Influence of Extraction Methods on the Phytochemical Profile of Sambucus nigra L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. The Preparation of Plant Material and Plant Extracts
2.2.1. Conventional Extraction with Solvents (C)
2.2.2. Ultrasound-Assisted Extraction (U)
2.2.3. Microwave Extraction (M)
2.3. Macro and Microelements Determination
2.4. Antioxidant Profile
2.4.1. Determination of Total Polyphenols Content (TPC)
2.4.2. Determination of Total Flavonoids Content (TFC)
2.4.3. Antioxidant Activity by Ferric Reducing Antioxidant Power (FRAP) Assay
2.4.4. Antioxidant Capacity by 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Assay
2.4.5. Influence of Drying Methods on Extraction Method and Extraction Solvent
- where:
2.4.6. Individual Polyphenols Content Detected by LC-MS
2.5. Statistical Analysis
3. Results and Discussion
3.1. Macro and Microelements
3.2. Antioxidant Profile
Determination of Total Polyphenols Content
3.3. Antioxidant Activity
3.3.1. Antioxidant Activity by Ferric Reducing Antioxidant Power (FRAP) Assay
3.3.2. Determination of Total Flavonoids Content (TFC)
3.3.3. Antioxidant Capacity by 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Assay
3.3.4. Individual Polyphenols Content Detected by LC-MS
3.4. Cluster Analysis of Variables
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charlebois, D.; Byers, P.L.; Finn, C.E.; Thomas, A.L. Elderberry: Botany, horticulture, potential. Hortic. Rev. 2010, 37, 213–280. [Google Scholar]
- Atkinson, M.D.; Atkinson, E. Sambucus nigra L. J. Ecol. 2002, 90, 895–923. [Google Scholar] [CrossRef]
- Tundis, R.; Ursino, C.; Bonesi, M.; Loizzo, M.R.; Sicari, V.; Pellicanò, T.; Manfredi, I.L.; Figoli, A.; Cassano, A. Flower and leaf extracts of Sambucus nigra L.: Application of membrane processes to obtain fractions with antioxidant and antityrosinase properties. Membranes 2019, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Staniek, H.; Kidoń, M.; Łysiak, G.P. The content of selected minerals, bioactive compounds, and the antioxidant properties of the flowers and fruit of selected cultivars and wildly growing plants of Sambucus nigra L. Molecules 2020, 25, 876. [Google Scholar] [CrossRef] [PubMed]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Łysiak, G.P. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 2018, 40, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Hubert, C.; Tsiaparas, S.; Kahlert, L.; Luhmer, K.; Moll, M.D.; Passon, M.; Wüst, M.; Schieber, A.; Pude, R. Effect of Different Postharvest Methods on Essential Oil Content and Composition of Three Mentha Genotypes. Horticulturae 2023, 9, 960. [Google Scholar] [CrossRef]
- Christensen, K.; Olsen, L.; Kotowska, D.; Bhattacharya, S.; Fretté, X.; Færgeman, N.; Kristiansen, K.; Oksbjerg, N.; Christensen, L. Elderflowers (Sambucus nigra L.) have a significant impact on cellular mechanisms related to lipid storage and insulin resistance. Planta Medica 2010, 76, P633. [Google Scholar] [CrossRef]
