; Beça, P.; Keizer, J.J.; Nunes, J.P. Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Sci. Total. Environ. 2020, 736, 139477. [Google Scholar] [CrossRef]
- Kelly, T.; Foster, T.; Schultz, D.M.; Mieno, T. The effect of soil-moisture uncertainty on irrigation water use and farm profits. Adv. Water Resour. 2021, 154, 103982. [Google Scholar] [CrossRef]
- ENORASIS. 2013. Available online: https://www.iung.pl/2012/02/28/enorasis/ (accessed on 19 February 2022).
- Wawer, R.; Łysoń, P.; Dembka, W.; Kanecka–Geszke, E.; Kasperska-Wołowicz, W.; Kozyra, J.; Niedźwiecki, J.; Szymczak, T.; Treder, W. Adaptacja Gospodarki Wodnej w Rolnictwie do Zmieniającego się Klimatu, Study Summarizing the Conference in Puławy on 5 March 2020. Available online: https://woda.cdr.gov.pl/images/woda-w-produkcji/Adaptacja_gospodarki_wodnej_w_rolnictwie.pdf (accessed on 15 July 2022).
- Al Sayah, M.J.; Nedjai, R.; Kaffas, K.; Abdallah, C.; Khouri, M. Assessing the Impact of Man–Made Ponds on Soil Erosion and Sediment Transport in Limnological Basins. Water 2019, 11, 2526. [Google Scholar] [CrossRef] [Green Version]
- Feng, H. Individual contributions of climate and vegetation change to soil moisture trends across multiple spatial scales. Sci. Rep. 2016, 6, 32782. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Wu, Y.; Hao, Z.; Zhang, Q.; Bu, Q.; Gao, X. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Sci. Total Environ. 2018, 613, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Legesse, D.; Vallet-Coulomb, C.; Gasse, F. Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study South Central Ethiopia. J. Hydrol. 2003, 275, 67–85. [Google Scholar] [CrossRef]
- Romero-Cuéllar, J.; Buitrago-Vargas, A.; Quintero-Ruiz, T.; Francés, F. Simulación hidrológica de los impactos potenciales del cambio climático en la cuenca hidrográfica del río Aipe, en Huila, Colombia. Ribagua 2018, 2, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Parra, R.; Cortez, A.; Orlando, B. Characterization of precipitation patterns in Anzoátegui state, Venezuela. Ería 2017, 3, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Olivares, B.O.; Zingaretti, M.L. Application of multivariate methods for the characterization of periods of meteorological drought in Venezuela. Luna Azul 2019, 48, 172–192. [Google Scholar] [CrossRef]
- Zingaretti, M.L.; Campos, O. Analysis of the meteorological drought in four agricultural locations of Venezuela by the combination of multivariate methods. Cuad. Investig. UNED 2018, 10, 192–203. [Google Scholar] [CrossRef]
- Cortez, A.; Parra, R.; Lobo, D.; Rodríguez, M.F.; Rey, J.C. Descripción de los eventos de sequía meteorológica en localidades de la cordillera central, Venezuela. Cienc. Ing. Y Apl. 2018, I, 22–44. [Google Scholar] [CrossRef] [Green Version]
- Parra, R.M.; Cortez, A.; Lobo, D.; Rey, J.C.; Rodríguez, M.F. Characteristics of the meteorological drought (1980–2014) in two agricultural localities of the Venezuelan Andes. Rev. Investig. 2018, 42, 38–55. [Google Scholar]
- Hernandez, R.; Orlando, B. Application of multivariate techniques in the agricultural land’s aptitude in Carabobo, Venezuela. Trop. Subtrop. Agroecosystems 2020, 23, 1–12. [Google Scholar]
- Casana, S.; Campos, O. Evolution, and trend of surface temperature and windspeed (1994–2014) at the Parque Nacional Doñana, Spain. Rev. Fac. Agron. (LUZ). 2020, 37, 1–25. [Google Scholar]
- Olivares, B.O. Tropical rainfall conditions in rainfed agriculture in Carabobo, Venezuela. La Granja 2018, 27, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Józefaciuk, A.; Nowocień, E.; Wawer, R. Erozja gleb w Polsce–skutki środowiskowe i gospodarcze, działania zaradcze, Monografie i rozprawy naukowe. IUNG-PIB 2014, 44, 263. [Google Scholar]
- Woch, F. Kompleksowe Scalanie Gruntów Rolnych i Leśnych Oraz Jego Wpływ na Środowisko, Materiały Szkoleniowe nr 93/2006, red. Bochniarz A., IUNG-PIB w Puławach, Dział Upowszechniania i Wydawnictw; IUNG-PIB: Puławy, Poland, 2006; ISBN 83-89576-43-0. [Google Scholar]
- Woch, F.; Pijanowski, J.; Kurylowicz, T. Kompleksowe urządzanie obszarów wiejskich jako szansa dla rozwoju wsi. Pol. J. Agron. 2018, 33, 16–32, ISSN 2081-2787. Available online: https://www.iung.pl/PJA/wydane/33/PJA33doInternetustr16_32.pdf (accessed on 15 June 2022).
