Delaying Application and Reducing the N Rate Enhances Grain Yield and N Use Efficiency in No-Tillage, Direct-Seeded Hybrid Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Experimental Design and Cropping Management
2.3. Measurement Methods
2.4. Statistical Analysis
3. Results
3.1. Weather Conditions and Growth Duration
3.2. Grain Yield and Yield Components
3.3. Biomass Production and Harvest Index
3.4. Nitrogen Uptake, N Harvest Index, and NUE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamano, T.; Arouna, A.; Labarta, R.A.; Huelgas, Z.M.; Mohanty, S. Adoption and impacts of international rice research technologies. Glob. Food Secur. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Peng, S.B.; Tang, Q.Y.; Zou, Y.B. Current status and challenges of rice production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef]
- Fan, M.S.; Lu, S.H.; Jiang, R.F.; Liu, X.J.; Zhang, F.S. Triangular transplanting pattern and split nitrogen fertilizer application increase rice yield and nitrogen fertilizer recovery. Agron. J. 2009, 101, 1421–1425. [Google Scholar] [CrossRef]
- Peng, S.B.; Khush, G.S.; Virk, P.; Tang, Q.Y.; Zou, Y.B. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 2008, 108, 32–38. [Google Scholar] [CrossRef]
- Zhang, H.B.; Wu, Y.N.; Mo, Y.F.; Song, G.C.; Zhang, L.T.; Sun, W.Q.; Yu, S.B. Progress and prospects of green super rice. J. Huazhong Agric. Univ. 2022, 41, 28–39. [Google Scholar]
- Zou, Y.B.; Zhou, S.Y.; Tang, Q.Y. Status and prospect of high yielding cultivation researches on China super hybrid rice. J. Hunan Agric. Univ. 2003, 29, 78–84. [Google Scholar]
- Peng, S.B.; Yang, J.C. Current status of the research on high yielding and high efficiency in resource use and improving grain quality in rice. Chin. J. Rice Sci. 2003, 17, 275–280. [Google Scholar]
- Peng, S.B. The importance of improved crop management to world rice production. Crop Res. 2008, 22, 207–208. [Google Scholar]
- Derpsch, R.; Friedrich, T. Development and current status of no-till adoption in the world. In Proceedings of the CD, 18th Triennial Conference of the International Soil Tillage Research Organization (ISTRO), Izmir, Turkey, 15–19 June 2009; pp. 15–19. [Google Scholar]
- Jiang, P.; Xu, F.X.; Zhang, L.; Liu, M.; Xiong, H.; Guo, X.Y.; Zhu, Y.C.; Zhou, X.B. Impact of tillage and crop establishment methods on rice yields in a rice-ratoon rice cropping system in Southwest China. Sci. Rep. 2021, 11, 18421. [Google Scholar] [CrossRef]
- Kumar, V.; Ladha, J.K. Direct seeding of rice: Recent developments and future research needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Xu, L.; Li, X.X.; Wang, X.Y.; Xiong, D.L.; Wang, F. Comparing the grain yields of direct-seeded and transplanted rice: A meta-analysis. Agronomy 2019, 9, 767. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.C.; Dong, Y.Y.; Ni, X.C.; Yang, B.; Gong, J.L.; Chang, Y.; Dai, Q.G.; Huo, Z.Y.; Xu, K. Effects of cultivation methods on yield, growth stage and utilization of temperature and illumination of rice in different ecological regions. Sci. Agric. Sin. 2011, 44, 2661–2672. [Google Scholar]