- Pascariu, O.-E.; Israel-Roming, F. Bioactive compounds from Elderberry: Extraction, health benefits, and food applications. Processes 2022, 10, 2288. [Google Scholar] [CrossRef]
- Hearst, C.; McCollum, G.; Nelson, D.; Ballard, L.M.; Millar, B.C.; Goldsmith, C.E.; Rooney, P.J.; Loughrey, A.; Moore, J.E.; Rao, J.R. Antibacterial activity of elder (Sambucus nigra L.) flower or berry against hospital pathogens. J. Med. Plants Res. 2010, 4, 1805–1809. [Google Scholar]
- Harnett, J.; Oakes, K.; Carè, J.; Leach, M.; Brown, D.; Cramer, H.; Pinder, T.-A.; Steel, A.; Anheyer, D. The effects of Sambucus nigra berry on acute respiratory viral infections: A rapid review of clinical studies. Adv. Integr. Med. 2020, 7, 240–246. [Google Scholar] [CrossRef]
- Villalva, M.; Santoyo, S.; Salas-Pérez, L.; Siles-Sánchez, M.d.l.N.; Rodríguez García-Risco, M.; Fornari, T.; Reglero, G.; Jaime, L. Sustainable extraction techniques for obtaining antioxidant and anti-inflammatory compounds from the Lamiaceae and Asteraceae species. Foods 2021, 10, 2067. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Zhang, L.; Rocchetti, G.; Lucini, L.; Pateiro, M.; Munekata, P.E.; Lorenzo, J.M. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 2020, 330, 127266. [Google Scholar] [CrossRef] [PubMed]
- Vatai, T.; Škerget, M.; Knez, Ž. Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. J. Food Eng. 2009, 90, 246–254. [Google Scholar] [CrossRef]
- Gullon, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Olech, M.; Oniszczuk, T.; Wojtunik-Kulesza, K.; Wójtowicz, A. Extraction methods, LC-ESI-MS/MS analysis of phenolic compounds and antiradical properties of functional food enriched with elderberry flowers or fruits. Arab. J. Chem. 2019, 12, 4719–4730. [Google Scholar] [CrossRef]
- Horablaga, N.M.; Cozma, A.; Alexa, E.; Obistioiu, D.; Cocan, I.; Poiana, M.-A.; Lalescu, D.; Pop, G.; Imbrea, I.M.; Buzna, C. Influence of Sample Preparation/Extraction Method on the Phytochemical Profile and Antimicrobial Activities of 12 Commonly Consumed Medicinal Plants in Romania. Appl. Sci. 2023, 13, 2530. [Google Scholar] [CrossRef]
- Plustea, L.; Negrea, M.; Cocan, I.; Radulov, I.; Tulcan, C.; Berbecea, A.; Popescu, I.; Obistioiu, D.; Hotea, I.; Suster, G. Lupin (Lupinus spp.)-fortified bread: A sustainable, nutritionally, functionally, and technologically valuable solution for bakery. Foods 2022, 11, 2067. [Google Scholar] [CrossRef]
- Hulea, A.; Obiștioiu, D.; Cocan, I.; Alexa, E.; Negrea, M.; Neacșu, A.-G.; Hulea, C.; Pascu, C.; Costinar, L.; Iancu, I. Diversity of Monofloral Honey Based on the Antimicrobial and Antioxidant Potential. Antibiotics 2022, 11, 595. [Google Scholar] [CrossRef]
- Metzner Ungureanu, C.-R.; Poiana, M.-A.; Cocan, I.; Lupitu, A.I.; Alexa, E.; Moigradean, D. Strategies to improve the thermo-oxidative stability of sunflower oil by exploiting the antioxidant potential of blueberries processing byproducts. Molecules 2020, 25, 5688. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Cadariu, A.I.; Cocan, I.; Negrea, M.; Alexa, E.; Obistioiu, D.; Hotea, I.; Radulov, I.; Poiana, M.-A. Exploring the Potential of Tomato Processing Byproduct as a Natural Antioxidant in Reformulated Nitrite-Free Sausages. Sustainability 2022, 14, 11802. [Google Scholar] [CrossRef]
