Agronomic Approach to Iron Biofortification in Chickpea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Location and Year
2.2. Soil Sample Analysis
2.3. Plant Materials
2.4. Fe Fertilizer and Application
2.5. Experimental Design
2.6. Data Collection
2.6.1. Agronomic Traits
2.6.2. Seed Fe Analysis
2.7. Statistical Analysis
3. Results
3.1. Biomass
3.2. Seed Fe
3.3. Fe Yield
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grillet, L.; Mari, S.; Schmidt, W. Fe in seeds—Loading pathways and subcellular localization. Front. Plant Sci. 2014, 4, 535. [Google Scholar] [CrossRef]
- Tan, G.Z.H.; Das Bhowmik, S.S.; Hoang, T.M.L.; Karbaschi, M.R.; Johnson, A.A.T.; Williams, B.; Mundree, S.G. Finger on the pulse: Pumping Fe into chickpea. Front. Plant Sci. 2017, 8, 1755. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, F. Soil and crop management strategies to prevent Fe deficiency in crops. Plant Soil 2011, 339, 83–95. [Google Scholar] [CrossRef]
- Colombo, C.; Palumbo, G.; He, J.Z.; Pinton, R.; Cesco, S. Review on Fe availability in soil: Interaction of Fe minerals, plants, and microbes. J. Soils Sediments 2014, 14, 538–548. [Google Scholar] [CrossRef]
- Boukhalfa, H.; Crumbliss, A.L. Chemical aspects of siderophore mediated Fe transport. Biometals 2002, 15, 325–339. [Google Scholar] [CrossRef]
- Römheld, V.; Marschner, H. Evidence for a specific uptake system for Fe phytosiderophores in roots of grasses. Plant Physiol. 1986, 80, 175–180. [Google Scholar] [CrossRef]
- Robinson, N.J.; Procter, C.M.; Connolly, E.L.; Guerinot, M.L. A ferric-chelate reductase for Fe uptake from soils. Nature 1999, 397, 694–697. [Google Scholar] [CrossRef]
- Morrissey, J.; Guerinot, M. Fe uptake and transport in plants: The good, the bad, and the ionome. Chem. Rev. 2009, 109, 4553–4567. [Google Scholar] [CrossRef]
- Jeong, J.; Connolly, E.L. Fe uptake mechanisms in plants: Functions of the FRO family of ferric reductases. Plant Sci. 2009, 176, 709–714. [Google Scholar] [CrossRef]
- Chugh, V.; Dhaliwal, H. Biofortification of Staple Crops. In Agricultural Sustainability; Elsevier: Amsterdam, The Netherlands, 2013; pp. 177–196. [Google Scholar] [CrossRef]
- Mayer, J.; Pfeiffer, W.; Beyer, P. Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 2008, 11, 166–170. [Google Scholar] [CrossRef]
- Briat, J.F. Fe Nutrition and Implications for Biomass Production and the Nutritional Quality of Plant Products. In Molecular and Physiological Basis of Nutrient Use Efficiency in Crops; Hawkesford, M.J., Barraclough, P., Eds.; Wiley-Blackwell: Oxford, UK, 2011; pp. 309–328. [Google Scholar]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- De Valença, A.; Bake, A.; Brouwer, I.; Giller, K. Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob. Food Secur. 2017, 12, 8–14. [Google Scholar] [CrossRef]
- Prasad, R. Ferti-fortifcation of grains an easy option to alleviate malnutrition of some micronutrients in human beings. Indian J. Fertil. 2009, 5, 129–133. [Google Scholar]
- Manzeke, G.; Mapfumo, M.; Mtambanengwe, P.; Chikowo, F.; Tendayi, R.; Cakmak, T. Soil fertility management effects on maize productivity and grain zinc content in smallholder farming systems of Zimbabwe. Plant Soil 2012, 361, 57–69. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Descheemaeker, K.; Giller, K.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S. Integrated soil fertility management in sub-Saharan Africa: Unravelling local adaptation. Soil 2015, 1, 491–508. [Google Scholar] [CrossRef]
- Voortman, R.L.; Bindraban, P.S. Beyond N and P: Towards a Land Resource Ecology Perspective and Impactful Fertilizer Interventions in Sub-Sahara Africa; VFRC Report 2015/1; Virtual Fertilizer Research Center: Washington, DC, USA, 2015; p. 49. [Google Scholar]
- Singh, M.; Prasad, K. Agronomic Aspects of Zinc Biofortification in Rice (Oryza sativa L.). Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014, 84, 613–623. [Google Scholar] [CrossRef]
- Rietra, R.P.J.J.; Heinen, M.; Dimpla, C.; Bindraban, P.S. Effects of Nutrients Antagonism and Synergism on Fertilizer Use Efficiency; VFRC Report 2015/5; Virtual Fertilizer Research Center: Washington, DC, USA, 2015; Available online: http://www.vfrc.org/getdoc/e738b7d3-8f70-4b18-b3d9-980694b5f26c/vfrc_2015-5_effects_of_nutrient_antagonism_and_syn.pdf (accessed on 20 January 2018).