- Fan, M.S.; Shen, J.; Yuan, L.X.; Jiang, R.F.; Chen, X.P.; Davies, W.J.; Zhang, F.S. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2012, 63, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Xu, F.X.; Zhang, L.; Liu, M.; Xiong, H.; Guo, X.Y.; Zhu, Y.C.; Zhou, X.B. Grain yield and N use efficiency of direct-seeded rice under different N management practices aimed to reduce N input. Arch. Agron. Soil Sci. 2021, 67, 1578–1590. [Google Scholar] [CrossRef]
- Peng, S.B.; Buresh, R.J.; Huang, J.L.; Yang, J.C.; Zou, Y.B.; Zhong, X.H.; Wang, G.H.; Zhang, F.S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res. 2006, 96, 37–47. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Ladha, J.K.; Dawe, D.; Pathak, H.; Padre, A.T.; Yadav, R.L.; Singh, B.; Singh, Y.; Singh, P.; Kundu, A.L.; Sakal, R.; et al. How extensive are yield declines in long-term rice-wheat experiments in Asia? Field Crops Res. 2003, 81, 159–180. [Google Scholar] [CrossRef]
- Huang, M.; Zhou, X.F.; Chen, J.N.; Cao, F.B.; Zou, Y.B.; Jiang, L.G. Factors contributing to the superior post-heading nutrient uptake by no-tillage rice. Field Crops Res. 2016, 185, 40–44. [Google Scholar] [CrossRef]
- Huang, M.; Zou, Y.B.; Feng, Y.H.; Cheng, Z.W.; Mo, Y.L.; Ibrahim, M.d.; Xia, B.; Jiang, P. No-tillage and direct seeding for super rice production in rice-oilseed rape cropping system. Eur. J. Agron. 2011, 34, 278–286. [Google Scholar] [CrossRef]
- Norman, R.J.; Bollich, P.K.; Wilson, C.E.J.; Slaton, N.A. Influence of nitrogen fertilizer rate, application timing and tillage on grain yields of water-seeded rice. Arkansas Exp. Stn. Res. Ser. 1997, 460, 299–302. [Google Scholar]
- Huang, M.; Zou, Y.B.; Jiang, P.; Xia, B.; Feng, Y.H.; Cheng, Z.W.; Mo, Y.L. Effect of tillage on soil and crop properties of wet-seeded flooded rice. Field Crops Res. 2012, 129, 28–38. [Google Scholar] [CrossRef]
- Huang, M.; Zhou, X.F.; Zou, Y.B. Improving nitrogen management for no-tillage rice in China. Crop J. 2018, 6, 406–412. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Liu, H.J.; Guo, Z.; Zhang, C.S.; Sheng, J.; Chen, L.G.; Luo, Y.Q.; Zheng, J.C. Direct-seeded rice increases nitrogen runoff losses in southeastern China. Agric. Ecosyst. Environ. 2018, 251, 149–157. [Google Scholar] [CrossRef]
- Qi, X.L.; Nie, L.X.; Liu, H.Y.; Peng, S.B.; Shah, F.; Huang, J.L.; Cui, K.H.; Sun, L.M. Grain yield and apparent N recovery efficiency of dry direct-seeded rice under different N treatments aimed to reduce soil ammonia volatilization. Field Crop Res. 2012, 134, 138–143. [Google Scholar] [CrossRef]
- Jiang, P.; Xie, X.B.; Huang, M.; Zhou, X.F.; Zhang, R.C.; Chen, J.N.; Wu, D.D.; Xia, B.; Xiong, H.; Xu, F.X.; et al. Characterizing N uptake and use efficiency in rice as influenced by environments. Plant Prod. Sci. 2016, 19, 96–104. [Google Scholar] [CrossRef]
