Soil Chemical Properties and Trace Elements after Wildfire in Mediterranean Croatia: Effect of Severity, Vegetation Type and Time-Since-Fire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
3.1. Meteorological Observations
3.2. Basic Chemical Properties
3.3. Soil Trace Elements
3.4. Multivariate Analysis
4. Discussion
4.1. Basic Chemical Properties
4.2. Soil Trace Elements
4.3. Interrelations between Properties
4.4. Implications for Soil Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alcañiz, M.; Outeiro, L.; Francos, M.; Farguell, J.; Úbeda, X. Long-Term Dynamics of Soil Chemical Properties after a Prescribed Fire in a Mediterranean Forest (Montgrí Massif, Catalonia, Spain). Sci. Total Environ. 2016, 572, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are Wildfires a Disaster in the Mediterranean Basin?-A Review. Int. J. Wildland Fire 2008, 17, 713. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing Wildfire, Changing Forests: The Effects of Climate Change on Fire Regimes and Vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef] [Green Version]
- Pavlek, K.; Bišćević, F.; Furčić, P.; Grđan, A.; Gugić, V.; Malešić, N.; Moharić, P.; Vragović, V.; Fuerst-Bjeliš, B.; Cvitanović, M. Spatial Patterns and Drivers of Fire Occurrence in a Mediterranean Environment: A Case Study of Southern Croatia. Geogr. Tidsskr. Dan. J. Geogr. 2017, 117, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Westerling, A.L. Increasing Western US Forest Wildfire Activity: Sensitivity to Changes in the Timing of Spring. Phil. Trans. R. Soc. B 2016, 371, 20150178. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 5 May 2022).
- Pausas, J.G.; Keeley, J.E. Wildfires as an Ecosystem Service. Front. Ecol. Environ. 2019, 17, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Francos, M.; Brevik, E.C.; Ubeda, X.; Bogunovic, I. Post-Fire Soil Management. Curr. Opin. Environ. Sci. Health 2018, 5, 26–32. [Google Scholar] [CrossRef]
- Moya, D.; González-De Vega, S.; Lozano, E.; García-Orenes, F.; Mataix-Solera, J.; Lucas-Borja, M.E.; de las Heras, J. The Burn Severity and Plant Recovery Relationship Affect the Biological and Chemical Soil Properties of Pinus Halepensis Mill. Stands in the Short and Mid-Terms after Wildfire. J. Environ. Manag. 2019, 235, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Dzwonko, Z.; Loster, S.; Gawroński, S. Impact of Fire Severity on Soil Properties and the Development of Tree and Shrub Species in a Scots Pine Moist Forest Site in Southern Poland. For. Ecol. Manag. 2015, 342, 56–63. [Google Scholar] [CrossRef]
- Lombao, A.; Barreiro, A.; Carballas, T.; Fontúrbel, M.T.; Martín, A.; Vega, J.A.; Fernández, C.; Díaz-Raviña, M. Changes in Soil Properties after a Wildfire in Fragas Do Eume Natural Park (Galicia, NW Spain). Catena 2015, 135, 409–418. [Google Scholar] [CrossRef]
- Francos, M.; Úbeda, X.; Pereira, P.; Alcañiz, M. Long-Term Impact of Wildfire on Soils Exposed to Different Fire Severities. A Case Study in Cadiretes Massif (NE Iberian Peninsula). Sci. Total Environ. 2018, 615, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.F.; McCleskey, R.B.; Martin, D.A.; Holloway, J.M.; Writer, J.H. Wildfire-Driven Changes in Hydrology Mobilize Arsenic and Metals from Legacy Mine Waste. Sci. Total Environ. 2020, 743, 140635. [Google Scholar] [CrossRef]