- Szymanski, M.; Szymanski, A. Study on relationships between the content of chemical elements and polyphenols and antioxidant activity in Sambucus nigra. J. Elem. 2022, 27, 739–753. [Google Scholar] [CrossRef]
- Divis, P.; Porizka, J.; Vespalcová, M.; Matejicek, A.; Kaplan, J. Elemental composition of fruits from different black elder (Sambucus nigra L.) cultivars grown in the Czech Republic. J. Elem. 2015, 20, 549–557. [Google Scholar]
- Tabaszewska, M.; Sikora, E. The Effect of the Plant Stabilisation Method on the Composition and Antioxidant Properties of Elderflower (Sambucus nigra L.) Extract. Molecules 2023, 28, 2365. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Ivancic, A.; Schmitzer, V.; Veberic, R.; Stampar, F. Comparison of major taste compounds and antioxidative properties of fruits and flowers of different Sambucus species and interspecific hybrids. Food Chem. 2016, 200, 134–140. [Google Scholar] [CrossRef]
- Gentscheva, G.; Milkova-Tomova, I.; Nikolova, K.; Buhalova, D.; Andonova, V.; Gugleva, V.; Petkova, N.; Yotkovska, I.; Ivanova, N. Antioxidant activity and chemical characteristics of Sambucus nigra L. blossom from different regions in Bulgaria. Horticulturae 2022, 8, 309. [Google Scholar] [CrossRef]
- Viapiana, A.; Wesolowski, M. The phenolic contents and antioxidant activities of infusions of Sambucus nigra L. Plant Foods Hum. Nutr. 2017, 72, 82–87. [Google Scholar] [CrossRef]
- Milena, V.; Tatjana, M.; Gökhan, Z.; Ivana, B.; Aleksandra, C.; Mohammad, M.F.; Marija, R. Advantages of contemporary extraction techniques for the extraction of bioactive constituents from black elderberry (Sambucus nigra L.) flowers. Ind. Crops Prod. 2019, 136, 93–101. [Google Scholar] [CrossRef]
- Lemos, D.; Sonego, J.; Boschiero, M.; Araujo, E.; Cruz, A.; Badino, A. Selection and application of nontoxic solvents in extractive ethanol fermentation. Biochem. Eng. J. 2017, 127, 128–135. [Google Scholar] [CrossRef]
- Haș, I.M.; Teleky, B.-E.; Szabo, K.; Simon, E.; Ranga, F.; Diaconeasa, Z.M.; Purza, A.L.; Vodnar, D.-C.; Tit, D.M.; Nițescu, M. Bioactive Potential of Elderberry (Sambucus nigra L.): Antioxidant, Antimicrobial Activity, Bioaccessibility and Prebiotic Potential. Molecules 2023, 28, 3099. [Google Scholar] [CrossRef]
- Putnik, P.; Barba, F.J.; Lucini, L.; Rocchetti, G.; Montesano, D. Conventional, non-conventional extraction techniques and new strategies for the recovery of bioactive compounds from plant material for human nutrition. Food Res. Int. 2019, 123, 516–517. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Bhatt, I.D.; Rawal, R.S.; Pande, V. Microwave-assisted extraction (MAE) conditions using polynomial design for improving antioxidant phytochemicals in Berberis asiatica Roxb. ex DC. leaves. Ind. Crops Prod. 2017, 95, 393–403. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Wianowska, D.; Baraniak, B. The antioxidant properties of alcoholic extracts from Sambucus nigra L.(antioxidant properties of extracts). LWT-Food Sci. Technol. 2006, 39, 308–315. [Google Scholar] [CrossRef]
