Water Availability Affects the Capability of Reflectance Indices to Estimate Berry Yield and Quality Attributes in Rain-Fed Vineyards
Abstract
:1. Introduction
- (i)
- determine the temporal stability of vine vigour and water status and berry yield and quality attributes
- (ii)
- examine the association of reflectance indices to vine vigour, water status and berry yield and quality attributes
- (iii)
- study the impact of the timing and severity of water deficits on the capability of reflectance indices to estimate berry yield and quality attributes at harvest.
2. Materials and Methods
2.1. Study Site
2.2. Vine Water Status
2.3. Vine Development and Vigour
2.4. Spectral Measurements
2.5. Berry Yield and Quality Attributes
2.6. Statistical Analyses
3. Results
3.1. Weather Conditions
3.2. Vine Vigor and Water Status
3.3. Berry Yield and Quality Attributes
3.4. Temporal Stability
3.5. PCA Analysis
4. Discussion
4.1. Water Status, Vine Vigor and Berry Yield and Quality Attributes
4.2. Variability in Water Status, Vine Vigor and Berry Yield and Quality Attributes (within Year Analysis)
4.3. Temporal Stability in Water Status, Vine Vigor and Berry Yield and Quality Attributes (Kendall’s Analysis)
4.4. PCA Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urretavizcaya, I.; Santesteban, L.G.; Tisseyre, B.; Guillaume, S.; Miranda, C.; Royo, J.B. Oenological significance of vineyard management zones delineated using early grape sampling. Precis. Agric. 2014, 15, 111–129. [Google Scholar] [CrossRef]
- Verdugo-Vásquez, N.; Acevedo-Opazo, C.; Valdés-Gómez, H.; Ingram, B.; de Cortázar-Atauri, I.G.; Tisseyre, B. Temporal stability of within-field variability of total soluble solids of grapevine under semi-arid conditions: A first step towards a spatial model. Oeno One 2018, 52, 15–30. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Ouzman, J.; Thornton, C. Selective harvesting is a feasible and profitable strategy even when grape and wine production is geared towards large fermentation volumes. Aust. J. Grape Wine Res. 2011, 17, 298–305. [Google Scholar] [CrossRef]
- Hall, A.; Lamb, D.W.; Holzapfel, B.P.; Louis, J.P. Within-season temporal variation in correlations between vineyard canopy and winegrape composition and yield. Precis. Agric. 2011, 12, 103–117. [Google Scholar] [CrossRef]
- Sadras, V.O.; Petrie, P.R. Predicting the time course of grape ripening. Aust. J. Grape Wine Res. 2012, 18, 48–56. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; De Rességuier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef]
- Choné, X.; Van Leeuwen, C.; Dubourdieu, D.; Gaudillère, J.P. Stem water potential is a sensitive indicator of grapevine water status. Ann. Bot. 2001, 87, 477–483. [Google Scholar] [CrossRef]
- Koundouras, S.; Marinos, V.; Gkoulioti, A.; Kotseridis, Y.; van Leeuwen, C. Influence of Vineyard Location and Vine Water Status on Fruit Maturation of Nonirrigated Cv. Agiorgitiko (Vitis vinifera L.). Effects on Wine Phenolic and Aroma Components. J. Agric. Food Chem. 2006, 54, 5077–5086. [Google Scholar] [CrossRef]