- Walworth, D.J. Recognizing and Treating Fe Deficiency in the Home Yard. Available online: https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1415.pdf (accessed on 10 May 2019).
- Millán, T.; Madrid, E.; Cubero, J.I.; Amri, M.; Patricia, C.; Rubio, J. Chickpea. In Handbook of Plant Breeding; De Ron, A.M.D., Ed.; Springer: Pontevedra, Spain, 2015; pp. 85–88. [Google Scholar] [CrossRef]
- Zhu, H.; Choi, H.; Cook, D.R.; Shoemaker, R.C. Bridging model and crop legumes through comparative genomics. Plant Physiol. 2005, 137, 1189–1196. [Google Scholar] [CrossRef]
- FAOSTAT. FAO Statistical Database. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 May 2018).
- Akibode, C.S.; Maredia, M.K. Global and Regional Trends in Production, Trade and Consumption of Food Legume Crops; Michigan State University: East Lansing, MI, USA, 2012. [Google Scholar] [CrossRef]
- Wells, H.F.; Bond, J.K. Vegetables and Pulses Yearbook Data. Economic Research Service, USDA. 2016. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/1n79h429p/z890rw81t/rj430695g/VGS-08-30-2016.pdf (accessed on 15 March 2019).
- Ibrikci, H.; Knewtson, S.; Grusak, M. Chickpea leaves as a vegetable green for humans: Evaluation of mineral composition. J. Sci. Food Agric. 2003, 83, 945–950. [Google Scholar] [CrossRef]
- Yadav, S.S.; Longnecker, N.; Dusunceli, F.; Bejiga, G.; Yadav, M.; Rizvi, A.H.; Manohar, M.; Reddy, A.A.; Xaxiao, Z.; Chen, W. Uses, consumption and utilization. In Chickpea Breeding and Management; Yadav, S.S., Redden, R.J., Chen, W., Sharma, B., Eds.; CABI: Cambridge, MA, USA, 2007; pp. 72–100. [Google Scholar] [CrossRef]
- Diapari, M.; Sindhu, A.; Bett, K.; Deokar, A.; Warkentin, T.; Tar’an, B. Genetic diversity and association mapping of Fe and zinc concentrations in chickpea (Cicer arietinum L.). Genome 2014, 57, 459–468. [Google Scholar] [CrossRef]
- USDA. National Nutrient Database for Standard Reference. Available online: http://www.ars.usda.gov/Services?docs.htm?docid=8964 (accessed on 25 March 2018).
- Chilimba, A.; Young, S.; Black, C.; Meacham, M.; Lammel, J.; Broadley, M. Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crops Res. 2012, 125, 118–128. [Google Scholar] [CrossRef]
- Yilmaz, A.; Ekiz, H.; Torun, B.; Gultekin, I.; Karanlik, S.; Bagci, S.A.; Cakmak, I. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils. J. Plant. Nutr. 1997, 20, 461–471. [Google Scholar] [CrossRef]
- Hidoto, L.; Worku, W.; Mohammed, H.; Bunyamin, T. Effects of zinc application strategy on zinc content and productivity of chickpea grown under zinc deficient soils. J. Soil Sci. Plant Nutr. 2017, 17, 112–126. [Google Scholar] [CrossRef]
- Ali, B.; Ali, A.; Tahir, M.; Ali, S. Growth, Seed yield and quality of mungbean as influenced by foliar application of Fe sulfate. Pak. J. Life Soc. Sci. 2014, 12, 20–25. Available online: https://pjlss.edu.pk/pdf_files/2014_1/4)%20Ali%20et%20al%202014%20(1).pdf (accessed on 25 March 2018).