- Woch, F.; Pijanowski, J.M. Challenges to the development of rural areas in Poland. Geomat. Landmanagement Landsc. 2018, 1, 69–84. [Google Scholar] [CrossRef]
- Bouslihim, Y.; Rochdi, A.; El Amrani, N.; Liuzzo, L. Understanding the effects of soil data quality on SWAT model performance and hydrological processes in Tamedroust watershed (Morocco). J. Afr. Earth Sci. 2019, 160, 103616. [Google Scholar] [CrossRef]
Data Type | Data Description, Processing and Usage | Scale/Resolution | Source |
---|---|---|---|
Topography | DEM | 5 m | [48] |
Soils | Shapefile | 1:25,000 and 1:100,000 | [49,50] |
Land Use | Shapefile | 1:100,000 | [51] |
Hydrographic | Shapefile | 1:50,000 | [52] |
Open Street Map | Shapefile | - | [53] |
Geological | Shapefile | - | [36] |
Orthophotomap | WMS | High resolution | [54] |
Weather | Precipitation (mm), temperature (°C), wind speed (m/s), humidity and solar total radiation (MJ/m2) | Daily | Statutory research of IUNG-BIP and other [55] |
Sewage treatment plants | Average daily water loading (m3/day) | Daily | [56] |
Out flow | Calibration and validation (m3/month) | Monthly | Statutory research of IUNG-BIP |
Models | Scenario Assumptions | Radiative Forcing | ||||
---|---|---|---|---|---|---|
GCM/RCM Simulation | Change in Average Annual Air Temperature | Change in Average Annual Precipitation | +4.5 Wm−2 | +8.5 Wm−2 | ||
RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | |
EC-EARTH/RACMO22E | +1.5 °C | +1.8 °C | +15% | +6% | RCP 4.5.1 | RCP 8.5.1 |
EC-EARTH/HIRHAM5 | +1.6 °C | +1.9 °C | +12% | +5% | RCP 4.5.2 | RCP 8.5.2 |
EC-EARTH/RCA4 | +1.6 °C | +2.2 °C | +15% | +11% | RCP 4.5.3 | RCP 8.5.3 |
Subcatchment | Emergency Area (ha) | Emergency Volume (m3 104) | Principal Area (ha) | Principal Volume (m3 104) | Above Mean Sea Level (AMSL) |
---|---|---|---|---|---|
1 | 4 | 8 | 4 | 4 | 198 |
3 | 22 | 84 | 20 | 63 | 195 |
4 | 30 | 143 | 27 | 114 | 198 |
6 | 25 | 102 | 23 | 77 | 180 |
8 | 3 | 5 | 2 | 3 | 186 |
9 | 23 | 93 | 21 | 71 | 171 |
10 | 31 | 118 | 28 | 89 | 162 |
11 | 27 | 89 | 25 | 63 | 162 |
15 | 8 | 22 | 7 | 15 | 183 |
16 | 10 | 19 | 9 | 10 | 195 |
21 | 16 | 105 | 14 | 90 | 165 |
22 | 70 | 319 | 63 | 252 | 150 |
23 | 15 | 88 | 13 | 74 | 171 |
24 | 1 | 2 | 1 | 1 | 154 |
28 | 36 | 88 | 32 | 54 | 135 |
Sum | 321 | 1285 | 289 | 980 |
Time Interval | 2041–2050 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 2010–2017 | Variant 1 Only Climate Change (V1) | Variant 2: Small Retention, More Ponds | Variant 3: Small Retention, More Reservoirs | |||||||||