- Socaci, S.A.; FĂRCAŞ, A.C.; TOFANĂ, M.; Pop, C.; Jimborean, M.; Nagy, M. Evaluation of Bioactive Compounds from Flowers and Fruits of Black Elder (Sambucus nigra L.). Bull. UASVM Food Sci. Technol. 2015, 72, 2. [Google Scholar] [CrossRef] [PubMed]
- Zawiślak, A.; Francik, R.; Francik, S.; Knapczyk, A. Impact of drying conditions on antioxidant activity of red clover (Trifolium pratense), sweet violet (Viola odorata) and elderberry flowers (Sambucus nigra). Materials 2022, 15, 3317. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Pugliese, A.; Bonesi, M.; Tenuta, M.C.; Menichini, F.; Xiao, J.; Tundis, R. Edible flowers: A rich source of phytochemicals with antioxidant and hypoglycemic properties. J. Agric. Food Chem. 2016, 64, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Santos, P.; Badim, H.; Salvador, Â.C.; Silvestre, A.J.; Santos, S.A.; Rocha, S.M.; Sousa, A.M.; Pereira, M.O.; Wilson, C.P.; Rocha, C.M. Chemical characterization of Sambucus nigra L. flowers aqueous extract and its biological implications. Biomolecules 2021, 11, 1222. [Google Scholar] [CrossRef]
- Neves, C.; Pinto, A.; Gonçalves, F.; Wessel, D.F. Changes in elderberry (Sambucus nigra L.) juice concentrate polyphenols during storage. Appl. Sci. 2021, 11, 6941. [Google Scholar] [CrossRef]
- Rojas-Ocampo, E.; Torrejón-Valqui, L.; Muñóz-Astecker, L.D.; Medina-Mendoza, M.; Mori-Mestanza, D.; Castro-Alayo, E.M. Antioxidant capacity, total phenolic content and phenolic compounds of pulp and bagasse of four Peruvian berries. Heliyon 2021, 7, e07787. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Nogueira, A.; Rocha, C.M.; Wilson, C.P.; Teixeira, J.A.; Botelho, C. Sambucus nigra flower and berry extracts for food and therapeutic applications: Effect of gastrointestinal digestion on in vitro and in vivo bioactivity and toxicity. Food Funct. 2022, 13, 6762–6776. [Google Scholar] [CrossRef] [PubMed]
- Kucekova, Z.; Mlcek, J.; Humpolicek, P.; Rop, O. Edible flowers—Antioxidant activity and impact on cell viability. Open Life Sci. 2013, 8, 1023–1031. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Silva, A.M.; Nunes, F.M. Sambucus nigra L. fruits and flowers: Chemical composition and related bioactivities. Food Rev. Int. 2022, 38, 1237–1265. [Google Scholar] [CrossRef]
- Demasi, S.; Caser, M.; Donno, D.; Enri, S.R.; Lonati, M.; Scariot, V. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Hortic. 2021, 33, 27–48. [Google Scholar] [CrossRef]
The Samples between the Increases Were Calculated | Equation | |
---|---|---|
Increases influenced by drying methods | AECDS/AECLS | |
AEUDS/AEULS | ||
AEMDS/AEMLS | ||
WECDS/WECLS | ||
WEUDS/WEULS | ||
WEMDS/WEMLS | ||
Increases influenced by extraction method | AECDS/AEUDS | |
AECLS/AEULS | ||
WECDS/WEUDS | ||
WECLS/WEULS | ||
AECDS/AEMDS | ||
AECLS/AEMLS | ||
WECDS/WEMDS | ||