- Smrkolj, P.; Germ, M.; Kreft, I.; Stibilj, V. Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds. J. Exp. Bot. 2006, 57, 3595–3600. [Google Scholar] [CrossRef]
- Smrkolj, P.; Osvald, M.; Osvald, J.; Stibilj, V. Selenium uptake and species distribution in selenium-enriched bean (Phaseolus vulgaris L.) seeds obtained by two different cultivations. Eur. Food Res. Technol. 2007, 225, 233–237. [Google Scholar] [CrossRef]
- Molina, M.G.; Quiroz, C.M.; de la Cruz, L.E.; Martinez, J.R.V.; Parra, J.M.S.; Carrillo, M.G.; Vidal, J.A.O. Biofortification of cowpea beans (Vigna unguiculata L. Walp) with Fe and zinc. Mex. J. Agric. Sci. 2016, 17, 3427–3438. [Google Scholar]
- Sida-Arreola, J.; Sánchez, E.; Ojeda-Barrios, D.; Ávila-uezada, G.; Flores-Córdova, M.; Márquez-Quiroz, C.; Preciado-Rangel, P. Can biofortification of zinc improve the antioxidant capacity and nutritional quality of beans? Emir. J. Food Agric. 2017, 29, 237–241. [Google Scholar]
- Rathod, S.P.; Patil, D.H.; Bellad, S.B.; Haveri, V.R. Biofortification of Zn and Fe in Chickpea through Agronomic Intervention in Medium Black Soils of Karnataka. Legume Res. 2022, 45, 981–987. [Google Scholar] [CrossRef]
- Márquez-Quiroz, C.; De-La-Cruz-Lázaro, E.; Osorio-Osorio, R.; Sánchez-Chávez, E. Biofortification of cowpea beans with Fe: Fe’s influence on mineral content and yield. J. Soil Sci. Plant Nutr. 2015, 15, 839–847. [Google Scholar]
- Hussain, S.; Rengel, Z.; Aziz, T.; Abid, M. Estimated Zinc Bioavailability in Milling Fractions of Biofortified Wheat Grains and in Flours of Different Extraction Rates. Int. J. Agric. Biol. 2013, 15, 921–926. [Google Scholar]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Alfthan, G.; Eurola, M.; Ekholm, P.; Venäläinen, E.; Root, T.; Korkalainen, K.; Hartikainen, H.; Salminen, P.; Hietaniemi, V.; Aspila, P.; et al. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J. Trace Elem. Med. Biol. 2015, 31, 142–147. [Google Scholar] [CrossRef]
- Jahan, T.A.; Vandenberg, A.; Glahn, R.P.; Tyler, R.T.; Reaney, M.J.T.; Tar’an, B. Iron Fortification and Bioavailability of Chickpea (Cicer arietinum L.) Seeds and Flour. Nutrients 2019, 11, 2240. [Google Scholar] [CrossRef]
- Seleiman, M.; Abdelaal, M. Effect of Organic, Inorganic and Bio-fertilization on Growth, Yield and Quality Traits of Some Chickpea (Cicer arietinum L.) Varieties. Egypt. J. Agron. 2018, 40, 105–117. [Google Scholar] [CrossRef]
- Cropnuts. Available online: https://cropnuts.helpscoutdocs.com/article/826-iron-fertilisation (accessed on 15 September 2020).
- Chongo, G.; Gossen, B.D.; Buchwaldt, L.; Adhikari, T.; Rimmer, S.R. Genetic diversity of Ascochyta rabiei in Canada. Plant Dis. 2004, 88, 4–10. [Google Scholar] [CrossRef]
- DellaValle, D.M.; Thavarajah, D.; Thavarajah, P.; Vandenberg, A.; Glahn, R.P. Lentil (Lens culinaris L.) as a candidate crop for Fe biofortification: Is there genetic potential for Fe bioavailability? Field Crops Res. 2013, 144, 119–125. [Google Scholar] [CrossRef]