- Harper, A.R.; Santin, C.; Doerr, S.H.; Froyd, C.A.; Albini, D.; Otero, X.L.; Viñas, L.; Pérez-Fernández, B. Chemical Composition of Wildfire Ash Produced in Contrasting Ecosystems and Its Toxicity to Daphnia Magna. Int. J. Wildland Fire 2019, 28, 726. [Google Scholar] [CrossRef] [Green Version]
- Santín, C.; Doerr, S.H.; Otero, X.L.; Chafer, C.J. Quantity, Composition and Water Contamination Potential of Ash Produced under Different Wildfire Severities. Environ. Res. 2015, 142, 297–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, S.; Cotos-Yáñez, T.; Roca-Pardiñas, J.; Ordóñez, C. Geographically Weighted Principal Components Analysis to Assess Diffuse Pollution Sources of Soil Heavy Metal: Application to Rough Mountain Areas in Northwest Spain. Geoderma 2018, 311, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil Sediment Contam. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Zald, H.S.J.; Dunn, C.J. Severe Fire Weather and Intensive Forest Management Increase Fire Severity in a Multi-Ownership Landscape. Ecol. Appl. 2018, 28, 1068–1080. [Google Scholar] [CrossRef]
- Stavi, I. Wildfires in Grasslands and Shrublands: A Review of Impacts on Vegetation, Soil, Hydrology, and Geomorphology. Water 2019, 11, 1042. [Google Scholar] [CrossRef] [Green Version]
- Bond, W. Fires, Ecological Effects of. In Encyclopedia of Biodiversity; Academic Press: Cambridge, MA, USA, 2001; Volume 2, pp. 745–753. [Google Scholar]
- Pereira, P.; Bogunovic, I.; Zhao, W.; Barcelo, D. Short-Term Effect of Wildfires and Prescribed Fires on Ecosystem Services. Curr. Opin. Environ. Sci. Health 2021, 22, 100266. [Google Scholar] [CrossRef]
- Birch, D.S.; Morgan, P.; Kolden, C.A.; Abatzoglou, J.T.; Dillon, G.K.; Hudak, A.T.; Smith, A.M.S. Vegetation, Topography and Daily Weather Influenced Burn Severity in Central Idaho and Western Montana Forests. Ecosphere 2015, 6, 1–23. [Google Scholar] [CrossRef]
- Caldwell, P.V.; Elliott, K.J.; Liu, N.; Vose, J.M.; Zietlow, D.R.; Knoepp, J.D. Watershed-scale Vegetation, Water Quantity, and Water Quality Responses to Wildfire in the Southern Appalachian Mountain Region, United States. Hydrol. Process 2020, 34, 5188–5209. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Suárez-Seoane, S.; García-Llamas, P.; Calvo, L. Vegetation Structure Parameters Determine High Burn Severity Likelihood in Different Ecosystem Types: A Case Study in a Burned Mediterranean Landscape. J. Environ. Manag. 2021, 288, 112462. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Metz 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Zaninović, K.; Gajić Čapka, M.; Perčec Tadić, M.; Vučetić, M. Klimatski Atlas Hrvatske Climate Atlas of Croatia 1961–1990. 1971–2000; Državni hidrometeorološki zavod: Zagreb, Croatia, 2008; ISBN 978-953-7526-01-6. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 192. [Google Scholar]
- Pereira, P.; Brevik, E.; Bogunović, I.; Ferran, E.-S. Ash and soils: A Close Relationship in Fire-Affected Areas. In Fire Effects on Soil Properties; Pereira, P., Mataix-Solera, J., Úbeda, X., Rein, G., Cerdà, A., Eds.; CSIRO Publishing: Clayton, Australia, 2019; ISBN 9781486308149. [Google Scholar]
- Úbeda, X.; Pereira, P.; Outeiro, L.; Martin, D.A. Effects of Fire Temperature on the Physical and Chemical Characteristics of the Ash from Two Plots of Cork Oak (Quercus Suber). Land Degrad. Dev. 2009, 20, 589–608. [Google Scholar] [CrossRef] [Green Version]