- Medrano, H.; Escalona, J.M.; Cifre, J.; Bota, J.; Flexas, J. A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: Effects of water availability from leaf photosynthesis to grape yield and quality. Funct. Plant. Biol. 2003, 30, 607. [Google Scholar] [CrossRef] [Green Version]
- Leeuwen, C.V.A.N.; Tregoat, O.; Choné, X.; Bois, B.; Pernet, D.; Gaudillére, J.P. Vine Water Status Is a Key Factor in Grape Ripening and Vintage Quality for Red Bordeaux Wine. How Can It Be Assessed for Vineyard Management Purposes? J. Int. des Sci. la Vigne du Vin 2009, 43, 121–134. [Google Scholar] [CrossRef]
- Roby, G.; Harbertson, J.F.; Adams, D.A.; Matthews, M.A. Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Aust. J. Grape Wine Res. 2004, 10, 100–107. [Google Scholar] [CrossRef]
- Acevedo-Opazo, C.; Tisseyre, B.; Ojeda, H.; Ortega-Farias, S.; Guillaume, S. Is it possible to assess the spatial variability of vine water status? J. Int. des Sci. la Vigne du Vin 2008, 42, 203–220. [Google Scholar] [CrossRef]
- Acevedo-Opazo, C.; Tisseyre, B.; Taylor, J.A.; Ojeda, H.; Guillaume, S. A model for the spatial prediction of water status in vines (Vitis vinifera L.) using high resolution ancillary information. Precis. Agric. 2010, 11, 358–378. [Google Scholar] [CrossRef]
- Tisseyre, B.; Mazzoni, C.; Fonta, H. Whithin-field temporal stability of some parameters in viticulture: Potential toward a site specific management. J. Int. des Sci. la Vigne du Vin 2008, 42, 27–39. [Google Scholar] [CrossRef]
- Bramley, R.; Trought, M.; Praat, J.-P. Integrating temporal variation into the management of spatial variability: Options for the implementation of Precision Viticulture in Marlborough, New Zealand. In Proceedings of the 14th Symposium on Precision Agriculture in Australasia, Albury, NSW, Australia, 2–3 September 2010; p. 5. [Google Scholar]
- Hall, A.; Lamb, D.W.; Holzapfel, B.; Louis, J. Optical remote sensing applications in viticulture—A review. Aust. J. Grape Wine Res. 2002, 8, 36–47. [Google Scholar] [CrossRef]
- Giovos, R.; Tassopoulos, D.; Kalivas, D.; Lougkos, N.; Priovolou, A. Remote sensing vegetation indices in viticulture: A critical review. Agriculture 2021, 11, 457. [Google Scholar] [CrossRef]
- Johnson, L.F.; Bosch, D.F.; Williams, D.C.; Lobitz, B.M. Remote sensing of vineyard management zones: Implications for wine quality. Appl. Eng. Agric. 2001, 17, 557–560. [Google Scholar] [CrossRef]
- Acevedo-Opazo, C.; Tisseyre, B.; Guillaume, S.; Ojeda, H. The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precis. Agric. 2008, 9, 285–302. [Google Scholar] [CrossRef]
- Serrano, L.; González-Flor, C.; Gorchs, G. Assessment of grape yield and composition using the reflectance based Water Index in Mediterranean rainfed vineyards. Remote Sens. Environ. 2012, 118, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Santesteban, L.G.; Guillaume, S.; Royo, J.B.; Tisseyre, B. Are precision agriculture tools and methods relevant at the whole-vineyard scale? Precis. Agric. 2013, 14, 2–17. [Google Scholar] [CrossRef]