- Moraghan, J.; Padilla, T.; Etchevers, J.; Grafton, K.; Acosta-Gallegos, J. Fe accumulation in seed of common bean. Plant Soil 2002, 246, 175–183. [Google Scholar] [CrossRef]
- Kumar, V.; Dwivedi, V.N.; Tiwari, D.D. Effect of phosphorous and Fe on yield and mineral nutrition in chickpea. Ann. Plant Soil Res. 2009, 11, 16–18. [Google Scholar]
- Sharma, S.; Sharma, M.; Ramesh, A. Biofortification of crops with micronutrients through agricultural approaches. Indian Farming 2010, 60, 7–12. [Google Scholar]
- Kumawat, R.N.; Rathore, P.S.; Pareek, N. Response of mung bean to sulphur and Fe nutrition grown on calcareous soil of Western Rajasthan. Indian Soc. Pulses Res. Dev. 2006, 19, 228–230. [Google Scholar]
- Sahu, S.; Lidder, R.S.; Singh, P.K. Effect of micronutrients and biofertilizers on growth, yield and nutrient uptake by chickpea (Cicer aeritinum L.) in Vertisols of Madhya Pradesh. Adv. Plant Sci. 2008, 21, 501–503. [Google Scholar]
- Mahriya, A.K.; Meena, N. Response of phosphorous and Fe on growth and quality of cowpea (Vigna unguiculata L.). Ann. Agri-Bio Res. 1999, 4, 203–205. [Google Scholar]
- Bansal, R.L.; Chahal, D.S. Interaction effect of Fe and Mn on growth and nutrient content of moong (Phaseolus aureus L.). Acta Agron. Hung. 1990, 39, 59–63. [Google Scholar]
- Ghasemi-Fasaei, R.; Ronaghi, A.; Maftoun, M.; Karimian, N.; Soltanpour, P. Fe-Manganese Interaction in Chickpea as Affected by Foliar and Soil Application of Fe in a Calcareous Soil. Commun. Soil Sci. Plant Anal. 2005, 36, 1717–1725. [Google Scholar] [CrossRef]
- Moosavi, A.A.; Ronaghi, A. Influence of foliar and soil applications of Fe and manganese on soybean dry matter yield and Fe-manganese relationship in a calcareous soil. Aust. J. Crop Sci. 2011, 5, 1550–1556. [Google Scholar]
- Ronaghi, A.; Ghasemi-Fasaei, R. Field Evaluations of Yield, Fe-Manganese Relationship, and Chlorophyll Meter Readings in Soybean Genotypes as Affected by Fe-Ethylenediamine Di-o-hydroxyphenylacetic Acid in a Calcareous Soil. J. Plant Nutr. 2007, 31, 81–89. [Google Scholar] [CrossRef]
- Mevada, K.D.; Patel, J.J.; Patel, K.P. Effect of micronutrients on yield of urdbean. Indian Soc. Pulses Res. Dev. 2005, 18, 214–216. [Google Scholar]
- Gowthami, S.S.; Ananda, N. Effect of zinc and iron ferti-fortification on growth, pod yield and zinc uptake of groundnut (Arachis hypogaea L.) genotypes. Int. J. Agric. Environ. Biotechnol. 2015, 10, 575–580. [Google Scholar] [CrossRef]
- Hanumanthappa, D.; Vasudevan; Maruthi, S.; Shakuntala, J.B.; Muniswamy, N.M.; Macha, S.I. Enrichment of iron and zinc content in pigeonpea genotypes through agronomic biofortification to mitigate malnutrition. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 4334–4342. [Google Scholar]
