Heredity and Regulation of a Potential Commercial Crop: Perilla frutescens
1. Perilla Genome and Evolutionary Patterns
2. Research Progress of Population Classification and Genetic Diversity of Perilla
3. Metabolic Regulations in Perilla Oil Seeds
4. Metabolic Regulation Mechanism of Chemicals in Perilla Leaves
5. Genetic Heredity and Quality Breeding of Perilla
6. Perspectives
Author Contributions
Conflicts of Interest
References
- Ma, S.J.; Sa, K.J.; Hong, T.K.; Lee, J.K. Genetic diversity and population structure analysis in Perilla crop and their weedy types from northern and southern areas of China based on simple sequence repeat (SSRs). Genes Genom. 2019, 41, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Dhyani, A.; Chopra, R.; Garg, M. A review on nutritional value, functional properties and pharmacological application of perilla (Perilla frutescens L.). Biomed. Pharmacol. J. 2019, 12, 649–660. [Google Scholar] [CrossRef]
- Salachna, P.; Łopusiewicz, Ł. Chitosan oligosaccharide lactate increases productivity and quality of baby leaf red perilla. Agronomy 2022, 12, 1182. [Google Scholar] [CrossRef]
- Zhang, T.; Song, C.; Song, L.; Shang, Z.; Yang, S.; Zhang, D.; Sun, W.; Shen, Q.; Zhao, D. RNA sequencing and coexpression analysis reveal key genes involved in α-linolenic acid biosynthesis in Perilla frutescens Seed. Int. J. Mol. Sci. 2017, 18, 2433. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Yang, S.-M.; Shang, Z.-W.; Xu, J.; Zhao, D.-Z.; Wang, H.-B.; Shen, Q. Genome-wide analysis of the fatty acid desaturase gene family reveals the key role of PfFAD3 in α-linolenic acid biosynthesis in perilla seeds. Front. Genet. 2021, 12, 735862. [Google Scholar]
- Xie, G.; Zou, X.; Liang, Z.; Wu, D.; He, J.; Xie, K.; Jin, H.; Wang, H.; Shen, Q. Integrated metabolomic and transcriptomic analyses reveal molecular response of anthocyanins biosynthesis in perilla to light intensity. Front. Plant Sci. 2022, 13, 976449. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Q.; Leng, L.; Zhang, D.; Chen, S.; Shi, Y.; Ning, Z.; Chen, S. Incipient diploidization of the medicinal plant Perilla within 10,000 years. Nat. Commun. 2021, 12, 5508. [Google Scholar] [CrossRef]
- Bae, S.H.; Lee, M.H.; Lee, J.-H.; Yu, Y.; Lee, J.; Kim, T.-H. The Genome of the Korean Island-Originated Perilla citriodora ‘Jeju17’ Sheds Light on Its Environmental Adaptation and Fatty Acid and Lipid Production Pathways. Genes 2023, 14, 1898. [Google Scholar] [CrossRef]
- Tamura, K.; Sakamoto, M.; Tanizawa, Y.; Mochizuki, T.; Matsushita, S.; Kato, Y.; Ishikawa, T.; Okuhara, K.; Nakamura, Y.; Bono, H. A highly contiguous genome assembly of red perilla (Perilla frutescens) domesticated in Japan. DNA Res. 2023, 30, dsac044. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Sa, K.; Ha, Y.; Lee, J. Genetic variation and association mapping in the F2 population of the perilla crop (Perilla frutescens L.) using new developed perilla SSR markers. Euphytica 2021, 217, 135. [Google Scholar] [CrossRef]
- Liao, B.; Hao, Y.; Lu, J.; Bai, H.; Guan, L.; Zhang, T. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. BMC Genom. 2018, 19, 213. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhang, K.; Li, C.Y.; Xie, G.W.; Lu, M.T.; Qian, Y.; Shu, Y.P.; Shen, Q. Genome-wide comprehensive characterization and transcriptomic analysis of AP2/ERF gene family revealed its role in seed oil and ALA formation in perilla (Perilla frutescens). Gene 2023, 889, 147808. [Google Scholar] [CrossRef] [PubMed]
- Honda, G.; Koezuka, Y.; Tabata, M. Genetic studies of fruit color and hardness in Perilla frutescens. Jpn. J. Breed. 1990, 40, 469–474. [Google Scholar] [CrossRef]
- Zhou, P.; Shao, Y.; Jiang, Z.; Dang, J.; Qu, C.; Wu, Q. The revealing of a novel double bond reductase related to perilla ketone biosynthesis in Perilla frutescens. BMC Plant Biol. 2023, 23, 345. [Google Scholar] [CrossRef] [PubMed]
- Wada, K.C.; Kondo, H.; Takeno, K. Obligatory short-day plant, Perilla frutescens var. crispa can flower in response to low-intensity light stress under long-day conditions. Physiol. Plant. 2010, 138, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, C.; Shen, G.; Guo, B.; Wei, Z. Evaluation of PA-type Perilla Germplasm and Analysis of Yield Components. Mod. Chin. Med. 2018, 20, 1377–1382. [Google Scholar]
- Nguyen, T.K.; Yeom, M.-S.; Oh, M.-M. Effect of a newly-developed nutrient solution and electrical conductivity on growth and bioactive Compounds in Perilla frutescens var. crispa. Agronomy 2021, 11, 932. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Q.; Sun, D.; Duan, W.; Yang, Z.M. Heredity and Regulation of a Potential Commercial Crop: Perilla frutescens. Agronomy 2023, 13, 2771. https://doi.org/10.3390/agronomy13112771
Shen Q, Sun D, Duan W, Yang ZM. Heredity and Regulation of a Potential Commercial Crop: Perilla frutescens. Agronomy. 2023; 13(11):2771. https://doi.org/10.3390/agronomy13112771
Chicago/Turabian StyleShen, Qi, Di Sun, Wu Duan, and Zhi Min Yang. 2023. "Heredity and Regulation of a Potential Commercial Crop: Perilla frutescens" Agronomy 13, no. 11: 2771. https://doi.org/10.3390/agronomy13112771
APA StyleShen, Q., Sun, D., Duan, W., & Yang, Z. M. (2023). Heredity and Regulation of a Potential Commercial Crop: Perilla frutescens. Agronomy, 13(11), 2771. https://doi.org/10.3390/agronomy13112771