- González-Flor, C.; Serrano, L.; Gorchs, G.; Pons, J.M. Assessment of grape yield and composition using reflectance- based indices in rainfed vineyards. Agron. J. 2014, 106, 1309–1316. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef] [PubMed]
- González-Flor, C.; Serrano, L.; Gorchs, G. Predicting berry quality attributes in cv. Xarel·lo rain-fed vineyards using narrow-band reflectance-based indices. Am. J. Enol. Vitic. 2013, 64, 88–97. [Google Scholar] [CrossRef]
- Serrano, L.; Ustin, S.L.; Roberts, D.A.; Gamon, J.A.; Peñuelas, J. Deriving water content of chaparral vegetation from AVIRIS data. Remote Sens. Environ. 2000, 74, 570–581. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Serrano, L.; González-Flor, C.; Gorchs, G. Assessing vineyard water status using the reflectance based Water Index. Agric. Ecosyst. Environ. 2010, 139, 490–499. [Google Scholar] [CrossRef]
- Lamb, D.W.; Bramley, R.G.V.; Hall, A. Precision viticulture—An Australian perspective. In ISHS Acta Horticulturae XXVI, Proceedings of the International Horticultural Congress: Viticulture—Living with Limitations, Toronto, Canada, 11–17 August 2002; Reynolds, A.G., Bowen, P., Eds.; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2004; Volume 640, pp. 15–25. [Google Scholar]
- Suarez, L.; Zhang, P.; Sun, J.; Wang, Y.; Poblete, T.; Hornero, A.; Zarco-Tejada, P.J. Assessing wine grape quality parameters using plant traits derived from physical model inversion of hyperspectral imagery. Agric. For. Meteorol. 2021, 306, 108445. [Google Scholar] [CrossRef]
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Technical Presentations, NASA SP-351, Proceedings of the Third Earth Resources Technology Satellite (ERTS) Symposium, Washington, DC, USA, 10–14 December 1974; Freden, S.C., Mercanti, E.P., Becker, M.A., Eds.; NASA: Washington, DC, USA, 1974; Volume 1, pp. 309–317. [Google Scholar]
- Peñuelas, J.; Piñol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Lloret, P.; Muñoz, O.; Vilajeliu, M. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 1995, 16, 27–33. [Google Scholar] [CrossRef]
- Filella, I.; Serrano, L.; Serra, J.; Peñuelas, J. Evaluating Wheat Nitrogen Status with Canopy Reflectance Indices and Discriminant Analysis. Crop Sci. 1995, 35, 1400. [Google Scholar] [CrossRef]
- Carbonneau, A. Irrigation, vignoble et produits de la vigne. In Traité d’Irrigation; Tiercelin, J.R., Ed.; Lavoisier Tec & Doc: Paris, France, 1998; pp. 257–298. [Google Scholar]
- Cifre, J.; Bota, J.; Escalona, J.M.; Medrano, H.; Flexas, J. Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.): An open gate to improve water-use efficiency? Agric. Ecosyst. Environ. 2005, 106, 159–170. [Google Scholar] [CrossRef]
- Jones, H.G.; Grant, O.M. Remote sensing and other imaging technologies to monitor grapevine performance. In Grapevine in A Changing Environment: A Molecular and Ecophysiological Perspective; Gerós, H., Chaves, M.M., Medrano, H., Delrot, S., Eds.; Wiley- Blackwell: Hoboken, NJ, USA, 2015; pp. 179–201. [Google Scholar]