- Ariza-Nieto, M.; Blair, M.; Welch, R.; Glahn, R. Screening of Fe bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J. Agric. Food Chem. 2007, 55, 7950–7956. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Abdoli, H.; Sabaghnia, N.; Esmailpour, M.; Aghaei, A. The Effect Of Fe, Zinc and Organic Fertilizer on Yield of Chickpea (Cicer artietinum L.) in Mediterranean Climate. Acta Univ. Agric. Silvic. Mendel. Brun. 2018, 66, 0049–0060. [Google Scholar] [CrossRef]
- Shukla, V.S.I. Effect of Fe, Mo, Zn and P on symbiotic nitrogen fixation of chickpea. Indian J. Agric. Chem. 1994, 32, 118–123. [Google Scholar]
- Thapu, U.; Rai, P.; Suresh, C.P.; Pal, P. Effect of micronutrients on the growth and yield of pea in gangetic alluvial of West Bengal. Environ. Ecol. 2003, 21, 179–182. [Google Scholar]
Before Fertilization | After Fertilization | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | Location | |||||||||||||||
Elrose | Moose Jaw | Elrose | Moose Jaw | Elrose | Moose Jaw | Elrose | Moose Jaw | |||||||||
2015 | 2016 | 2015 | 2016 | |||||||||||||
Depth (Inches) | Depth (Inches) | Depth (Inches) | Depth (Inches) | |||||||||||||
Soil Properties | 0–6 | 6–12 | 0–6 | 6–12 | 0–6 | 6–12 | 0–6 | 6–12 | 0–6 | 6–12 | 0–6 | 6–12 | 0–6 | 6–12 | 0–6 | 6–12 |
pH | 7.5 | 7.9 | 7.9 | 8.2 | 7.9 | 8.1 | 7.5 | 8.2 | 7.2 | 7.6 | 7.9 | 8.2 | 7.4 | 8.1 | 7.7 | 8.2 |
N (mg kg−1) | 13.0 | 10.0 | 6.5 | 3.5 | 8.6 | 8.1 | 12.4 | 7.6 | 8.8 | 4.8 | 8.1 | 5.4 | 4.4 | 1.7 | 6.6 | 1.0 |
P (mg kg−1) | 13.0 | 3.5 | 9.5 | 2.0 | 3.6 | 2.0 | 14.4 | 3.9 | 19.3 | 7.5 | 10.8 | 2.0 | 11.9 | 2.0 | 13.2 | 2.1 |
K (mg kg−1) | 270 | 255 | 270 | 255 | 699 | 501 | 756 | 614 | 1120 | 856 | 849 | 420 | 932 | 582 | 885 | 507 |
Fe (mg kg−1) | 20.5 | 11.4 | 13.3 | 9.4 | 19.8 | 19.8 | 18.3 | 17.0 | 22.1 | 23.0 | 16.7 | 13.8 | 20.7 | 21.3 | 22.1 | 19.7 |
Entry | Cultivars | Types | 100 Seed Weight (g) (Avg. of 2015 and 2016) |
---|---|---|---|
1. | 1173-1 | Kabuli | 34.9 |
2. | 1460-2 | Desi | 20.3 |
3. | AB06-156-2 | Kabuli | 37.6 |
4. | Amit | Kabuli | 25.2 |
5. | CA05-75-45 | Kabuli | 26.5 |
6. | CDC Alma | Kabuli | 29.3 |
7. | CDC Cabri | Desi | 28.6 |
8. | CDC Consul | Desi | 29.9 |
9. | CDC Corinne | Desi | 25.5 |
10. | CDC Cory | Desi | 26.6 |
11. | CDC Frontier | Kabuli | 30.9 |
12. | CDC Leader | Kabuli | 35.6 |
13. | CDC Luna | Kabuli | 29.7 |
14. | CDC Orion | Kabuli | 36.0 |
15. | CDC Palmer | Kabuli | 39.3 |
16. | CDC Vanguard | Desi | 21.9 |
17. | X05TH20-2 | Kabuli | 37.1 |
18. | X05TH47-3 | Kabuli | 35.1 |
Fe Fertilizer | Stability | Fe Deficiency |
---|---|---|
Fe-EDTA, Fe-DTPA and Fe-HEDTA | Low | Limited/no results |
Fe-EDDHA | High | Effective |
Rating | Symptoms |
---|---|
0 | No symptoms |
1 | Few, very small (<2 mm2) lesions on leaves and/or stems, <2% plant area affected (PAA) |
2 | Very small (<2 mm2) lesions, 2–5% PAA |
3 | Many small lesions (#2–5 mm2), 5–10% PAA |
4 | Many small lesions, few large (>5 mm2) lesions, 10–25% PAA |
5 | Many large lesions, 25–50% PAA |
6 | Lesions coalescing, 50–75% PAA |
7 | Lesions coalescing with stem girdling, 75–90% PAA |
8 | Stem girdling or breakage, >90% PAA |
9 | Plant dead |
