Collaborative Wheat Lodging Segmentation Semi-Supervised Learning Model Based on RSE-BiSeNet Using UAV Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.1.1. Data Collection
2.1.2. Labeling of Wheat Lodging Areas
2.1.3. Dataset Construction
2.2. Technical Flowchart of This Study
2.2.1. Wheat Lodging Segmentation Model Based on RSE-Bisenet
2.2.2. Semi-Supervised Learning
2.2.3. Model Evaluation Index
3. Results
3.1. Environmental Settings
3.2. Results of Wheat Lodging Segmentation with Semi-Supervised Learning
4. Discussion
4.1. The Influence of Attention Mechanism and Backbone Network on Model Performance
4.2. Comparison of Wheat Lodging Segmentation Results Based on Different Models
4.3. Comparison of Wheat Lodging Segmentation Results Based on Semi-Supervised Learning and Fully Supervised Learning
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, B.; Gao, Z.; Gao, Y.; Zhu, Y. Rapid detection and counting of wheat ears in the field using YOLOv4 with attention module. Agronomy 2021, 11, 1202. [Google Scholar] [CrossRef]
- Li, Y.; Yang, B.; Zhou, S.; Cui, Q. Identification lodging degree of wheat using point cloud data and convolutional neural network. Front. Plant Sci. 2022, 13, 968479. [Google Scholar] [CrossRef] [PubMed]
- Biswal, S.; Chatterjee, C.; Mailapalli, D.R. Damage Assessment Due to Wheat Lodging Using UAV-Based Multispectral and Thermal Imageries. J. Indian Soc. Remote Sens. 2023, 51, 935–948. [Google Scholar] [CrossRef]
- Liu, T.; Li, R.; Zhong, X.; Jiang, M.; Jin, X.; Zhou, P.; Liu, S.; Sun, C.; Guo, W. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agric. For. Meteorol. 2018, 252, 144–154. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, Y.; Song, M.; Ding, Y.; Lin, F.; Liang, D.; Zhang, D. Use of unmanned aerial vehicle imagery and deep learning unet to extract rice lodging. Sensors 2019, 19, 3859. [Google Scholar] [CrossRef]
- Chauhan, S.; Darvishzadeh, R.; Lu, Y.; Stroppiana, D.; Boschetti, M.; Pepe, M.; Nelson, A. Wheat lodging assessment using multispectral UAV data. The International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2019, 42, 235–240. [Google Scholar]
- Dai, J.G.; Zhang, G.S.; Guo, P.; Zeng, T.J.; Cui, M.; Xue, J.L. Information extraction of cotton lodging based on multi-spectral image from UAV remote sensing. Trans. CSAE 2019, 35, 63–70. [Google Scholar]
- Tian, M.; Ban, S.; Yuan, T.; Ji, Y.; Ma, C.; Li, L. Assessing rice lodging using UAV visible and multispectral image. Int. J. Remote Sens. 2021, 12, 1–18. [Google Scholar] [CrossRef]
- Rajapaksa, S.; Eramian, M.; Duddu, H.; Wang, M.; Shirtliffe, S.; Ryu, S.; Josuttes, A.; Zhang, T.; Vail, S.; Pozniak, C. Classification of crop lodging with gray level co-occurrence matrix. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 251–258. [Google Scholar]
- Yang, M.-D.; Huang, K.-S.; Kuo, Y.-H.; Tsai, H.P.; Lin, L.-M. Spatial and Spectral Hybrid Image Classification for Rice Lodging Assessment through UAV Imagery. Remote Sens. 2017, 9, 583. [Google Scholar] [CrossRef]
- Cao, W.; Qiao, Z.; Gao, Z.; Lu, S.; Tian, F. Use of unmanned aerial vehicle imagery and a hybrid algorithm combining a watershed algorithm and adaptive threshold segmentation to extract wheat lodging. Phys. Chem. Earth Parts A/B/C 2021, 123, 103016. [Google Scholar] [CrossRef]
- Su, Z.; Wang, Y.; Xu, Q.; Gao, R.; Kong, Q. LodgeNet: Improved rice lodging recognition using semantic segmentation of UAV high-resolution remote sensing images. Comput. Electron. Agric. 2022, 196, 106873. [Google Scholar] [CrossRef]