WECLS/WEMLS | ||
AEUDS/AEMDS | ||
AEULS/AEMLS | ||
WEUDS/WEMDS | ||
WEULS/WEMLS | ||
Increases influenced by solvent used in extraction | WECDS/AECDS | |
WECLS/AECLS | ||
WEUDS/AEUDS | ||
WEULS/AEULS | ||
WEMDS/AEMDS | ||
WEMLS/AEMLS |
Compounds | Calibration Curves | R2 |
---|---|---|
Gallic acid | y = 17.973x − 29.654 | 0.993 |
Epicatechin | y = 19.631x − 144.666 | 0.996 |
Caffeic acid | y = 22.018x − 38.222 | 0.997 |
β-rezolcilic | y = 29.581x − 39.494 | 0.999 |
Cumaric acid | y = 9.235x + 38.196 | 0.998 |
Rutin | y = 43.551x − 34.511 | 0.997 |
Ferulic acid | y = 2.087x − 25.906 | 0.996 |
Rosmarinic acid | y = 15.671x − 106.309 | 0.997 |
Resveratrol | y = 181.457x − 1.668 | 0.989 |
Quercitine | y = 41.846x − 65.050 | 0.999 |
Sample | Cu (ppm) | Zn (ppm) | Fe (ppm) | Mn (ppm) | Ca (ppm) | Mg (ppm) | K (ppm) |
---|---|---|---|---|---|---|---|
Sambucus nigra L. | 11.28 ± 0.39 | 39.48 ± 1.34 | 56.78 ± 2.12 | 66.11 ± 2.24 | 3296.52 ± 98.89 | 3979.75 ± 107.45 | 2018.81± 60.55 |
Concentration (µg/mL) | Ascorbic Acid | Concentration (µg/mL) | AECDS | AECLS | AEUDS | AEULS | AEMDS | AEMLS | Concentration (µg/mL) | WECDS | WECLS | WEUDS | WEULS | WEMDS | WEMLS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inhibition (%) | Inhibition (%) | Inhibition (%) | |||||||||||||
0.06 | 25.22 ± 0.75 f | 0.71 | 29.40 ± 0.81 g | 29.69 ± 0.82 g | 31.79 ± 0.86 h | 37.20 ± 0.83 e | 39.85 ± 0.93 i | 41.99 ± 0.97 j | 1.00 | 12.56 ± 0.36 a | 13.47 ± 0.38 a | 15.02 ± 0.49 b | 17.28 ± 0.52 c | 34.79 ± 0.68 d | 37.11 ± 0.83 e |
0.08 | 45.58 ± 1.28 g,h | 0.83 | 29.70 ± 0.83 d | 37.11 ± 0.81 e | 45.86 ± 1.29 g,h | 45.84 ± 1.29 g,h | 45.10 ± 1.1 g | 46.49 ± 1.19 h | 1.25 | 14.89 ± 0.44 a | 15.38 ± 0.51 a | 16.65 ± 0.55 b | 21.14 ± 0.62 c | 36.48 ±0.79 e | 39.87 ± 0.87 f |
0.10 | 65.24 ± 1.89 j | 1.00 | 38.12 ± 0.85 d | 44.07 ± 1.16 e | 50.87 ± 1.39 g | 53.55 ± 1.46 h | 53.82 ± 1.48 h | 60.52 ± 1.70 i | 1.67 | 18.64 ± 0.54 a | 19.50 ± 0.58 a | 21.57 ± 0.61 b | 25.66 ± 0.74 c | 43.40 ± 1.07 e | 46.27 ± 1.27 f |
0.14 | 82.32 ± 2.42 k | 1.25 | 46.25 ± 1.29 e | 53.53 ± 1.44 f | 58.63 ± 1.61 h | 66.92 ± 1.79 j | 58.92 ± 1.65 h | 61.84 ± 1.76 i | 2.50 | 23.68 ± 0.67 a | 25.86 ± 0.72 b | 27.24 ± 0.74 c | 38.98 ± 0.89 d | 55.12 ± 1.46 g | 58.14 ± 1.57 h |
0.16 | 94.54 ± 2.78 j | 1.67 | 60.53 ± 1.72 d | 66.29 ± 1.77 f,g | 67.35 ± 1.79 f,g | 67.49 ± 1.82 f,g | 69.23 ± 1.88 h | 74.79 ± 1.94 i | 5.00 | 28.23 ± 0.83 a | 37.64 ± 0.85 b | 38.86 ± 0.87 c | 55.95 ± 1.54 c | 64.91 ± 1.58 e | 68.61 ± 1.85 g,h |
Samples | IC50 (µg/mL) |
---|---|
Ascorbic acid | 2.28 ± 0.06 a |
AECDS | 4.16 ± 0.12 e |
AECLS | 3.43 ± 0.10 d |
AEUDS | 2.89 ± 0.07 b,c |
AEULS | 2.48 ± 0.06 a,b |
AEMDS | 2.53 ± 0.07 a,b |
AEMLS | 2.12 ± 0.05 a |
WECDS | 10.57 ± 0.29 h |
WECLS | 7.69 ± 0.23 g |
WEUDS | 7.48 ± 0.21 g |
WEULS | 4.91 ± 0.14 f |
WEMDS | 3.38 ± 0.09 d |
WEMLS | 3.00 ± 0.08 c,d |
Gallic Acid (mg/gd.w.) | Epicatechin (mg/g d.w.) | Caffeic Acid (mg/g d.w.) | β-Rezolcilic (mg/g d.w.) | Cumaric Acid (mg/gd.w.) | Rutin (mg/gd.w.) | Ferulic Acid (mg/g d.w.) | Rosmarinic Acid (mg/g d.w.) | Resveratrol (mg/g d.w.) | Quercitine (mg/g d.w.) | |