Sources of Variation | df | Germination | Node Number | Days to Flowering | Days to Maturity | Plant Height | Biomass | 100-Seed Weight | Yield | Seed Fe Conc. |
---|---|---|---|---|---|---|---|---|---|---|
LOC | 1 | 68.3 ** | 3.6 ns | 1232 ** | 536 ** | 766 ** | 101 ** | 0.6 ns | 1254 ** | 1248 ** |
YEAR | 1 | 227 ** | 93.8 ** | 131 ** | 12804 ** | 5701 ** | 0.8 ns | 1401 ** | 1367 ** | 884 ** |
REP | 3 | 0.9 ns | 3.0 * | 3.2* | 1.9 ns | 4.7 * | 2.4 * | 8.2 ** | 22.0 ** | 12.4 ** |
CUL | 17 | 4.3 ** | 9.9 ** | 12.2 ** | 8.2 ** | 17.5 ** | 8.1 ** | 117 ** | 35.1 ** | 19.3 ** |
DOS | 2 | 1.3 ns | 0.7 ns | 1.8 ns | 2.7 ns | 0.3 ns | 61.7 ** | 1.7 ns | 0.0 ns | 14.1 ** |
LOC*YEAR | 1 | 0.9 ns | 19.0 ** | 395 ** | 968 ** | 157 ** | 1292 ** | 99.9 ** | 1866 ** | 88.9 ** |
LOC*CUL | 17 | 1.4 ns | 1.4 ns | 2.1 * | 2.4* | 1.9 * | 6.0 ** | 3.0 ** | 5.9 ** | 2.5 * |
LOC*DOS | 2 | 1.6 ns | 1.4 ns | 4.3 * | 15.8 ** | 2.0 ns | 25.5 ** | 3.1 * | 3.6 * | 0.9 ns |
CUL*YEAR | 17 | 6.9 ** | 3.5 ** | 6.8 ** | 6.1 ** | 3.2 ** | 9.4 ** | 17.3 ** | 7.7 ** | 11.0 ** |
CUL*DOS | 34 | 1.2 ns | 1.2 ns | 0.6 ns | 0.7 ns | 0.5 ns | 1.4 ns | 0.7 ns | 1.6 * | 0.6 ns |
DOS*YEAR | 2 | 2.5 ns | 0.2 ns | 1.4 ns | 1.5 ns | 2.6 ns | 2.4 ns | 1.8 ns | 1.3 ns | 4.1 * |
LOC*YEAR*CUL | 17 | 1.5 ns | 3.1 ** | 6.0 ** | 2.4 * | 2.6 * | 3.2 ** | 4.2 ** | 12.6 ** | 2.0 * |
LOC*YEAR*DOS | 2 | 2.0 ns | 0.4 ns | 0.5 ns | 11.3 ** | 0.6 ns | 32.1 ** | 1.5 ns | 1.3 ns | 1.4 ns |
CUL*YEAR*DOS | 34 | 1.1 ns | 1.6 * | 0.7 ns | 0.8 ns | 0.7 ns | 1.0 ns | 0.8 ns | 2.4 ** | 0.7 ns |
CUL*LOC*DOS | 34 | 0.9 ns | 0.8 ns | 0.6 ns | 0.7 ns | 0.7 ns | 1.1 ns | 0.7 ns | 1.7 * | 0.9 ns |
LOC*YEAR*CUL*DOS | 34 | 1.1 ns | 1.3 ns | 0.9 ns | 0.8 ns | 0.5 ns | 1.9 * | 0.8 ns | 1.5 * | 1.2 ns |
Sources of Variation | df | Disease Score |
---|---|---|
LOC | 1 | 62.4 ** |
REP | 3 | 37.7 ** |
CUL | 17 | 8.9 ** |
DOS | 2 | 2.1 ns |
LOC*CUL | 17 | 0.6 ns |
LOC*DOS | 2 | 13.2 ** |
CUL*DOS | 34 | 0.5 ns |
LOC*CUL*DOS | 34 | 0.7 ns |
Cultivars | Elrose | Moose Jaw | Cultivar Mean | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | ||||||||||
kg ha−1 | kg ha−1 | kg ha−1 | kg ha−1 | ||||||||||
0 | 10 | 30 | 0 | 10 | 30 | 0 | 10 | 30 | 0 | 10 | 30 | ||
1173-1 | 199 | 208 | 255 | 109 | 119 | 127 | 89 | 125 | 99 | 157 | 166 | 182 | 153 |
1460-2 | 175 | 232 | 244 | 112 | 117 | 124 | 118 | 89 | 105 | 171 | 258 | 171 | 159 |
AB06-156-2 | 149 | 280 | 295 | 101 | 118 | 146 | 149 | 127 | 157 | 198 | 201 | 208 | 177 |
Amit | 195 | 220 | 244 | 126 | 136 | 160 | 118 | 125 | 148 | 216 | 246 | 247 | 182 |
CA05-75-45 | 179 | 198 | 263 | 125 | 128 | 149 | 87 | 108 | 139 | 173 | 189 | 263 | 167 |
CDC Alma | 183 | 170 | 208 | 82 | 92 | 100 | 102 | 119 | 85 | 162 | 121 | 113 | 128 |
CDC Cabri | 166 | 260 | 329 | 129 | 144 | 161 | 81 | 73 | 111 | 127 | 178 | 154 | 159 |
CDC Consul | 116 | 215 | 223 | 133 | 139 | 143 | 83 | 126 | 86 | 176 | 208 | 261 | 159 |
CDC Corinne | 167 | 226 | 260 | 147 | 148 | 170 | 130 | 138 | 134 | 196 | 217 | 219 | 179 |