- Kannan, K.S.; Manoj, K.; Arumugam, S. Labeling methods for identifying outliers. Int. J. Stat. Syst. 2015, 10, 231–238. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org (accessed on 3 April 2021).
- StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 12.0. Available online: https://www.statsoft.de/en/home (accessed on 12 January 2022).
- Plotly Technologies Inc. Collaborative Data Science. Available online: https://plot.ly (accessed on 26 April 2022).
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of Prescribed Fires on Soil Properties: A Review. Sci. Total Environ. 2018, 613, 944–957. [Google Scholar] [CrossRef]
- Heydari, M.; Rostamy, A.; Najafi, F.; Dey, D.C. Effect of Fire Severity on Physical and Biochemical Soil Properties in Zagros Oak (Quercus Brantii Lindl.) Forests in Iran. J. For. Res. 2017, 28, 95–104. [Google Scholar] [CrossRef]
- Xue, L.; Li, Q.; Chen, H. Effects of a Wildfire on Selected Physical, Chemical and Biochemical Soil Properties in a Pinus Massoniana Forest in South China. Forests 2014, 5, 2947–2966. [Google Scholar] [CrossRef] [Green Version]
- Granged, A.J.P.; Zavala, L.M.; Jordán, A.; Bárcenas-Moreno, G. Post-Fire Evolution of Soil Properties and Vegetation Cover in a Mediterranean Heathland after Experimental Burning: A 3-Year Study. Geoderma 2011, 164, 85–94. [Google Scholar] [CrossRef]
- Litton, C.M.; Santelices, R. Effect of wildfire on soil physical and chemical properties in a Nothofagus glauca forest, Chile. Rev. Chil. De Hist. Nat. 2003, 76, 529–542. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, L.; Yu, J. Relationships between soil organic matter content (SOM) and pH in topsoil of zonal soils in China. Acta Pedol. Sin. 2009, 46, 851–860. [Google Scholar]
- Certini, G. Effects of Fire on Properties of Forest Soils: A Review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Kutiel, P.; Inbar, M. Fire Impacts on Soil Nutrients and Soil Erosion in a Mediterranean Pine Forest Plantation. Catena 1993, 20, 129–139. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Erickson, T.E.; Martini, D.; Dixon, K.W.; Merritt, D.J. Soil Physicochemical and Microbiological Indicators of Short, Medium and Long Term Post-Fire Recovery in Semi-Arid Ecosystems. Ecol. Indic. 2016, 63, 14–22. [Google Scholar] [CrossRef]
- Pereira, P.; Cerda, A.; Martin, D.; Úbeda, X.; Depellegrin, D.; Novara, A.; Martínez-Murillo, J.F.; Brevik, E.C.; Menshov, O.; Comino, J.R.; et al. Short-Term Low-Severity Spring Grassland Fire Impacts on Soil Extractable Elements and Soil Ratios in Lithuania. Sci. Total Environ. 2017, 578, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Casasola, P. Dunes. In Encyclopedia of Ecology; Jorgensen, S.E., Fath, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Ulery, A.L.; Graham, R.C.; Amrhein, C. Wood-ash composition and soil pH following intense burning. Soil Sci. 1993, 156, 358–364. [Google Scholar] [CrossRef]
- Goforth, B.R.; Graham, R.C.; Hubbert, K.R.; Zanner, C.W.; Minnich, R.A. Spatial Distribution and Properties of Ash and Thermally Altered Soils after High-Severity Forest Fire, Southern California. Int. J. Wildland Fire 2005, 14, 343. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H. Carbon. In Fire Effects on Soil Properties; Pereira, P., Mataix-Solera, J., Úbeda, X., Rein, G., Cerdà, A., Eds.; CSIRO Publishing: Clayton, Australia, 2019; ISBN 9781486308149. [Google Scholar]