- Yang, M.D.; Boubin, J.G.; Tsai, H.P.; Tseng, H.H.; Hsu, Y.C.; Stewart, C.C. Adaptive autonomous UAV scouting for rice lodging assessment using edge computing with deep learning EDANet. Comput. Electron. Agric. 2020, 179, 105817. [Google Scholar] [CrossRef]
- Yang, M.D.; Tseng, H.-H.; Hsu, Y.-C.; Tsai, H.P. Semantic Segmentation Using Deep Learning with Vegetation Indices for Rice Lodging Identification in Multi-date UAV Visible Images. Remote Sens. 2020, 12, 633. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Yang, X.; Song, X.; Xu, B.; Li, Z.; Wu, J.; Yang, H.; Wu, J. An explainable XGBoost model improved by SMOTE-ENN technique for maize lodging detection based on multi-source unmanned aerial vehicle images. Comput. Electron. Agric. 2022, 194, 106804. [Google Scholar] [CrossRef]
- Song, Z.H.; Zhang, Z.T.; Yang, S.Q.; Ding, D.Y.; Ning, J.F. Identifying sunflower lodging based on image fusion and deep semantic segmentation with UAV remote sensing imaging. Comput. Electron. Agric. 2020, 179, 105812. [Google Scholar] [CrossRef]
- Zhang, D.; Ding, Y.; Chen, P.; Zhang, X.; Pan, Z.; Liang, D. Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network. Comput. Electron. Agric. 2020, 179, 105845. [Google Scholar] [CrossRef]
- Yu, J.; Cheng, T.; Cai, N.; Zhou, X.-G.; Diao, Z.; Wang, T.; Du, S.; Liang, D.; Zhang, D. Wheat Lodging Segmentation Based on Lstm_PSPNet Deep Learning Network. Drones 2023, 7, 143. [Google Scholar] [CrossRef]
- Zhang, Z.; Flores, P.; Igathinathane, C.; LNaik, D.; Kiran, R.; Ransom, J.K. Wheat lodging detection from UAS imagery using machine learning algorithms. Remote Sens. 2020, 12, 1838. [Google Scholar] [CrossRef]
- Mardanisamani, S.; Maleki, F.; Hosseinzadeh Kassani, S.; Rajapaksa, S.; Duddu, H.; Wang, M.; Shirtliffe, S.; Ryu, S.; Josuttes, A.; Zhang, T.; et al. Crop lodging prediction from UAV-acquired images of wheat and canola using a DCNN augmented with handcrafted texture features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Yang, B.; Zhu, Y.; Zhou, S. Accurate wheat lodging extraction from multi-channel UAV images using a lightweight network model. Sensors 2021, 21, 6826. [Google Scholar] [CrossRef]
- Bai, H.; Liu, L.; Han, Q.; Zhao, Y.; Zhao, Y. A novel UNet segmentation method based on deep learning for preferential flow in soil. Soil Tillage Res. 2023, 233, 105792. [Google Scholar] [CrossRef]
- Baheti, B.; Innani, S.; Gajre, S.; Talbar, S. Semantic scene segmentation in unstructured environment with modified DeepLabV3+. Pattern Recognit. Lett. 2020, 138, 223–229. [Google Scholar] [CrossRef]
- Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 325–341. [Google Scholar]
- Zualkernan, I.; Abuhani, D.A.; Hussain, M.H.; Khan, J.; ElMohandes, M. Machine Learning for Precision Agriculture Using Imagery from Unmanned Aerial Vehicles (UAVs): A Survey. Drones 2023, 7, 382. [Google Scholar] [CrossRef]
- Shorewala, S.; Ashfaque, A.; Sidharth, R.; Verma, U. Weed density and distribution estimation for precision agriculture using semi-supervised learning. IEEE Access 2021, 9, 27971–27986. [Google Scholar] [CrossRef]