- Jiang, P.; Xie, X.B.; Huang, M.; Zhou, X.F.; Zhang, R.C.; Chen, J.N.; Wu, D.D.; Xia, B.; Xiong, H.; Xu, F.X.; et al. Potential yield increase of hybrid rice at five locations in Southern China. Rice 2016, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.T.; Fischer, R.A. Yield potential: Its definition, measurement and significance. Crop Sci. 1999, 39, 1544–1551. [Google Scholar] [CrossRef]
- Peng, S.B.; Cassman, K.G.; Virmani, S.S.; Sheehy, J.; Khush, G.S. Yield potential trends of tropical rice since release of IR 8 and the challenge of increasing rice yield potential. Crop Sci. 1999, 39, 1552–1559. [Google Scholar] [CrossRef]
- Huang, M.; Yin, X.H.; Jiang, L.G.; Zou, Y.B.; Deng, G.F. Raising potential yield of short-duration rice cultivars is possible by increasing harvest index. Biotechnol. Agron. Soc. 2015, 19, 153–159. [Google Scholar]
- Deng, F.; Wang, L.; Ren, W.J.; Mei, X.F. Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing management and using polyaspartic acid urea. Field Crop Res. 2014, 169, 30–38. [Google Scholar] [CrossRef]
Cultivar | Year | Maximum Temperature (°C) | Minimum Temperature (°C) | Sunshine Hours (h) | |||
---|---|---|---|---|---|---|---|
SW-HD a | HD-MA | SW-HD | HD-MA | SW-HD | HD-MA | ||
Nei6you107 | 2020 | 27.0 | 33.0 | 19.3 | 25.2 | 529.3 | 175.9 |
2021 | 26.4 | 34.9 | 19.0 | 26.1 | 330.1 | 214.7 | |
Chuankangyou6276 | 2020 | 26.8 | 30.6 | 18.4 | 24.1 | 500.3 | 126.4 |
2021 | 25.7 | 33.5 | 18.2 | 25.5 | 279.2 | 194.7 |
Cultivar | Treatment | 2020 | 2021 | |
---|---|---|---|---|
N Rate (N) a | N Split-Application Ratio (R) b | |||
Nei6you107 | N0 | 5.70 c | 6.87 c | |
N180 | R1 | 8.43 b | 8.92 b | |
N180 | R2 | 8.58 ab | 9.21 ab | |
N153 | R1 | 8.57 ab | 8.97 ab | |
N153 | R2 | 8.78 a | 9.38 a | |
Mean | 8.01 | 8.67 | ||
Chuankangyou6276 | N0 | 5.74 b | 6.40 b | |
N180 | R1 | 8.56 a | 9.01 a | |
N180 | R2 | 8.81 a | 9.18 a | |
N153 | R1 | 8.41 a | 8.92 a | |
N153 | R2 | 8.59 a | 8.99 a | |
Mean | 8.02 | 8.50 | ||
Analysis of variance | ||||
Year (Y) | ** | |||
Treatment (T) | ** | |||
Cultivar (C) | ns | |||
Y × T | ns | |||
Y × C | ns | |||
T × C | ns | |||
Y × T × C | ns |
Year | Cultivar | Treatment | Panicles m−2 | Spikelets Panilce−1 | Spikelets m−2 (×103) | Grain Filling (%) | Grain Weight (mg) | |
---|---|---|---|---|---|---|---|---|
N Rate (N) a | N Split-Application Ratio (R) b | |||||||
2020 | Nei6you107 | N0 | 205.5 d | 121.0 bc | 24.9 c | 85.8 a | 29.1 a | |
N180 | R1 | 328.9 a | 122.0 bc | 40.1 a | 80.7 b | 29.5 a | ||
N180 | R2 | 325.6 ab | 127.0 b | 41.3 a | 81.8 ab | 29.2 a | ||
N153 | R1 | 311.1 b | 116.8 c | 36.3 b | 83.9 ab | 29.6 a | ||
N153 | R2 | 291.1 c | 140.2 a | 40.7 a | 83.0 ab | 28.3 a | ||
Mean | 292.4 | 125.4 | 36.7 | 83.0 | 29.1 | |||
Chuankangyou6276 | N0 | 198.9 c | 138.6 b | 27.5 c | 83.4 a | 27.0 a | ||
N180 | R1 | 315.6 a | 140.2 b | 44.3 ab | 80.8 ab | 27.5 a | ||
N180 | R2 | 302.2 a | 155.6 a | 47.1 a | 81.9 a | 27.4 a | ||
N153 | R1 | 280.0 b | 158.7 a | 44.5 ab | 78.1 b | 27.2 a | ||
N153 | R2 | 275.0 b | 164.0 a | 45.1 b | 82.5 a | 27.6 a | ||
Mean | 274.3 | 151.4 | 41.7 | 81.3 | 27.3 | |||
2021 | Nei6you107 | N0 | 188.9 c | 136.2 c | 25.7 c | 84.9 a | 29.7 a | |
N180 | R1 | 247.2 b | 145.5 bc | 35.9 b | 84.3 a | 29.7 a | ||