- Bramley, R.G.V.; Hamilton, R.P. Understanding variability in winegrape production systems 1. Within vineyard variation in yield over several vintages. Aust. J. Grape Wine Res. 2004, 10, 32–45. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Trought, M.C.T.; Praat, J.P. Vineyard variability in Marlborough, New Zealand: Characterising variation in vineyard performance and options for the implementation of Precision Viticulture. Aust. J. Grape Wine Res. 2011, 17, 72–78. [Google Scholar] [CrossRef]
- Bramley, R. Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages. Aust. J. Grape Wine Res. 2005, 11, 33–42. [Google Scholar] [CrossRef]
- Willwerth, J.J.; Reynolds, A.G. Spatial variability in Ontario Riesling Vineyards: I. Soil, vine water status and vine performance. Oeno One 2020, 54, 327–350. [Google Scholar]
- Bramley, R.G.V.; Ouzman, J.; Boss, P.K. Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Aust. J. Grape Wine Res. 2011, 17, 217–229. [Google Scholar] [CrossRef]
- Reynolds, A.G.; De Savigny, C. Use of geomatic technologies to determine the basis for Terroir. Spatial variation in five Ontario Chardonnay vineyards. J. Appl. Hortic. 2016, 18, 100–122. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Rezaei, J.H. Spatial variability in Ontario Cabernet franc vineyards III. Relationships among berry composition variables and soil and vine water status. J. Appl. Hortic. 2014, 16, 167–192. [Google Scholar] [CrossRef]
- Koundouras, S.; Van Leeuwen, C.; Seguin, G.; Glories, Y. Influence of water status on vine vegetative growth, berry ripening and wine characteristics in Mediterranean Zone (example of Nemea, Greece, variety Saint-George, 1997). J. Int. des Sci. la Vigne du Vin 1999, 33, 149. [Google Scholar] [CrossRef] [Green Version]
- Féret, J.B.; Gitelson, A.A.; Noble, S.D.; Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [Google Scholar] [CrossRef]
- Zhang, C.; Filella, I.; Garbulsky, M.F.; Peñuelas, J. Affecting factors and recent improvements of the photochemical reflectance index (PRI) for remotely sensing foliar, canopy and ecosystemic radiation-use efficiencies. Remote Sens. 2016, 8, 677. [Google Scholar] [CrossRef]
- Barnes, J.D.; Balaguer, L.; Manrique, E.; Elvira, S.; Davison, A.W. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Env. Exp. Bot. 1992, 32, 85–100. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Guillén-Climent, M.L.; Hernández-Clemente, R.; Catalina, A.; González, M.R.; Martín, P. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agric. For. Meteorol. 2013, 171–172, 281–294. [Google Scholar] [CrossRef]
- Dzikiti, S.; Verreynne, J.S.; Stuckens, J.; Strever, A.; Verstraeten, W.W.; Swennen, R.; Coppin, P. Determining the water status of Satsuma mandarin trees [Citrus Unshiu Marcovitch] using spectral indices and by combining hyperspectral and physiological data. Agric. For. Meteorol. 2010, 150, 369–379. [Google Scholar] [CrossRef]