CDC Cory | 167 | 250 | 262 | 160 | 162 | 174 | 109 | 143 | 123 | 229 | 245 | 301 | 194 |
CDC Frontier | 238 | 240 | 263 | 136 | 161 | 170 | 136 | 137 | 121 | 243 | 265 | 248 | 196 |
CDC Leader | 195 | 222 | 235 | 137 | 141 | 145 | 94 | 82 | 86 | 205 | 216 | 259 | 168 |
CDC Luna | 150 | 248 | 304 | 115 | 135 | 130 | 102 | 90 | 93 | 100 | 164 | 165 | 150 |
CDC Orion | 207 | 316 | 389 | 130 | 134 | 148 | 105 | 109 | 106 | 191 | 191 | 197 | 185 |
CDC Palmer | 166 | 170 | 215 | 119 | 132 | 141 | 113 | 112 | 95 | 222 | 229 | 266 | 165 |
CDC Vanguard | 201 | 259 | 261 | 127 | 129 | 158 | 157 | 127 | 149 | 132 | 238 | 141 | 173 |
X05TH20-2 | 270 | 302 | 325 | 117 | 124 | 147 | 122 | 122 | 114 | 172 | 172 | 178 | 180 |
X05TH47-3 | 160 | 166 | 258 | 129 | 156 | 186 | 131 | 134 | 111 | 210 | 214 | 223 | 173 |
Dose Mean | 182 | 232 | 269 | 124 | 134 | 149 | 112 | 116 | 115 | 182 | 206 | 211 | 169 |
LSD0.05 | 51.9 | 72.9 | 58.1 | 30 | 29.6 | 39.8 | 40.9 | 37.7 | 36.4 | 55.9 | 53.9 | 71.7 | 48.2 |
Cultivars | Elrose | Moose Jaw | Cultivar Mean | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | ||||||||||
0 kg ha−1 | 10 kg ha−1 | 30 kg ha−1 | 0 kg ha−1 | 10 kg ha−1 | 30 kg ha−1 | 0 kg ha−1 | 10 kg ha−1 | 30 kg ha−1 | 0 kg ha−1 | 10 kg ha−1 | 30 kg ha−1 | ||
1173-1 | 43.4 | 48.0 | 49.3 | 61.0 | 62.8 | 67.1 | 38.1 | 37.2 | 40.9 | 46.4 | 46.3 | 51.5 | 49.3 |
1460-2 | 47.4 | 52.1 | 54.3 | 56.2 | 59.5 | 61.2 | 38.8 | 39.5 | 43.6 | 45.1 | 44.3 | 49.8 | 49.3 |
AB06-156-2 | 50.9 | 52.2 | 57.1 | 67.1 | 70.3 | 71.5 | 41.1 | 42.5 | 41.0 | 46.7 | 49.1 | 54.8 | 53.7 |
Amit | 48.7 | 50.0 | 48.0 | 59.0 | 64.8 | 71.8 | 40.4 | 41.5 | 43.1 | 46.0 | 48.8 | 50.5 | 51.1 |
CA05-75-45 | 48.0 | 42.5 | 48.8 | 57.8 | 56.7 | 59.0 | 34.9 | 34.1 | 34.3 | 48.9 | 44.4 | 50.7 | 46.7 |
CDC Alma | 43.4 | 50.1 | 49.6 | 64.9 | 71.8 | 79.9 | 37.7 | 39.1 | 38.5 | 48.4 | 50.3 | 53.9 | 52.3 |
CDC Cabri | 45.5 | 46.4 | 53.8 | 57.2 | 57.4 | 59.6 | 37.2 | 39.9 | 39.6 | 47.3 | 47.5 | 51.2 | 48.5 |
CDC Consul | 52.1 | 51.6 | 53.5 | 56.9 | 62.8 | 57.4 | 41.8 | 47.1 | 43.0 | 40.7 | 44.4 | 47.4 | 49.9 |
CDC Corinne | 45.7 | 49.7 | 50.1 | 55.1 | 54.6 | 60.4 | 40.6 | 39.4 | 40.6 | 40.8 | 40.8 | 42.8 | 46.7 |
CDC Cory | 46.9 | 48.4 | 51.2 | 56.0 | 59.5 | 64.3 | 42.3 | 43.9 | 44.9 | 42.1 | 44.9 | 47.8 | 49.3 |
CDC Frontier | 57.0 | 54.6 | 55.3 | 66.3 | 72.7 | 75.6 | 43.3 | 44.5 | 46.3 | 49.2 | 51.6 | 56.9 | 56.1 |
CDC Leader | 48.2 | 47.2 | 45.3 | 60.3 | 60.0 | 62.1 | 37.6 | 37.0 | 39.2 | 43.1 | 45.7 | 52.7 | 48.2 |
CDC Luna | 47.6 | 47.1 | 48.4 | 78.0 | 73.3 | 80.0 | 37.8 | 38.7 | 37.2 | 48.7 | 56.0 | 55.5 | 54.0 |
CDC Orion | 45.7 | 53.4 | 52.2 | 69.6 | 68.1 | 71.0 | 39.4 | 37.1 | 39.7 | 46.7 | 51.9 | 54.4 | 52.4 |
CDC Palmer | 48.4 | 48.4 | 48.5 | 64.1 | 63.3 | 68.8 | 36.5 | 40.1 | 39.4 | 45.6 | 44.5 | 47.8 | 49.6 |
CDC Vanguard | 43.5 | 47.5 | 47.8 | 52.9 | 48.8 | 56.5 | 40.3 | 39.4 | 47.1 | 41.0 | 44.0 | 48.4 | 46.4 |
X05TH20-2 | 55.2 | 57.4 | 57.9 | 75.0 | 72.1 | 75.6 | 48.5 | 50.5 | 46.1 | 50.3 | 51.4 | 53.6 | 57.8 |