N180 | R2 | 250.0 ab | 156.0 ab | 38.9 b | 84.1 a | 28.8 b | ||
N153 | R1 | 273.6 a | 136.7 c | 37.3 b | 84.8 a | 29.2 ab | ||
N153 | R2 | 256.9 ab | 164.8 a | 42.3 a | 84.3 a | 29.0 ab | ||
Mean | 243.3 | 147.8 | 36.5 | 84.5 | 29.3 | |||
Chuankangyou6276 | N0 | 190.3 c | 152.6 c | 28.8 c | 81.5 a | 28.3 a | ||
N180 | R1 | 251.4 a | 166.8 abc | 41.6 a | 78.3 a | 29.0 a | ||
N180 | R2 | 234.7 ab | 187.4 a | 44.0 a | 81.0 a | 28.6 a | ||
N153 | R1 | 241.7 ab | 159.1 bc | 38.4 b | 78.5 a | 29.4 a | ||
N153 | R2 | 213.9 bc | 182.1 ab | 38.7 b | 79.9 a | 29.0 a | ||
Mean | 226.4 | 169.6 | 38.3 | 79.8 | 28.9 | |||
Analysis of variance | ||||||||
Year (Y) | ** | ** | ** | ns | ** | |||
Treatment (T) | ** | ** | ** | ns | ns | |||
Cultivar (C) | ** | ** | ** | ** | ** | |||
Y × T | ** | ns | ** | ns | ns | |||
Y × C | ns | ns | ** | * | ** | |||
T × C | * | ns | ** | ns | ns | |||
Y × T × C | ns | ns | ** | ns | ns |
Year | Cultivar | Treatment | Biomass Production (g m−2) | Harvest index (%) | ||||
---|---|---|---|---|---|---|---|---|
N Rate (N) a | N Split-Application Ratio (R) b | Before Heading | After Heading | Total | BTpre c | |||
2020 | Nei6you107 | N0 | 821.4 d | 312.4 b | 1133.8 d | 305.7 b | 54.5 a | |
N180 | R1 | 1542.9 a | 355.8 b | 1898.7 bc | 595.8 a | 50.1 b | ||
N180 | R2 | 1465.6 ab | 543.3 a | 2009.0 a | 444.5 b | 49.2 b | ||
N153 | R1 | 1313.2 c | 507.6 a | 1820.8 c | 393.9 b | 49.5 b | ||
N153 | R2 | 1329.6 bc | 572.5 a | 1902.1 b | 383.9 b | 50.3 b | ||
mean | 1294.5 | 458.3 | 1752.9 | 424.8 | 50.7 | |||
Chuankangyou6276 | N0 | 728.8 c | 325.6 c | 1054.4 c | 294.8 c | 58.8 a | ||
N180 | R1 | 1238.2 a | 526.2 b | 1764.4 b | 453.3 a | 55.5 b | ||
N180 | R2 | 1226.1 a | 645.2 a | 1871.3 a | 409.8 ab | 56.4 b | ||
N153 | R1 | 1220.2 a | 486.7 b | 1706.8 b | 456.4 a | 55.3 b | ||
N153 | R2 | 1098.7 b | 679.2 a | 1778.0 b | 328.4 bc | 56.7 b | ||
mean | 1102.4 | 532.6 | 1635.0 | 388.5 | 56.5 | |||
2021 | Nei6you107 | N0 | 981.1 c | 277.2 c | 1258.4 c | 368.8 ab | 51.4 a | |
N180 | R1 | 1395.9 a | 485.2 b | 1881.1 b | 412.5 a | 47.8 b | ||
N180 | R2 | 1253.3 b | 633.8 a | 1887.0 ab | 307.1 b | 49.9 ab | ||
N153 | R1 | 1353.3 a | 524.4 b | 1877.6 b | 400.4 a | 49.2 ab | ||
N153 | R2 | 1342.7 a | 670.4 a | 2013.0 a | 364.9 ab | 51.4 a | ||
mean | 1265.3 | 518.2 | 1783.4 | 370.7 | 49.9 | |||
Chuankangyou6276 | N0 | 665.8 b | 614.7 b | 1280.6 c | 49.0 c | 51.8 b | ||
N180 | R1 | 1023.4 a | 849.0 a | 1872.5 a | 93.9 bc | 50.4 b | ||
N180 | R2 | 969.0 a | 868.8 a | 1837.8 a | 150.3 b | 55.4 a | ||
N153 | R1 | 980.8 a | 606.7 b | 1587.5 b | 279.0 a | 55.8 a | ||
N153 | R2 | 969.6 a | 653.0 b | 1622.6 b | 243.7 a | 55.3 a | ||
mean | 921.7 | 718.4 | 1640.2 | 163.2 | 53.7 | |||
Analysis of variance | ||||||||
Year (Y) | ** | ** | ns | ** | ** | |||
Treatment (T) | ** | ** | ** | ** | ** | |||
Cultivar (C) | ** | ** | ** | ** | ** | |||
Y × T | ** | ** | ** | ** | ** | |||
Y × C | ** | ** | ns | ** | ** | |||
T × C | ns | ** | ** | ** | ** | |||
Y × T × C | ns | ** | ** | ns | ns |