- Sun, P.; Wahbi, S.; Tsonev, T.; Haworth, M.; Liu, S.; Centritto, M. On the use of leaf spectral indices to assess water status and photosynthetic limitations in Olea europaea L. during water-stress and recovery. PLoS ONE 2014, 9, e105165. [Google Scholar] [CrossRef]
- Ballester, C.; Zarco-Tejada, P.J.; Nicolás, E.; Alarcón, J.J.; Fereres, E.; Intrigliolo, D.S.; Gonzalez-Dugo, V. Evaluating the performance of xanthophyll, chlorophyll and structure-sensitive spectral indices to detect water stress in five fruit tree species. Precis. Agric. 2018, 19, 178–193. [Google Scholar] [CrossRef]
- Suárez, L.; Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J.; Sagardoy, R.; Morales, F.; Fereres, E. Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery. Remote Sens. Environ. 2010, 114, 286–298. [Google Scholar] [CrossRef]
- Stagakis, S.; González-Dugo, V.; Cid, P.; Guillén-Climent, M.L.L.; Zarco-Tejada, P.J.J. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices. ISPRS J. Photogramm. Remote Sens. 2012, 71, 47–61. [Google Scholar] [CrossRef]
- Suárez, L.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; Pérez-Priego, O.; Miller, J.R.; Jiménez-Muñoz, J.C.; Sobrino, J.A. Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sens. Environ. 2008, 112, 560–575. [Google Scholar] [CrossRef]
- Pérez Peña, J.E.; Tarara, J. A portable whole canopy gas exchange system for several mature field-grown grapevines. Vitis 2004, 43, 7–14. [Google Scholar]
- Sims, D.A.; Gamon, J.A.J. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens. Environ. 2003, 84, 526–537. [Google Scholar] [CrossRef]
- Yu, R.; Brillante, L.; Martínez-Lüscher, J.; Kurtural, S.K. Spatial Variability of Soil and Plant Water Status and Their Cascading Effects on Grapevine Physiology Are Linked to Berry and Wine Chemistry. Front. Plant Sci. 2020, 11, 790. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, J.; Urban, L.; Staudt, M.; Lopez-Lauri, F.; Luc, P.R. Bidel, L.P.R.; Bertin, N. Water shortage and quality of fleshy fruits—making the most of the unavoidable. J. Exp. Bot. 2014, 65, 4097–4117. [Google Scholar] [CrossRef] [Green Version]
Vineyard | Municipality | Area (ha) | X Coordinate (°) | Y Coordinate (°) |
---|---|---|---|---|
Batista | Masquefa | 3.8 | 1.79620 | 41.49797 |
Hostal | Masquefa | 2.3 | 1.78292 | 41.50378 |
Valencians | Piera | 9.8 | 1.76192 | 41.52602 |
Les Planes | Piera | 13.8 | 1.76615 | 41.47577 |
La Plana | Piera | 3.2 | 1.75697 | 41.46499 |
Masover | Piera | 1.4 | 1.74533 | 41.48836 |
Isidro | St. Llorenç d’Hortons | 0.9 | 1.82534 | 41.47678 |
Casa | St. Llorenç d’Hortons | 1.2 | 1.81994 | 41.47524 |
Barraca | St. Llorenç d’Hortons | 0.9 | 1.81656 | 41.47701 |
La Creu | St. Sadurní d’Anoia | 3.7 | 1.79590 | 41.42612 |
Year | Tmean (°C) | P (mm) | ET0 (mm) | P − ET0 (mm) Pre-Veraison | P − ET0 (mm) Post-Veraison |
---|---|---|---|---|---|
2007 | 15.0 | 510.8 | 851.4 | −274.5 | −41.1 |
2008 | 14.6 | 533.1 | 767.6 | −97.0 | −130.6 |
2009 | 17.5 | 687.6 | 928.2 | −216.4 | −88.7 |
2011 | 17.2 | 662.6 | 1031.8 | −89.1 | −150.0 |
Year | n | Min | Max | Mean * | SD | CV (%) |