- Muráňová, K.; Šimanský, V. The effect of different severity of fire on soil organic matter and aggregates stability. Acta Fytotech. Zootech. 2015, 18, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, T.; Cala, V.; Gonzalez, J. Mineralogical and Chemical Modifications in Soils Affected by a Forest Fire in the Mediterranean Area. Sci. Total Environ. 1997, 204, 89–96. [Google Scholar] [CrossRef]
- Kong, J.; Yang, J.; Bai, E. Long-Term Effects of Wildfire on Available Soil Nutrient Composition and Stoichiometry in a Chinese Boreal Forest. Sci. Total Environ. 2018, 642, 1353–1361. [Google Scholar] [CrossRef] [PubMed]
- Williams, C. Seasonal Fluctuations in Mineral Sulphur under Subterranean Clover Pasture in Southern New South Wales. Soil Res. 1968, 6, 131. [Google Scholar] [CrossRef]
- Caon, L.; Vallejo, V.R.; Ritsema, C.J.; Geissen, V. Effects of Wildfire on Soil Nutrients in Mediterranean Ecosystems. Earth Sci. Rev. 2014, 139, 47–58. [Google Scholar] [CrossRef]
- Simelton, E. Texture and Nutrient Status in the Topsoil Six Years after Low and High Intensity Wildfires, NE Catalonia, Spain. Ph.D. Thesis, Earth Sciences Centre, Göteborg University, Gothenburg, Sweden, 2001. [Google Scholar]
- Úbeda, X.; Bernia, S.; Simelton, E. Chapter 6 The Long-Term Effects on Soil Properties from a Forest Fire of Varying Intensity in a Mediterranean Environment. In Developments in Earth Surface Processes; Elsevier: Amsterdam, The Netherlands, 2005; Volume 7, pp. 87–102. ISBN 978-0-444-52084-5. [Google Scholar]
- Lasanta, T.; Cerdà, A. Long-Term Erosional Responses after Fire in the Central Spanish Pyrenees. Catena 2005, 60, 81–100. [Google Scholar] [CrossRef]
- Burton, C.A.; Hoefen, T.M.; Plumlee, G.S.; Baumberger, K.L.; Backlin, A.R.; Gallegos, E.; Fisher, R.N. Trace Elements in Stormflow, Ash, and Burned Soil Following the 2009 Station Fire in Southern California. PLoS ONE 2016, 11, e0153372. [Google Scholar] [CrossRef]
- Mellis, E.V.; Cruz, M.C.P.d.; Casagrande, J.C. Nickel Adsorption by Soils in Relation to pH, Organic Matter, and Iron Oxides. Sci. Agric. 2004, 61, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Delač, D.; Kisić, I.; Bogunović, I.; Pereira, P. Temporal Impacts of Pile Burning on Vegetation Regrowth and Soil Properties in a Mediterranean Environment (Croatia). Sci. Total Environ. 2021, 799, 149318. [Google Scholar] [CrossRef]
- Massoura, S.T.; Echevarria, G.; Becquer, T.; Ghanbaja, J.; Leclerc-Cessac, E.; Morel, J.-L. Control of Nickel Availability by Nickel Bearing Minerals in Natural and Anthropogenic Soils. Geoderma 2006, 136, 28–37. [Google Scholar] [CrossRef]
- Santorufo, L.; Memoli, V.; Panico, S.C.; Santini, G.; Barile, R.; Di Natale, G.; Trifuoggi, M.; De Marco, A.; Maisto, G. Early Post-Fire Changes in Properties of Andosols within a Mediterranean Area. Geoderma 2021, 394, 115016. [Google Scholar] [CrossRef]
- Fernández, I.; Cabaneiro, A.; Carballas, T. Organic Matter Changes Immediately after a Wildfire in an Atlantic Forest Soil and Comparison with Laboratory Soil Heating. Soil Biol. Biochem. 1997, 29, 1–11. [Google Scholar] [CrossRef]
- Pereira, P.; Jordán, A.; Cerdà, A.; Martin, D. Editorial: The role of ash in fire-affected ecosystems. Catena 2014, 135, 337–339. [Google Scholar] [CrossRef]
- Mitić, V.D.; Stankov Jovanović, V.P.; Ilić, M.D.; Nikolić Mandić, S.D. Impact of Wildfire on Soil Characteristics and Some Metal Content in Selected Plants Species of Geraniaceae Family. Environ. Earth Sci. 2015, 73, 4581–4594. [Google Scholar] [CrossRef]