---|---|---|---|---|---|---|---|---|---|---|
AECDS | 0.30 ± 0.01 c | 0.27 ± 0.01 c | 0.15 ± 0.01 b | nd * | 0.13 ± 0.01 b | 6.57 ± 0.30 b | 0.28 ± 0.01 c,d | 0.41 ± 0.02 a | 0.49 ± 0.02 c | 2.24 ± 0.09 a |
AECLS | 0.33 ± 0.01 c,d | 0.29 ± 0.01 c | 0.26 ± 0.01 c | nd | 0.15 ± 0.01 b | 7.19 ± 0.35 c | 0.25 ± 0.01 c | 0.54 ± 0.02 b | 0.51 ± 0.02 c,d | 2.61 ± 0.10 b |
AEUDS | 0.35 ± 0.01 c,d | 0.31 ± 0.01 c,d | 0.32 ± 0.01 d | nd | 0.17 ± 0.01 b | 7.22 ± 0.35 c | 0.26 ± 0.01 c | 0.58 ± 0.02 b | 0.56 ± 0.02 d,e | 2.65 ± 0.11 c |
AEULS | 0.37 ± 0.01 d | 0.32 ± 0.01 c,d | 0.35 ± 0.01 d | 0.02 ± 0.00 a | 0.41 ± 0.02 c | 7.96 ± 0.37 d | 0.13 ± 0.01 a,b | 0.68 ± 0.03 c | 0.61 ± 0.03 e | 2.57 ± 0.10 b,c |
AEMDS | 0.58 ± 0.02 e,f | 0.39 ± 0.01 e,f | 1.37 ± 0.05 f | 0.03 ± 0.00 a | 0.45 ± 0.02 c | 7.96 ± 0.41 d | 0.32 ± 0.01 d | 1.24 ± 0.04 d | 0.87 ± 0.03 f | 4.57 ± 0.21 e |
AEMLS | 0.62 ± 0.02 f | 0.42 ± 0.02 f | 1.42 ± 0.06 f | 0.05 ± 0.00 a | 0.51 ± 0.02 d | 9.15 ± 0.45 e | 0.47 ± 0.02 e | 1.38 ± 0.05 d | 0.89 ± 0.03 f | 5.46 ± 0.25 f |
WECDS | 0.18 ± 0.01 a | 0.15 ± 0.01 a,b | 0.07 ± 0.01 a | 0.01 ± 0.00 a | 0.41 ± 0.02 c | 7.93 ± 0.36 d | 0.12 ± 0.01 a | 0.38 ± 0.01 a | 0.28 ± 0.01 a | 2.57 ± 0.11 b |
WECLS | 0.20 ± 0.01 a,b | 0.18 ± 0.01 a,b | 0.10 ± 0.01 a,b | 0.02 ± 0.00 a | 0.41 ± 0.02 c | 7.95 ± 0.36 d | 0.13 ± 0.01 a,b | 0.42 ± 0.02 a | 0.27 ± 0.01 a | 2.56 ± 0.10 b,c |
WEUDS | 0.17 ± 0.01 a | 0.14 ± 0.01 a | 0.06 ± 0.01 a | nd | 0.08 ± 0.01 a | 5.12 ± 0.25 a | 0.10 ± 0.01 a | 0.40 ± 0.02 a | 0.25 ± 0.01 a | 2.52 ± 0.09 b |
WEULS | 0.24 ± 0.01 b | 0.20 ± 0.01 b | 0.28 ± 0.01 c | 0.02 ± 0.00 a | 0.42 ± 0.05 c | 7.91 ± 0.34 d | 0.13 ± 0.01 a,b | 0.37 ± 0.01 a | 0.35 ± 0.01 b | 3.56 ± 0.18 d |
WEMDS | 0.38 ± 0.01 d | 0.33 ± 0.01 c,d | 0.35 ± 0.01 d | nd | 0.41 ± 0.02 c | 7.93 ± 0.35 d | 0.16 ± 0.01 b | 0.71 ± 0.03 c | 0.69 ± 0.02 e | 4.59 ± 0.22 e |
WEMLS | 0.55 ± 0.02 e | 0.35 ± 0.01 d,e | 1.18 ± 0.04 e | 0.03 ± 0.00 a | 0.40 ± 0.02 c | 7.95 ± 0.36 d | 0.25 ± 0.01 c | 0.68 ± 0.03 c | 0.71 ± 0.02 e | 4.56 ± 0.20 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Floares, D.; Cocan, I.; Alexa, E.; Poiana, M.-A.; Berbecea, A.; Boldea, M.V.; Negrea, M.; Obistioiu, D.; Radulov, I. Influence of Extraction Methods on the Phytochemical Profile of Sambucus nigra L. Agronomy 2023, 13, 3061. https://doi.org/10.3390/agronomy13123061
Floares D, Cocan I, Alexa E, Poiana M-A, Berbecea A, Boldea MV, Negrea M, Obistioiu D, Radulov I. Influence of Extraction Methods on the Phytochemical Profile of Sambucus nigra L. Agronomy. 2023; 13(12):3061. https://doi.org/10.3390/agronomy13123061
Chicago/Turabian StyleFloares (Oarga), Doris, Ileana Cocan, Ersilia Alexa, Mariana-Atena Poiana, Adina Berbecea, Marius Valentin Boldea, Monica Negrea, Diana Obistioiu, and Isidora Radulov. 2023. "Influence of Extraction Methods on the Phytochemical Profile of Sambucus nigra L." Agronomy 13, no. 12: 3061. https://doi.org/10.3390/agronomy13123061