---|---|---|---|---|---|---|
Ψp (MPa) | ||||||
2007 | 30 | −1.40 | −0.30 | −0.88 a | 0.28 | 32.1 |
2008 | 27 | −0.95 | −0.40 | −0.67 b | 0.16 | 24.1 |
2009 | 30 | −0.73 | −0.20 | −0.45 c | 0.12 | 27.6 |
2011 | 30 | −0.60 | −0.13 | −0.26 d | 0.11 | 40.9 |
ΔTm (°C) | ||||||
2007 | 30 | −3.30 | 5.00 | 0.92 a | 2.46 | 268 |
2008 | 27 | −6.55 | 1.40 | −1.96 b | 2.14 | 110 |
2009 | 30 | −7.15 | −1.85 | −4.62 c | 1.59 | 34.4 |
2011 | 30 | −5.50 | 0.30 | −2.47 b | 1.31 | 53.0 |
fIPAR | ||||||
2007 | 30 | 0.16 | 0.66 | 0.46 a | 0.13 | 27.7 |
2008 | 27 | 0.30 | 0.80 | 0.61 b | 0.11 | 18.4 |
2009 | 30 | 0.54 | 0.86 | 0.70 c | 0.08 | 11.0 |
2011 | 30 | 0.47 | 0.86 | 0.66 bc | 0.09 | 13.3 |
Year | n | Min | Max | Mean * | SD | CV (%) |
---|---|---|---|---|---|---|
Yield (Kg vine−1) | ||||||
2007 | 30 | 1.19 | 5.56 | 3.41 a | 1.33 | 39.0 |
2008 | 27 | 1.50 | 6.93 | 3.77 a | 1.27 | 33.7 |
2009 | 24 | 1.92 | 7.28 | 4.22 a | 1.49 | 35.3 |
2011 | 29 | 1.25 | 11.51 | 5.82 b | 2.25 | 38.6 |
TSS (Brix) | ||||||
2007 | 30 | 11.37 | 20.84 | 17.13 a | 2.74 | 15.6 |
2008 | 27 | 16.40 | 22.03 | 19.32 b | 1.58 | 8.2 |
2009 | 24 | 15.10 | 23.20 | 20.10 b | 2.20 | 10.9 |
2011 | 29 | 15.50 | 21.80 | 18.78 b | 1.55 | 8.3 |
TA (g tartaric acid L−1) | ||||||
2007 | 30 | 6.30 | 14.40 | 9.73 a | 1.85 | 19.0 |
2008 | 27 | 7.22 | 16.00 | 10.49 a | 2.35 | 22.4 |
2009 | 24 | 7.39 | 13.13 | 10.02 a | 1.66 | 16.6 |
2011 | 29 | 8.60 | 13.79 | 10.67 a | 1.52 | 14.3 |
IMAD (TSS/TA) | ||||||
2007 | 30 | 1.00 | 3.31 | 1.85 a | 0.59 | 31.9 |
2008 | 27 | 1.03 | 2.87 | 1.94 a | 0.51 | 26.2 |
2009 | 24 | 1.37 | 2.80 | 2.06 a | 0.42 | 20.4 |
2011 | 29 | 1.34 | 2.54 | 1.81 a | 0.34 | 18.8 |
Variable | W | χ2 | Significance (p Value) |
---|---|---|---|
Ψp | 0.899 | 72.823 | 0.001 |
ΔTm | 0.686 | 55.572 | 0.001 |
fIPAR | 0.530 | 42.911 | 0.001 |
NDVI | 0.422 | 29.087 | 0.001 |
Yield | 0.223 | 13.380 | 0.004 |
W100 * | 0.616 | 33.267 | 0.001 |
TSS | 0.188 | 11.303 | 0.010 |
TA | 0.055 | 3.300 | 0.348 |
IMAD | 0.019 | 1.000 | 0.801 |
Variables | 4 Years | Pre-Veraison | Post-Veraison | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC4 | |
Ψp | 0.752 | 0.393 | −0.040 | 0.310 | 0.764 | 0.471 | −0.036 | 0.486 | 0.648 | 0.294 | 0.291 |
ΔTm | −0.748 | −0.087 | 0.447 | 0.014 | −0.854 | −0.109 | 0.247 | −0.553 | −0.009 | 0.347 | −0.535 |
fIPAR | 0.662 | 0.207 | −0.236 | 0.184 | 0.835 | 0.083 | −0.212 | 0.030 | 0.324 | 0.473 | 0.008 |
Yield | 0.710 | −0.296 | 0.249 | 0.254 | 0.619 | −0.429 | 0.004 | 0.791 | 0.325 | 0.125 | −0.098 |
TSS | 0.079 | 0.794 | −0.295 | 0.085 | 0.274 | 0.817 | −0.195 | −0.726 | 0.275 | 0.018 | 0.265 |
TA | 0.485 | −0.702 | −0.112 | −0.125 | 0.487 | −0.697 | −0.142 | 0.722 | −0.467 | −0.179 | −0.236 |
IMAD | −0.364 | 0.896 | −0.070 | 0.144 | −0.236 | 0.952 | −0.018 | −0.828 | 0.413 | 0.107 | 0.317 |
NVDI | 0.582 | 0.162 | −0.312 | −0.452 | 0.810 | 0.053 | 0.136 | 0.083 | 0.196 | −0.654 | 0.363 |
WI | 0.645 | −0.178 | −0.061 | 0.321 | 0.524 | 0.017 | 0.147 | 0.803 | 0.243 | 0.078 | 0.322 |