- Ministry of Agriculture. Regulation on the Protection of the Agricultural Land from Pollution; Official Gazette 71/2019; Narodne Novine: Zagreb, Croatia, 2019. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2019_07_71_1507.html (accessed on 6 May 2022). (In Croa)
- Francos, M.; Úbeda, X.; Pereira, P. Impact of Torrential Rainfall and Salvage Logging on Post-Wildfire Soil Properties in NE Iberian Peninsula. Catena 2019, 177, 210–218. [Google Scholar] [CrossRef]
- Prats, S.; Malvar, M.; Martins, M.A.S.; Keizer, J.J. Post-fire soil erosion mitigation: A review of the last research and techniques developed in Portugal. Cuadernos de Investigación Geográfica 2014, 40, 403–428. [Google Scholar] [CrossRef] [Green Version]
- Fontúrbel, M.T.; Barreiro, A.; Vega, J.A.; Martín, A.; Jiménez, E.; Carballas, T.; Fernández, C.; Díaz-Raviña, M. Effects of an Experimental Fire and Post-Fire Stabilization Treatments on Soil Microbial Communities. Geoderma 2012, 191, 51–60. [Google Scholar] [CrossRef]
Horizon | Texture (%) | pH | SOM (%) | P2O5 | K2O | ||
---|---|---|---|---|---|---|---|
Sand | Silt | Clay | g kg−1 | ||||
0–10 cm | 56.0 | 17.8 | 26.2 | 6.5 | 3.2 | 0.002 | 0.19 |
10–60 cm | 41.0 | 12.2 | 46.8 | 6.5 | 0.8 | 0.002 | 0.22 |
pH | EC (µS/cm) | CaCO3 (%) | TOC (%) | TN (%) | TS (%) | TK (g/kg) | Fe (g/kg) | Ni (mg/g) | Cu (mg/kg) | Zn (mg/g) | |
---|---|---|---|---|---|---|---|---|---|---|---|
FS | *** | *** | *** | *** | *** | *** | *** | *** | ** | *** | *** |
V | ** | ** | n.s. | *** | *** | *** | n.s. | n.s. | n.s. | n.s. | * |
T | *** | ** | *** | * | n.s. | *** | *** | *** | *** | ** | ** |
FS × V | * | - | - | n.s. | n.s. | n.s. | - | * | n.s. | - | ** |
FS × T | n.s. | - | - | n.s. | n.s. | ** | - | n.s. | n.s. | - | n.s. |
V × T | n.s. | - | - | n.s. | n.s. | ** | - | n.s. | n.s. | - | n.s. |
FS × V × T | n.s. | - | - | n.s. | n.s. | n.s. | - | n.s. | n.s. | - | n.s. |
Fire severity | |||||||||||
C | 6.47 ± 0.02 c | 106.2 ± 11.91 b | 0.07 ± 0.04 b | 3.84 ± 0.17 b | 0.28 ± 0.01 b | 0.07 ± 0.0 b | 19.48 ± 0.12 a | 29.78 ± 0.23 a | 67.63 ± 0.79 a | 28.39 ± 0.8 b | 73.05 ± 0.82 b |
MS | 6.71 ± 0.02 b | 114.1 ± 11.91 b | 0.08 ± 0.04 b | 4.06 ± 0.17 b | 0.29 ± 0.01 b | 0.07 ± 0.0 b | 18.83 ± 0.12 ab | 28.64 ± 0.23 b | 65.59 ± 0.79 ab | 29.82 ± 0.8 b | 70.39 ± 0.82 b |
HS | 7.42 ± 0.02 a | 277.2 ± 11.91 a | 0.53 ± 0.04 a | 5.34 ± 0.17 a | 0.38 ± 0.01 a | 0.08 ± 0.0 a | 18.25 ± 0.12 b | 28.01 ± 0.23 c | 64.12 ± 0.79 b | 33.46 ± 0.8 a | 74.23 ± 0.82 a |
Time | |||||||||||
0 MAF | 6.90 ± 0.03 b | 266.9 ± 15.38 a | 0.15 ± 0.05 ab | 4.95 ± 0.22 a | 0.33 ± 0.01 a | 0.05 ± 0.0 c | 21.24 ± 0.15 a | 30.38 ± 0.3 a | 73.21 ± 1.02 a | 33.13 ± 1.04 a | 72.75 ± 1.06 a |
3 MAF | 6.85 ± 0.03 b | 140.1 ± 15.38 ab | 0.37 ± 0.05 a | 4.23 ± 0.22 ab | 0.32 ± 0.01 a | 0.08 ± 0.0 b | 16.89 ± 0.15 d | 27.83 ± 0.3 c | 63.28 ± 1.02 b | 28.79 ± 1.04 cb | 74.47 ± 1.06 a |
6 MAF | 7.12 ± 0.03 a | 168.1 ± 15.38 ab | 0.33 ± 0.05 a | 4.59 ± 0.22 ab | 0.33 ± 0.01 a | 0.08 ± 0.0 b | 19.42 ± 0.15 bc | 28.78 ± 0.3 b | 64.51 ± 1.02 b | 31.13 ± 1.04 acb | 73.71 ± 1.06 a |
9 MAF | 6.76 ± 0.03 c | 132.8 ± 15.38 b | 0.14 ± 0.05 b | 4.30 ± 0.22 ab | 0.31 ± 0.01 a | 0.09 ± 0.0 a | 20.62 ± 0.15 ac | 29.33 ± 0.3 b | 65.08 ± 1.02 b | 30.69 ± 1.04 acb | 70.52 ± 1.06 bc |