X05TH47-3 | 52.6 | 49.5 | 55.5 | 71.9 | 67.3 | 70.0 | 45.7 | 48.9 | 48.3 | 48.6 | 52.3 | 51.4 | 55.2 |
Dose Mean | 48.3 | 49.8 | 51.5 | 62.7 | 63.7 | 67.3 | 40.1 | 41.1 | 41.8 | 45.9 | 47.7 | 51.2 | 50.9 |
LSD0.05 | 7.0 | 11.4 | 7.6 | 9.6 | 11.6 | 9.3 | 4.9 | 4.8 | 5.5 | 7.1 | 5.5 | 6.8 | 7.6 |
Cultivars | Elrose | Moose Jaw | Cultivar Mean | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | ||||||||||
kg ha−1 | kg ha−1 | kg ha−1 | kg ha−1 | ||||||||||
0 | 10 | 30 | 0 | 10 | 30 | 0 | 10 | 30 | 0 | 10 | 30 | ||
1173-1 | 311 | 347 | 316 | 129 | 116 | 31 | 86 | 83 | 111 | 141 | 131 | 170 | 164 |
1460-2 | 340 | 337 | 370 | 137 | 125 | 126 | 113 | 91 | 113 | 171 | 132 | 184 | 187 |
AB06-156-2 | 396 | 410 | 447 | 137 | 171 | 125 | 93 | 104 | 104 | 145 | 98 | 199 | 202 |
Amit | 306 | 337 | 335 | 132 | 113 | 174 | 93 | 86 | 90 | 132 | 150 | 150 | 175 |
CA05-75-45 | 305 | 250 | 311 | 160 | 132 | 138 | 74 | 59 | 61 | 112 | 171 | 126 | 158 |
CDC Alma | 234 | 250 | 247 | 62 | 65 | 63 | 89 | 79 | 109 | . | . | . | 133 |
CDC Cabri | 291 | 326 | 319 | 284 | 172 | 188 | 74 | 99 | 90 | 152 | 72 | 107 | 181 |
CDC Consul | 430 | 405 | 419 | 172 | 171 | 135 | 132 | 127 | 129 | 196 | 253 | 291 | 238 |
CDC Corinne | 405 | 438 | 434 | 174 | 248 | 211 | 122 | 110 | 100 | 149 | 182 | 189 | 230 |
CDC Cory | 376 | 351 | 374 | 262 | 264 | 155 | 122 | 144 | 159 | 127 | 203 | 141 | 223 |
CDC Frontier | 443 | 433 | 428 | 130 | 150 | 314 | 140 | 131 | 131 | 78 | 62 | 75 | 210 |
CDC Leader | 359 | 420 | 367 | 152 | 135 | 69 | 98 | 104 | 104 | 190 | 156 | 165 | 193 |
CDC Luna | 282 | 294 | 291 | 149 | 112 | 141 | 100 | 107 | 110 | 14 | 8.0 | 30 | 137 |
CDC Orion | 267 | 379 | 315 | 140 | 96 | 185 | 106 | 96 | 104 | 106 | 89 | 81 | 164 |
CDC Palmer | 416 | 342 | 422 | 190 | 206 | 204 | 98 | 96 | 98 | 173 | 170 | 300 | 226 |
CDC Vanguard | 272 | 372 | 288 | 168 | 151 | 156 | 105 | 95 | 94 | 108 | 97 | 104 | 167 |
X05TH20-2 | 263 | 334 | 306 | 109 | 97 | 147 | 85 | 92 | 83 | 104 | 98 | 109 | 152 |
X05TH47-3 | 346 | 367 | 387 | 133 | 182 | 113 | 103 | 141 | 123 | 198 | 153 | 209 | 205 |
Dose Mean | 336 | 355 | 354 | 157 | 150 | 149 | 102 | 102 | 106 | 135 | 131 | 155 | 186 |
LSD0.05 | 73.4 | 90.8 | 69.6 | 73 | 98.8 | 136.2 | 24.8 | 24.5 | 34.4 | 57.3 | 59.6 | 65.7 | 67.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahan, T.A.; Tar’an, B. Agronomic Approach to Iron Biofortification in Chickpea. Agronomy 2023, 13, 2894. https://doi.org/10.3390/agronomy13122894
Jahan TA, Tar’an B. Agronomic Approach to Iron Biofortification in Chickpea. Agronomy. 2023; 13(12):2894. https://doi.org/10.3390/agronomy13122894
Chicago/Turabian StyleJahan, Tamanna Akter, and Bunyamin Tar’an. 2023. "Agronomic Approach to Iron Biofortification in Chickpea" Agronomy 13, no. 12: 2894. https://doi.org/10.3390/agronomy13122894
APA StyleJahan, T. A., & Tar’an, B. (2023). Agronomic Approach to Iron Biofortification in Chickpea. Agronomy, 13(12), 2894. https://doi.org/10.3390/agronomy13122894