Type of Scenario | Cereals (V2.1) | Vegetables (V2.2) | Irrigated Vegetables (V2.3) | Irrigated Vegetables + Cereals (V2.4) | Irrigated Orchard + Cereals (V2.5) | Cereals (V3.1) | Vegetables (V3.2) | Irrigated Vegetables (V3.3) | Irrigated Vegetables + Cereals (v3.4) | Irrigated Orchard + Cereals (V3.5) | ||
Season | Seasonal Average of Soil Water Content (mm) | |||||||||||
Climate Scenario | RCP 4.5 | |||||||||||
DJF | 344 | 335 | 335 | 335 | 335 | 335 | 335 | 335 | 335 | 336 | 335 | 313 |
−2.6% | −2.7% | −2.7% | −2.5% | −2.6% | −2.6% | −2.6% | −2.6% | −2.5% | −2.8% | −9.1% | ||
MAM | 322 | 310 | 310 | 321 | 323 | 316 | 317 | 310 | 322 | 324 | 314 | 301 |
−3.5% | −3.5% | −0.1% | +0.5% | −1.7% | −1.5% | −3.5% | 0.0% | +0.6% | −2.3% | −6.5% | ||
JJA | 309 | 295 | 295 | 290 | 298 | 305 | 305 | 295 | 290 | 296 | 294 | 269 |
−4.4% | −4.5% | −6.3% | −3.6% | −1.2% | −1.3% | −4.4% | −6.2% | −4.3% | −4.7% | −12.9% | ||
SON | 328 | 319 | 318 | 316 | 318 | 320 | 321 | 319 | 316 | 318 | 317 | 284 |
−2.7% | −2.9% | −3.7% | −2.9% | −2.2% | −2.0% | −2.7% | −3.5% | −2.9% | −3.3% | −13.5% | ||
Average Annual | 326 | 315 | 315 | 315 | 319 | 319 | 319 | 315 | 316 | 318 | 315 | 292 |
−3.3% | −3.4% | −3.2% | −2.1% | −2.0% | −1.9% | −3.3% | −3.1% | −2.3% | −3.2% | −10.5% | ||
Climate Scenario | RCP 8.5 | |||||||||||
DJF | 344 | 340 | 340 | 340 | 340 | 340 | 340 | 340 | 341 | 341 | 340 | 330 |
−1.1% | −1.1% | −1.3% | −1.4% | −1.1% | −1.2% | −1.1% | −1.0% | −1.0% | −1.1% | −4.3% | ||
MAM | 322 | 320 | 320 | 327 | 326 | 324 | 324 | 320 | 328 | 330 | 323 | 317 |
−0.5% | −0.5% | +1.5% | +1.4% | +0.7% | +0.9% | −0.5% | +2.0% | +2.5% | +0.4% | −1.4% | ||
JJA | 309 | 308 | 308 | 298 | 305 | 315 | 315 | 308 | 299 | 305 | 307 | 290 |
−0.1% | −0.3% | −3.4% | −1.4% | +2.0% | +2.0% | −0.2% | −3.3% | −1.3% | −0.7% | −6.0% | ||
SON | 328 | 328 | 328 | 327 | 328 | 329 | 329 | 328 | 326 | 327 | 327 | 305 |
+0.1% | 0.0% | −0.2% | +0.3% | +0.3% | +0.4% | +0.1% | −0.6% | −0.2% | −0.2% | −6.8% | ||
Average Annual | 326 | 324 | 324 | 323 | 325 | 327 | 327 | 324 | 323 | 326 | 324 | 311 |
−0.4% | −0.5% | −0.8% | −0.3% | +0.4% | +0.5% | −0.4% | −0.7% | 0.0% | −0.4% | −4.6% |
Time Interval | 2041–2050 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 2010–2017 | Variant 1 Only Climate Change (V1) | Variant 2: Small Retention, More Ponds | Variant 3: Small Retention, More Reservoirs | |||||||||