12 MAF | 6.70 ± 0.03 c | 121.4 ± 15.38 b | 0.12 ± 0.05 b | 4.00 ± 0.22 b | 0.30 ± 0.01 a | 0.08 ± 0.0 b | 16.10 ± 0.15 d | 27.73 ± 0.3 c | 62.83 ± 1.02 b | 29.04 ± 1.04 b | 71.33 ± 1.06 ac |
Vegetation | |||||||||||
Quercus p. | 6.83 ± 0.01 b | 181.5 ± 8.14 a | 0.24 ± 0.03 a | 4.90 ± 0.11 a | 0.36 ± 0.01 a | 0.08 ± 0.0 a | 18.80 ± 0.11 a | 28.68 ± 0.21 a | 65.29 ± 0.54 a | 30.03 ± 0.75 a | 73.29 ± 0.56 a |
Juniperus c. | 6.90 ± 0.02 a | 150.2 ± 11.09 b | 0.21 ± 0.03 a | 3.93 ± 0.16 b | 0.28 ± 0.01 b | 0.07 ± 0.0 b | 18.91 ± 0.08 a | 28.93 ± 0.16 a | 66.28 ± 0.74 a | 31.09 ± 0.55 a | 71.83 ± 0.77 b |
C -Q | MS -Q | HS -Q | C -J | MS -J | HS -J | |
---|---|---|---|---|---|---|
0 MAF | ||||||
pH (−log[H+]) | 6.57 ± 0.06 c | 6.77 ± 0.06 b | 7.23 ± 0.06 aB | 6.61 ± 0.08 b | 6.76 ± 0.08 b | 7.45 ± 0.08 aA |
EC (µS/cm) | 204.9 ± 32.09 b | 202.9 ± 32.09 b | 558.1 ± 32.09 a | 118.4 ± 43.74 b | 122.4 ± 43.74 b | 394.6 ± 43.74 a |
CaCO3 (%) | 0.05 ± 0.01 b | 0.06 ± 0.01 b | 0.35 ± 0.01 a | 0.08 ± 0.12 b | 0.07 ± 0.12 b | 0.30 ± 0.12 a |
TOC (%) | 4.43 ± 0.44 b | 4.41 ± 0.44 b | 7.77 ± 0.44 aA | 3.79 ± 0.61 a | 4.89 ± 0.61 a | 4.41 ± 0.61 aB |
TN (%) | 0.30 ± 0.03 b | 0.30 ± 0.03 b | 0.54 ± 0.03 aA | 0.26 ± 0.04 a | 0.28 ± 0.04 a | 0.28 ± 0.04 aB |
TS (%) | 0.05 ± 0.00 b | 0.05 ± 0.00 b | 0.06 ± 0.00 aA | 0.05 ± 0.00 a | 0.05 ± 0.00 a | 0.05 ± 0.00 aB |
TK (g/kg) | 21.71 ± 0.32 a | 21.04 ± 0.32 ab | 20.65 ± 0.32 b | 21.65 ± 0.43 a | 21.34 ± 0.43 ab | 21.04 ± 0.43 b |
3 MAF | ||||||
pH (−log[H+]) | 6.39 ± 0.06 c | 6.64 ± 0.06 b | 7.35 ± 0.06 a | 6.43 ± 0.08 c | 6.79 ± 0.08 b | 7.51 ± 0.08 a |
EC (µS/cm) | 104.1 ± 32.09 b | 99.3 ± 32.09 b | 249.1 ± 32.09 a | 83.1 ± 43.74 b | 101.1 ± 43.74 b | 203.9 ± 43.74 a |
CaCO3 (%) | 0.08 ± 0.01 b | 0.09 ± 0.01 b | 0.96 ± 0.01 a | 0.06 ± 0.12 b | 0.09 ± 0.12 b | 0.96 ± 0.12 a |
TOC (%) | 4.15 ± 0.44 bA | 4.34 ± 0.44 bA | 6.22 ± 0.44 aA | 3.36 ± 0.61 aB | 3.39 ± 0.61 aB | 3.92 ± 0.61 aB |
TN (%) | 0.31 ± 0.03 bA | 0.31 ± 0.03 bA | 0.48 ± 0.03 aA | 0.26 ± 0.04 aB | 0.26 ± 0.04 aB | 0.29 ± 0.04 aB |
TS (%) | 0.08 ± 0.0 aA | 0.08 ± 0.0 a | 0.08 ± 0.00 a | 0.07 ± 0.00 aB | 0.07 ± 0.00 a | 0.07 ± 0.00 a |
TK (g/kg) | 17.8 ± 0.32 a | 17.11 ± 0.32 a | 15.59 ± 0.32 b | 17.54 ± 0.43 a | 17.16 ± 0.43 a | 16.13 ± 0.43 b |
6 MAF | ||||||
pH (−log[H+]) | 6.71 ± 0.06 b | 6.82 ± 0.06 b | 7.70 ± 0.06 a | 6.77 ± 0.08 c | 7.02 ± 0.08 b | 7.71 ± 0.08 a |
EC (µS/cm) | 105.3 ± 32.09 b | 112.9 ± 32.09 b | 242.9 ± 32.09 a | 104.2 ± 43.74 b | 116.9 ± 43.74 b | 326.6 ± 43.74 a |
CaCO3 (%) | 0.07 ± 0.01 b | 0.12 ± 0.01 b | 0.92 ± 0.01 a | 0.07 ± 0.12 b | 0.14 ± 0.12 ab | 0.66 ± 0.12 a |
TOC (%) | 4.18 ± 0.44 b | 4.04 ± 0.44 b | 5.87 ± 0.44 a | 3.83 ± 0.61 ab | 3.70 ± 0.61 b | 5.93 ± 0.61 a |
TN (%) | 0.31 ± 0.03 b | 0.30 ± 0.03 b | 0.44 ± 0.03 a | 0.29 ± 0.04 ab | 0.27 ± 0.04 b | 0.41 ± 0.04 a |
TS (%) | 0.07 ± 0.00 b | 0.07 ± 0.00 b | 0.08 ± 0.00 aB | 0.07 ± 0.00 b | 0.07 ± 0.00 b | 0.09 ± 0.00 aA |
TK (g/kg) | 20.31 ± 0.32 a | 19.48 ± 0.32 ab | 18.56 ± 0.32 b | 20.28 ± 0.43 a | 19.38 ± 0.43 ab | 18.52 ± 0.43 b |
9 MAF | ||||||
pH (−log[H+]) | 6.41 ± 0.06 c | 6.70 ± 0.06 b | 7.14 ± 0.06 aB | 6.32 ± 0.08 c | 6.57 ± 0.08 b | 7.39 ± 0.08 aA |
EC (µS/cm) | 98.7 ± 32.09 b | 126.5 ± 32.09 b | 209.0 ± 32.09 a | 66.3 ± 43.74 b | 87.4 ± 43.74 b | 208.8 ± 43.74 a |
CaCO3 (%) | 0.12 ± 0.01 ab | 0.06 ± 0.01 b | 0.26 ± 0.01 a | 0.09 ± 0.12 b | 0.07 ± 0.12 b | 0.26 ± 0.12 a |
TOC (%) | 4.11 ± 0.44 bA | 4.67 ± 0.44 ab | 5.88 ± 0.44 a | 3.07 ± 0.61 bB | 3.75 ± 0.61 a | 4.35 ± 0.61 a |