PRI | 0.552 | 0.372 | 0.580 | −0.304 | 0.466 | 0.145 | 0.751 | −0.005 | 0.766 | −0.479 | −0.300 |
SIPI | −0.397 | −0.271 | −0.409 | 0.670 | −0.470 | 0.012 | −0.696 | 0.121 | −0.460 | 0.682 | 0.331 |
NPQI | 0.169 | 0.136 | 0.797 | 0.422 | −0.579 | 0.052 | 0.577 | 0.194 | 0.723 | 0.381 | −0.340 |
Eigenvalue | 3.687 | 2.506 | 1.662 | 1.266 | 4.467 | 2.511 | 1.589 | 3.608 | 2.513 | 1.764 | 1.159 |
Variance (%) | 30.7 | 20.9 | 13.9 | 10.5 | 37.2 | 20.9 | 13.2 | 30.1 | 20.9 | 14.7 | 9.7 |
Variables | Mild | Moderate | Severe | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC3 | |
Ψp | 0.345 | 0.327 | −0.243 | −0.476 | 0.428 | 0.445 | −0.292 | −0.245 | 0.569 | 0.410 | 0.647 | 0.400 |
ΔTm | 0.267 | −0.355 | −0.070 | 0.625 | −0.233 | 0.092 | 0.244 | 0.469 | −0.688 | −0.733 | −0.222 | −0.333 |
fIPAR | −0.136 | 0.021 | 0.671 | 0.460 | 0.346 | −0.653 | 0.107 | 0.409 | 0.451 | 0.375 | 0.494 | 0.200 |
Yield | −0.530 | 0.709 | 0.077 | 0.057 | 0.101 | −0.599 | 0.102 | −0.441 | −0.248 | 0.735 | −0.116 | 0.091 |
TSS | 0.875 | −0.086 | −0.181 | −0.151 | −0.013 | 0.656 | −0.445 | −0.055 | −0.283 | −0.300 | 0.648 | 0.500 |
TA | −0.759 | 0.213 | −0.460 | 0.064 | 0.052 | −0.757 | −0.198 | −0.251 | −0.119 | 0.792 | −0.325 | −0.087 |
IMAD | 0.914 | −0.187 | 0.260 | −0.128 | −0.032 | 0.945 | −0.024 | 0.197 | −0.038 | −0.743 | 0.515 | 0.347 |
NVDI | 0.193 | 0.519 | 0.525 | 0.017 | −0.341 | −0.668 | 0.408 | 0.276 | 0.070 | 0.632 | 0.566 | −0.088 |
WI | −0.283 | 0.271 | 0.588 | −0.484 | −0.307 | 0.210 | 0.787 | 0.382 | 0.014 | 0.717 | −0.385 | 0.165 |
PRI | 0.424 | 0.801 | −0.171 | 0.171 | −0.011 | 0.181 | 0.701 | −0.548 | −0.083 | 0.245 | 0.756 | −0.435 |
SIPI | −0.262 | −0.602 | 0.386 | −0.187 | 0.493 | −0.120 | −0.402 | 0.794 | 0.056 | −0.318 | −0.603 | 0.485 |
NPQI | 0.456 | 0.542 | 0.099 | 0.277 | 0.454 | 0.504 | 0.665 | 0.054 | 0.304 | −0.295 | 0.513 | −0.423 |
Eigenvalue | 3.239 | 2.465 | 1.642 | 1.250 | 1.031 | 3.680 | 2.286 | 1.902 | 1.265 | 3.818 | 3.183 | 1.336 |
Variance (%) | 27.0 | 20.5 | 13.7 | 10.4 | 8.6 | 30.7 | 19.1 | 15.9 | 10.5 | 31.8 | 26.5 | 11.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, L.; Gorchs, G. Water Availability Affects the Capability of Reflectance Indices to Estimate Berry Yield and Quality Attributes in Rain-Fed Vineyards. Agronomy 2022, 12, 2091. https://doi.org/10.3390/agronomy12092091
Serrano L, Gorchs G. Water Availability Affects the Capability of Reflectance Indices to Estimate Berry Yield and Quality Attributes in Rain-Fed Vineyards. Agronomy. 2022; 12(9):2091. https://doi.org/10.3390/agronomy12092091
Chicago/Turabian StyleSerrano, Lydia, and Gil Gorchs. 2022. "Water Availability Affects the Capability of Reflectance Indices to Estimate Berry Yield and Quality Attributes in Rain-Fed Vineyards" Agronomy 12, no. 9: 2091. https://doi.org/10.3390/agronomy12092091
APA StyleSerrano, L., & Gorchs, G. (2022). Water Availability Affects the Capability of Reflectance Indices to Estimate Berry Yield and Quality Attributes in Rain-Fed Vineyards. Agronomy, 12(9), 2091. https://doi.org/10.3390/agronomy12092091