Type of Scenario | Cereals (V2.1) | Vegetables (V2.2) | Irrigated Vegetables (V2.3) | Irrigated Vegetables + Cereals (V2.4) | Irrigated Orchard + Cereals (V2.5) | Cereals (V3.1) | Vegetables (V3.2) | Irrigated Vegetables (V3.3) | Irrigated Vegetables + Cereals (V3.4) | Irrigated Orchard + Cereals (V3.5) | ||
Season | Seasonal Total of Total Runoff (mm) | |||||||||||
Climate Scenario | RCP 4.5 | |||||||||||
DJF | 55 | 42 | 41 | 40 | 46 | 51 | 52 | 42 | 40 | 45 | 43 | 35 |
−24% | −25% | −27% | −16% | −7% | −4% | −24% | −27% | −18% | −21% | −35% | ||
MAM | 54 | 42 | 41 | 41 | 46 | 50 | 52 | 42 | 42 | 46 | 43 | 36 |
−23% | −23% | −23% | −14% | −7% | −4% | −23% | −23% | −15% | −20% | −33% | ||
JJA | 46 | 35 | 35 | 35 | 42 | 47 | 49 | 35 | 35 | 41 | 38 | 31 |
−24% | −25% | −24% | −9% | +3% | +6% | −24% | −24% | −11% | −18% | −34% | ||
SON | 48 | 38 | 37 | 35 | 43 | 50 | 51 | 38 | 35 | 41 | 39 | 32 |
−22% | −23% | −28% | −11% | +4% | +6% | −22% | −27% | −14% | −18% | −34% | ||
Annual Total | 202 | 156 | 154 | 150 | 177 | 198 | 203 | 156 | 152 | 173 | 163 | 134 |
−23% | −24% | −26% | −13% | −2% | 0% | −23% | −25% | −15% | −19% | −34% | ||
Climate Scenario | RCP 8.5 | |||||||||||
DJF | 55 | 59 | 59 | 55 | 61 | 67 | 68 | 59 | 56 | 62 | 61 | 53 |
+8% | +7% | +0% | +13% | +24% | +26% | +8% | +3% | +14% | +11% | −3% | ||
MAM | 54 | 59 | 58 | 58 | 62 | 66 | 68 | 59 | 58 | 63 | 60 | 54 |
+9% | +8% | +7% | +15% | +23% | +26% | +9% | +8% | +17% | +13% | 0% | ||
JJA | 46 | 54 | 53 | 52 | 61 | 65 | 66 | 54 | 53 | 60 | 57 | 50 |
+17% | +16% | +13% | +32% | +40% | +43% | +17% | +14% | +30% | +23% | +9% | ||
SON | 48 | 56 | 56 | 54 | 59 | 67 | 68 | 56 | 53 | 60 | 59 | 51 |
+17% | +16% | +12% | +22% | +40% | +42% | +17% | +10% | +25% | +22% | +7% | ||
Annual Total | 202 | 228 | 226 | 218 | 243 | 266 | 271 | 228 | 220 | 245 | 236 | 208 |
+13% | +12% | +8% | +20% | +31% | +34% | +13% | +9% | +21% | +17% | +3% |
Time Interval | 2041–2050 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 2010–2017 | Variant 1 Only Climate Change (V1) | Variant 2: Small Retention, More Ponds | Variant 3: Small Retention, More Reservoirs | |||||||||
Type of Scenario | Cereals (V2.1) | Vegetables (V2.2) | Irrigated Vegetables (V2.3) | Irrigated Vegetables + Cereals (V2.4) | Irrigated Orchard + Cereals (V2.5) | Cereals (V3.1) | Vegetables (V3.2) | Irrigated Vegetables (V3.3) | Irrigated Vegetables + Cereals (V3.4) | Irrigated Orchard + Cereals (V3.5) | ||
Season | Seasonal Total of Sediment Yield (t/ha) | |||||||||||
Climate Scenario | RCP 4.5 | |||||||||||
DJF | 0.21 | 0.13 | 0.11 | 0.16 | 0.16 | 0.13 | 0.03 | 0.13 | 0.19 | 0.19 | 0.16 | 0.04 |