TN (%) | 0.29 ± 0.03 bA | 0.33 ± 0.03 abA | 0.43 ± 0.03 aA | 0.23 ± 0.04 bB | 0.27 ± 0.04 abB | 0.30 ± 0.04 aB |
TS (%) | 0.09 ± 0.00 b | 0.10 ± 0.00 abA | 0.10 ± 0.00 a | 0.09 ± 0.00 a | 0.09 ± 0.00 aB | 0.09 ± 0.00 a |
TK (g/kg) | 21.29 ± 0.32 a | 20.06 ± 0.32 b | 19.88 ± 0.32 b | 21.33 ± 0.43 a | 20.61 ± 0.43 b | 20.54 ± 0.43 b |
12 MAF | ||||||
pH (−log[H+]) | 6.25 ± 0.06 c | 6.52 ± 0.06 b | 7.25 ± 0.06 a | 6.29 ± 0.08 b | 6.47 ± 0.08 b | 7.44 ± 0.08 a |
EC (µS/cm) | 94.0 ± 32.09 b | 100.3 ± 32.09 b | 215.1 ± 32.09 a | 83.4 ± 43.74 b | 71.6 ± 43.74 b | 163.8 ± 43.74 a |
CaCO3 (%) | 0.02 ± 0.01 b | 0.05 ± 0.01 b | 0.34 ± 0.01 a | 0.02 ± 0.12 b | 0.02 ± 0.12 b | 0.29 ± 0.12 a |
TOC (%) | 3.85 ± 0.44 b | 4.21 ± 0.44 bA | 5.36 ± 0.44 aA | 3.65 ± 0.61 a | 3.22 ± 0.61 aB | 3.70 ± 0.61 aB |
TN (%) | 0.29 ± 0.03 b | 0.31 ± 0.03 b | 0.41 ± 0.03 aA | 0.27 ± 0.04 a | 0.25 ± 0.04 a | 0.26 ± 0.04 aB |
TS (%) | 0.08 ± 0.00 a | 0.08 ± 0.00 a | 0.08 ± 0.00 aA | 0.08 ± 0.00 a | 0.07 ± 0.00 a | 0.07 ± 0.00 aB |
TK (g/kg) | 16.62 ± 0.32 a | 15.9 ± 0.32 a | 15.97 ± 0.32 a | 16.23 ± 0.43 a | 16.23 ± 0.43 a | 15.67 ± 0.43 a |
C -Q | MS -Q | HS -Q | C -J | MS -J | HS -J | |
---|---|---|---|---|---|---|
0 MAF | ||||||
Fe (g/kg) | 31.00 ± 0.61 a | 30.76 ± 0.61 a | 28.15 ± 0.61 b | 31.56 ± 0.83 a | 30.38 ± 0.83 a | 30.42 ± 0.83 a |
Ni (mg/kg) | 75.46 ± 2.09 a | 73.92 ± 2.09 a | 68.00 ± 2.09 a | 74.71 ± 2.85 a | 72.71 ± 2.85 a | 74.43 ± 2.85 a |
Cu (mg/kg) | 29.69 ± 2.13 b | 34.85 ± 2.13 ab | 34.38 ± 2.13 a | 31.29 ± 2.90 b | 29.00 ± 2.90 ab | 39.57 ± 2.90 a |
Zn (mg/kg) | 72.38 ± 2.17 a | 73.08 ± 2.17 a | 72.46 ± 2.17 a | 73.57 ± 2.96 a | 71.00 ± 2.96 a | 74.00 ± 2.96 a |
3 MAF | ||||||
Fe (g/kg) | 28.39 ± 0.61 a | 28.29 ± 0.61 a | 26.28 ± 0.61 b | 28.56 ± 0.83 a | 27.53 ± 0.83 a | 27.96 ± 0.83 a |
Ni (mg/kg) | 65.38 ± 2.09 a | 64.15 ± 2.09 a | 59.00 ± 2.09 b | 63.43 ± 2.85 a | 63.29 ± 2.85 a | 64.43 ± 2.85 a |
Cu (mg/kg) | 25.31 ± 2.13 a | 30.00 ± 2.13 a | 28.00 ± 2.13 a | 28.14 ± 2.90 a | 26.71 ± 2.90 a | 34.57 ± 2.90 a |
Zn (mg/kg) | 73.23 ± 2.17 b | 76.38 ± 2.17 bA | 79.23 ± 2.17 a | 74.00 ± 2.96 a | 69.00 ± 2.96 aB | 75.00 ± 2.96 a |
6 MAF | ||||||
Fe (g/kg) | 29.42 ± 0.61 a | 28.71 ± 0.61 a | 27.63 ± 0.61 b | 30.65 ± 0.83 a | 28.39 ± 0.83 a | 27.85 ± 0.83 b |
Ni (mg/kg) | 66.77 ± 2.09 a | 66.08 ± 2.09 a | 61.38 ± 2.09 b | 68.71 ± 2.85 a | 61.71 ± 2.85 a | 62.43 ± 2.85 a |
Cu (mg/kg) | 28.15 ± 2.13 a | 31.54 ± 2.13 a | 31.08 ± 2.13 a | 30.00 ± 2.90 a | 27.71 ± 2.90 a | 38.29 ± 2.90 a |
Zn (mg/kg) | 71.85 ± 2.17 a | 69.54 ± 2.17 a | 76.62 ± 2.17 a | 77.29 ± 2.96 a | 68.43 ± 2.96 b | 78.57 ± 2.96 a |
9 MAF | ||||||
Fe (g/kg) | 30.50 ± 0.61 a | 28.72 ± 0.61 b | 28.54 ± 0.61 c | 30.68 ± 0.83 a | 28.31 ± 0.83 b | 29.24 ± 0.83 a |
Ni (mg/kg) | 65.00 ± 2.09 a | 62.92 ± 2.09 a | 62.85 ± 2.09 a | 70.14 ± 2.85 a | 65.14 ± 2.85 a | 64.43 ± 2.85 a |
Cu (mg/kg) | 26.15 ± 2.13 b | 32.15 ± 2.13 ab | 30.85 ± 2.13 a | 28.86 ± 2.90 b | 28.86 ± 2.90 ab | 37.29 ± 2.90 a |
Zn (mg/kg) | 72.00 ± 2.17 a | 69.69 ± 2.17 a | 73.31 ± 2.17 a | 72.00 ± 2.96 a | 67.00 ± 2.96 a | 69.14 ± 2.96 a |
12 MAF | ||||||
Fe (g/kg) | 27.82 ± 0.61 a | 28.57 ± 0.61 a | 27.5 ± 0.61 a | 29.25 ± 0.83 a | 26.70 ± 0.83 b | 26.52 ± 0.83 c |
Ni (mg/kg) | 60.00 ± 2.09 b | 65.38 ± 2.09 a | 63.00 ± 2.09 b | 66.71 ± 2.85 a | 60.57 ± 2.85 a | 61.29 ± 2.85 a |