Year | Cultivar | Treatment | N Uptake (g m−2) | NHI (%) | AEN (kg kg−1) | PFPN (kg kg−1) | REN (%) | |
---|---|---|---|---|---|---|---|---|
N Rate (N) a | N Split-Application Ratio (R) b | |||||||
2020 | Nei6you107 | N0 | 10.2 d | 72.3 a | ||||
N180 | R1 | 18.7 b | 63.4 c | 15.2 b | 46.8 b | 47.1 b | ||
N180 | R2 | 19.9 a | 66.0 b | 16.0 b | 47.6 b | 53.9 a | ||
N153 | R1 | 17.4 c | 65.7 b | 18.8 a | 56.0 a | 46.9 b | ||
N153 | R2 | 18.8 b | 66.6 b | 20.1 a | 57.4 a | 55.9 a | ||
Mean | 17.0 | 66.8 | 17.5 | 52.0 | 50.9 | |||
Chuankangyou6276 | N0 | 10.4 c | 75.6 a | |||||
N180 | R1 | 17.9 b | 71.9 b | 15.7 a | 47.6 b | 41.8 c | ||
N180 | R2 | 20.1 a | 72.4 b | 17.1 a | 49.0 b | 54.2 ab | ||
N153 | R1 | 17.6 b | 72.1 b | 17.4 a | 55.0 a | 47.0 bc | ||
N153 | R2 | 19.7 a | 73.2 b | 18.7 a | 56.1 a | 61.1 a | ||
Mean | 17.1 | 73.0 | 17.2 | 51.9 | 51.0 | |||
2021 | Nei6you107 | N0 | 11.3 b | 75.4 a | ||||
N180 | R1 | 18.0 a | 65.9 c | 11.3 c | 49.5 c | 37.1 a | ||
N180 | R2 | 18.2 a | 70.8 b | 13.0 bc | 51.2 c | 38.4 a | ||
N153 | R1 | 17.5 a | 69.9 b | 13.7 b | 58.6 b | 40.4 a | ||
N153 | R2 | 18.1 a | 73.0 ab | 16.4 a | 61.3 a | 43.8 a | ||
Mean | 16.6 | 71.0 | 13.6 | 55.1 | 39.9 | |||
Chuankangyou6276 | N0 | 11.2 c | 74.9 a | |||||
N180 | R1 | 17.8 b | 71.7 a | 14.5 a | 50.1 b | 36.1 b | ||
N180 | R2 | 18.7 a | 74.4 a | 15.5 a | 51.0 b | 41.3 a | ||
N153 | R1 | 17.0 b | 73.2 a | 16.5 a | 58.3 a | 37.7 ab | ||
N153 | R2 | 17.6 b | 74.8 a | 16.9 a | 58.7 a | 41.5 a | ||
Mean | 16.5 | 73.8 | 15.8 | 54.5 | 39.1 | |||
Analysis of variance | ||||||||
Year (Y) | ** | ** | ** | ** | ** | |||
Treatment (T) | ** | ** | ** | ** | ** | |||
Cultivar (C) | ns | ** | ns | ns | ns | |||
Y × T | ** | * | * | ns | * | |||
Y × C | ns | ** | ns | ns | ns | |||
T × C | ns | ** | ns | ns | ns | |||
Y × T × C | ns | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Zhou, X.; Zhang, L.; Liu, M.; Xiong, H.; Guo, X.; Zhu, Y.; Chen, L.; Liu, J.; Xu, F. Delaying Application and Reducing the N Rate Enhances Grain Yield and N Use Efficiency in No-Tillage, Direct-Seeded Hybrid Rice. Agronomy 2022, 12, 2092. https://doi.org/10.3390/agronomy12092092
Jiang P, Zhou X, Zhang L, Liu M, Xiong H, Guo X, Zhu Y, Chen L, Liu J, Xu F. Delaying Application and Reducing the N Rate Enhances Grain Yield and N Use Efficiency in No-Tillage, Direct-Seeded Hybrid Rice. Agronomy. 2022; 12(9):2092. https://doi.org/10.3390/agronomy12092092
Chicago/Turabian StyleJiang, Peng, Xingbing Zhou, Lin Zhang, Mao Liu, Hong Xiong, Xiaoyi Guo, Yongchuan Zhu, Lin Chen, Jie Liu, and Fuxian Xu. 2022. "Delaying Application and Reducing the N Rate Enhances Grain Yield and N Use Efficiency in No-Tillage, Direct-Seeded Hybrid Rice" Agronomy 12, no. 9: 2092. https://doi.org/10.3390/agronomy12092092
APA StyleJiang, P., Zhou, X., Zhang, L., Liu, M., Xiong, H., Guo, X., Zhu, Y., Chen, L., Liu, J., & Xu, F. (2022). Delaying Application and Reducing the N Rate Enhances Grain Yield and N Use Efficiency in No-Tillage, Direct-Seeded Hybrid Rice. Agronomy, 12(9), 2092. https://doi.org/10.3390/agronomy12092092