−38% | −49% | −25% | −24% | −35% | −86% | −38% | −9% | −9% | −23% | −83% | ||
MAM | 0.18 | 0.12 | 0.10 | 0.21 | 0.22 | 0.19 | 0.03 | 0.12 | 0.26 | 0.27 | 0.21 | 0.04 |
−36% | −48% | +16% | +22% | +1% | −82% | −36% | +42% | +46% | +14% | −78% | ||
JJA | 0.11 | 0.13 | 0.10 | 0.16 | 0.22 | 0.21 | 0.03 | 0.13 | 0.19 | 0.23 | 0.17 | 0.04 |
+22% | −2% | +53% | +109% | +97% | −70% | +22% | +84% | +116% | +62% | −64% | ||
SON | 0.15 | 0.18 | 0.15 | 0.11 | 0.15 | 0.15 | 0.04 | 0.18 | 0.13 | 0.15 | 0.13 | 0.04 |
+19% | −2% | −29% | 0% | 0% | −77% | +19% | −13% | +1% | −13% | −71% | ||
Annual Total | 0.65 | 0.56 | 0.45 | 0.64 | 0.75 | 0.68 | 0.13 | 0.56 | 0.77 | 0.84 | 0.67 | 0.16 |
−14% | −30% | −2% | +16% | +5% | −80% | −14% | +20% | +29% | +4% | −76% | ||
Climate Scenario | RCP 8.5 | |||||||||||
DJF | 0.21 | 0.17 | 0.14 | 0.16 | 0.22 | 0.18 | 0.04 | 0.17 | 0.27 | 0.28 | 0.21 | 0.05 |
−18% | −33% | −23% | +4% | −16% | −80% | −18% | +32% | +33% | +2% | −76% | ||
MAM | 0.18 | 0.16 | 0.13 | 0.29 | 0.29 | 0.24 | 0.04 | 0.16 | 0.34 | 0.36 | 0.28 | 0.05 |
−15% | −30% | +57% | +57% | +32% | −77% | −15% | +85% | +93% | +51% | −72% | ||
JJA | 0.11 | 0.19 | 0.15 | 0.22 | 0.34 | 0.26 | 0.05 | 0.19 | 0.27 | 0.31 | 0.24 | 0.06 |
+81% | +47% | +112% | +226% | +147% | −55% | +81% | +160% | +197% | +126% | −43% | ||
SON | 0.15 | 0.32 | 0.26 | 0.29 | 0.23 | 0.23 | 0.07 | 0.32 | 0.30 | 0.32 | 0.25 | 0.09 |
+112% | +73% | +93% | +54% | +54% | −54% | +112% | +101% | +112% | +64% | −44% | ||
Annual Total | 0.65 | 0.84 | 0.68 | 0.96 | 1.08 | 0.91 | 0.20 | 0.84 | 1.19 | 1.26 | 0.97 | 0.25 |
+29% | +6% | +49% | +67% | +40% | −69% | +29% | +84% | +95% | +50% | −62% |
Time Interval | 2041–2050 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 2010–2017 | Variant 1 Only Climate Change (V1) | Variant 2: Small Retention, More Ponds | Variant 3: Small Retention, More Reservoirs | |||||||||
Type of Scenario | Cereals (V2.1) | Vegetables (V2.2) | Irrigated Vegetables (V2.3) | Irrigated Vegetables + Cereals (V2.4) | Irrigated Orchard + Cereals (v2.5) | Cereals (V3.1) | Vegetables (V3.2) | Irrigated Vegetables (V3.3) | Irrigated Vegetables + Cereals (V3.4) | Irrigated Orchard + Cereals (V3.5) | ||
Season | Seasonal Total of Actual Evapotranspiration (mm) | |||||||||||
Climate Scenario | RCP 4.5 | |||||||||||
DJF | 17 | 27 | 27 | 26 | 26 | 27 | 26 | 27 | 26 | 26 | 27 | 26 |
+60% | +59% | +53% | +53% | +58% | +49% | +60% | +53% | +53% | +58% | +49% | ||
MAM | 138 | 146 | 146 | 118 | 124 | 151 | 151 | 146 | 118 | 127 | 145 | 146 |