Cu (mg/kg) | 27.46 ± 2.13 a | 32.23 ± 2.13 a | 28.54 ± 2.13 a | 28.86 ± 2.90 a | 25.14 ± 2.90 a | 32.00 ± 2.90 a |
Zn (mg/kg) | 70.23 ± 2.17 b | 72.77 ± 2.17 b | 76.53 ± 2.17 aA | 74.00 ± 2.96 a | 67.00 ± 2.96 a | 67.43 ± 2.96 aB |
0 MAF | 3 MAF | 6 MAF | 9 MAF | 12 MAF | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
Eigenvalue | 2.38 | 1.38 | 1.19 | 2.25 | 1.58 | 1.30 | 2.43 | 1.38 | 1.12 | 2.18 | 1.61 | 1.14 | 1.96 | 1.59 | 1.29 |
Proportion of variance | 0.51 | 0.17 | 0.13 | 0.46 | 0.23 | 0.15 | 0.54 | 0.17 | 0.11 | 0.43 | 0.24 | 0.12 | 0.35 | 0.23 | 0.15 |
Cumulative proportion | 0.51 | 0.68 | 0.81 | 0.46 | 0.69 | 0.84 | 0.54 | 0.71 | 0.82 | 0.43 | 0.67 | 0.79 | 0.35 | 0.58 | 0.73 |
Eigenvectors | |||||||||||||||
pH (−log[H+]) | 0.269 | 0.257 | −0.453 | 0.324 | 0.128 | −0.441 | 0.308 | 0.232 | −0.354 | 0.342 | 0.022 | −0.499 | 0.295 | 0.196 | −0.488 |
EC (µS/cm) | 0.336 | 0.133 | −0.191 | 0.399 | 0.075 | −0.212 | 0.381 | 0.076 | −0.041 | 0.405 | 0.051 | −0.297 | 0.434 | 0.114 | −0.195 |
CaCO3 (%) | 0.328 | 0.132 | −0.285 | 0.364 | 0.103 | −0.318 | 0.302 | 0.226 | −0.391 | 0.278 | 0.098 | −0.411 | 0.273 | 0.182 | −0.356 |
TOC (%) | 0.370 | 0.018 | 0.308 | 0.380 | 0.049 | 0.355 | 0.366 | −0.050 | 0.329 | 0.415 | 0.084 | 0.278 | 0.470 | −0.021 | 0.240 |
TN (%) | 0.384 | 0.036 | 0.293 | 0.382 | 0.078 | 0.332 | 0.360 | −0.040 | 0.359 | 0.412 | 0.102 | 0.305 | 0.463 | −0.045 | 0.272 |
TS (%) | 0.363 | 0.070 | 0.341 | 0.180 | 0.229 | 0.533 | 0.328 | 0.033 | 0.264 | 0.329 | 0.210 | 0.323 | 0.291 | −0.221 | 0.452 |
TK (g/kg) | −0.325 | 0.232 | 0.110 | −0.371 | 0.061 | 0.116 | −0.340 | 0.017 | 0.104 | −0.331 | 0.220 | −0.206 | −0.237 | −0.216 | 0.040 |
Fe (g/kg) | −0.331 | 0.349 | 0.117 | −0.256 | 0.476 | 0.027 | −0.299 | 0.404 | 0.228 | −0.208 | 0.511 | −0.009 | −0.025 | −0.586 | −0.135 |
Ni (mg/kg) | −0.231 | 0.495 | 0.090 | −0.245 | 0.456 | −0.036 | −0.264 | 0.467 | 0.103 | −0.164 | 0.477 | −0.050 | −0.011 | −0.484 | −0.316 |
Cu (mg/kg) | 0.087 | 0.501 | −0.371 | −0.014 | 0.477 | −0.308 | 0.070 | 0.496 | −0.359 | 0.094 | 0.321 | −0.343 | 0.073 | −0.137 | −0.372 |
Zn (mg/kg) | 0.125 | 0.470 | 0.456 | 0.130 | 0.491 | 0.169 | 0.136 | 0.506 | 0.459 | 0.049 | 0.535 | 0.239 | 0.261 | −0.470 | −0.055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrelja, I.; Šestak, I.; Delač, D.; Pereira, P.; Bogunović, I. Soil Chemical Properties and Trace Elements after Wildfire in Mediterranean Croatia: Effect of Severity, Vegetation Type and Time-Since-Fire. Agronomy 2022, 12, 1515. https://doi.org/10.3390/agronomy12071515
Hrelja I, Šestak I, Delač D, Pereira P, Bogunović I. Soil Chemical Properties and Trace Elements after Wildfire in Mediterranean Croatia: Effect of Severity, Vegetation Type and Time-Since-Fire. Agronomy. 2022; 12(7):1515. https://doi.org/10.3390/agronomy12071515
Chicago/Turabian StyleHrelja, Iva, Ivana Šestak, Domina Delač, Paulo Pereira, and Igor Bogunović. 2022. "Soil Chemical Properties and Trace Elements after Wildfire in Mediterranean Croatia: Effect of Severity, Vegetation Type and Time-Since-Fire" Agronomy 12, no. 7: 1515. https://doi.org/10.3390/agronomy12071515
APA StyleHrelja, I., Šestak, I., Delač, D., Pereira, P., & Bogunović, I. (2022). Soil Chemical Properties and Trace Elements after Wildfire in Mediterranean Croatia: Effect of Severity, Vegetation Type and Time-Since-Fire. Agronomy, 12(7), 1515. https://doi.org/10.3390/agronomy12071515