- Nong, C.; Fan, X.; Wang, J. Semi-supervised learning for weed and crop segmentation using uav imagery. Front. Plant Sci. 2022, 13, 927368. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ortiz, M.; Peña, J.M.; Gutiérrez, P.A.; Torres-Sánchez, J.; Hervás-Martínez, C.; López-Granados, F. A semi-supervised system for weed map** in sunflower crops using unmanned aerial vehicles and a crop row detection method. Appl. Soft Comput. 2015, 37, 533–544. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Reddy, Y.C.A.P.; Viswanath, P.; Reddy, B.E. Semi-supervised learning: A brief review. Int. J. Eng. Technol. 2018, 7, 81. [Google Scholar] [CrossRef]
- Fourati, F.; Mseddi, W.S.; Attia, R. Wheat head detection using deep, semi-supervised and ensemble learning. Can. J. Remote Sens. 2021, 47, 198–208. [Google Scholar] [CrossRef]
- Najafian, K.; Ghanbari, A.; Stavness, I.; Jin, L.; Shirdel, G.H.; Maleki, F. A Semi-Self-Supervised learning approach for wheat head detection using extremely small number of labeled samples. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021. [Google Scholar]
- Schmarje, L.; Santarossa, M.; Schröder, S.-M.; Koch, R. A survey on semi-, self- and unsupervised learning for image classification. IEEE Access 2021, 9, 82146–82168. [Google Scholar] [CrossRef]
- Pauletto, L.; Amini, M.-R.; Winckler, N. Self semi supervised neural architecture search for semantic segmentation. arXiv 2022, arXiv:2201.12646. [Google Scholar]
- Ubbens, J.R.; Ayalew, T.W.; Shirtliffe, S.; Josuttes, A.; Pozniak, C.; Stavness, I. Autocount: Unsupervised segmentation and counting of organs in field images. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 391–399. [Google Scholar]
Method of Supervised Learning | Number of Labels | Number of Unlabeled | Labels Proportion | Precision (%) | Recall (%) | F1-Score (%) | mIoU (%) |
---|---|---|---|---|---|---|---|
Semi-supervised learning | 120 | 1080 | 10% | 76.9 | 73.1 | 74.4 | 68.9 |
240 | 960 | 20% | 81.3 | 74.9 | 80.1 | 76.2 | |
360 | 840 | 30% | 83.7 | 80.1 | 83.9 | 81.4 | |
480 | 720 | 40% | 89.5 | 83.8 | 89.3 | 84.1 | |
600 | 600 | 50% | 92.9 | 89.4 | 90.3 | 87.6 |
Models | Precision | Recall | F1-Score | mIoU |
---|---|---|---|---|
U-Net | 89.7 | 86.2 | 88.3 | 80.5 |
BiseNet | 91.4 | 88.7 | 90.1 | 84 |
DeepLabv3+ | 92.1 | 89.4 | 91.9 | 86.7 |
RSE-BiseNet | 94.6 | 91.2 | 93.1 | 89.2 |
Method of Supervised Learning | Number of Labels | Number of Unlabeled | Labels Proportion | Precision (%) | Recall (%) | F1-Score (%) | mIoU (%) |
---|---|---|---|---|---|---|---|
Fully supervised learning | 120 | — | — | 74.5 | 71.1 | 72.8 | 67.8 |
240 | — | — | 79.2 | 73.4 | 78.8 | 75.4 | |
360 | — | — | 81.8 | 78.7 | 81.6 | 79.2 | |
480 | 86.4 | 81.8 | 85.6 | 82.4 | |||
600 | — | — | 91.4 | 87.1 | 88.5 | 86.9 | |
1200 | — | — | 94.6 | 91.2 | 93.1 | 89.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, H.; Yang, B.; Zhu, Y. Collaborative Wheat Lodging Segmentation Semi-Supervised Learning Model Based on RSE-BiSeNet Using UAV Imagery. Agronomy 2023, 13, 2772. https://doi.org/10.3390/agronomy13112772
Zhi H, Yang B, Zhu Y. Collaborative Wheat Lodging Segmentation Semi-Supervised Learning Model Based on RSE-BiSeNet Using UAV Imagery. Agronomy. 2023; 13(11):2772. https://doi.org/10.3390/agronomy13112772
Chicago/Turabian StyleZhi, Hongbo, Baohua Yang, and Yue Zhu. 2023. "Collaborative Wheat Lodging Segmentation Semi-Supervised Learning Model Based on RSE-BiSeNet Using UAV Imagery" Agronomy 13, no. 11: 2772. https://doi.org/10.3390/agronomy13112772
APA StyleZhi, H., Yang, B., & Zhu, Y. (2023). Collaborative Wheat Lodging Segmentation Semi-Supervised Learning Model Based on RSE-BiSeNet Using UAV Imagery. Agronomy, 13(11), 2772. https://doi.org/10.3390/agronomy13112772