+6% | +6% | −15% | −10% | +9% | +9% | +6% | −15% | −8% | +5% | +5% | ||
JJA | 167 | 162 | 162 | 200 | 216 | 210 | 229 | 162 | 200 | 214 | 191 | 215 |
−3% | −3% | +20% | +29% | +26% | +37% | −3% | +20% | +28% | +14% | +29% | ||
SON | 50 | 67 | 67 | 63 | 66 | 70 | 84 | 67 | 63 | 66 | 67 | 80 |
+35% | +35% | +28% | +34% | +42% | +69% | +35% | +28% | +33% | +35% | +62% | ||
Annual Total | 372 | 402 | 403 | 407 | 433 | 459 | 489 | 402 | 407 | 433 | 430 | 467 |
+8% | +8% | +9% | +16% | +23% | +31% | +8% | +9% | +16% | +16% | +26% | ||
Climate Scenario | RCP 8.5 | |||||||||||
DJF | 17 | 29 | 29 | 33 | 31 | 29 | 27 | 29 | 28 | 28 | 29 | 27 |
+68% | +68% | +93% | +78% | +66% | +55% | +68% | +62% | +62% | +67% | +56% | ||
MAM | 138 | 144 | 144 | 128 | 130 | 147 | 147 | 144 | 120 | 127 | 143 | 143 |
+4% | +4% | −7% | −6% | +6% | +6% | +4% | −13% | −8% | +3% | +4% | ||
JJA | 167 | 158 | 159 | 188 | 206 | 203 | 221 | 158 | 194 | 211 | 187 | 210 |
−5% | −5% | +12% | +23% | +22% | +32% | −5% | +16% | +26% | +12% | +26% | ||
SON | 50 | 69 | 69 | 60 | 65 | 72 | 85 | 69 | 66 | 69 | 70 | 82 |
+40% | +40% | +21% | +30% | +46% | +70% | +40% | +34% | +39% | +41% | +66% | ||
Annual Total | 372 | 401 | 401 | 409 | 431 | 450 | 479 | 401 | 409 | 435 | 428 | 463 |
+8% | +8% | +10% | +16% | +21% | +29% | +8% | +10% | +17% | +15% | +24% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badora, D.; Wawer, R.; Król-Badziak, A. Modelling 2050 Water Retention Scenarios for Irrigated and Non-Irrigated Crops for Adaptation to Climate Change Using the SWAT Model: The Case of the Bystra Catchment, Poland. Agronomy 2023, 13, 404. https://doi.org/10.3390/agronomy13020404
Badora D, Wawer R, Król-Badziak A. Modelling 2050 Water Retention Scenarios for Irrigated and Non-Irrigated Crops for Adaptation to Climate Change Using the SWAT Model: The Case of the Bystra Catchment, Poland. Agronomy. 2023; 13(2):404. https://doi.org/10.3390/agronomy13020404
Chicago/Turabian StyleBadora, Damian, Rafał Wawer, and Aleksandra Król-Badziak. 2023. "Modelling 2050 Water Retention Scenarios for Irrigated and Non-Irrigated Crops for Adaptation to Climate Change Using the SWAT Model: The Case of the Bystra Catchment, Poland" Agronomy 13, no. 2: 404. https://doi.org/10.3390/agronomy13020404
APA StyleBadora, D., Wawer, R., & Król-Badziak, A. (2023). Modelling 2050 Water Retention Scenarios for Irrigated and Non-Irrigated Crops for Adaptation to Climate Change Using the SWAT Model: The Case of the Bystra Catchment, Poland. Agronomy, 13(2), 404. https://doi.org/10.3390/agronomy13020404