Influence of Commercial Seaweed Extract and Microbial Biostimulant on Growth, Yield, Phytochemical Content, and Nutritional Quality of Five Abelmoschus esculentus Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Biostimulants, Seeds and Chemicals
2.2. Seed Soaking Using Biostimulants Prior to Planting
2.3. Planting, Seedling Growth and Yield
2.4. Phytochemical Analysis
2.4.1. Determination of Total Phenolic (TP) Content
2.4.2. Determination of Flavonoid Content
2.4.3. Determination of Condensed Tannins (CT)
2.5. Nutritional Analysis
2.5.1. Determination of β-Carotene Content
2.5.2. Determination of Vitamin C Content
2.5.3. Determination of Mineral Element Content
2.6. Data Analysis
3. Results
3.1. Growth and Yield of Abelmoschus esculentus
3.2. Nutritional and Phytochemical Contents of Abelmoschus esculentus
4. Discussion
4.1. Growth and Yield Response
4.2. Biochemical and Mineral Element Content of Abelmoschus esculentus Genotypes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peltzer, K.; Phaswana-Mafuya, N. Fruit and vegetable intake and associated factors in older adults in South Africa. Glob. Health Action 2012, 5, 18668. [Google Scholar] [CrossRef]
- Omotayo, A.O.; Aremu, A.O. Underutilized African indigenous fruit trees and food–nutrition security: Opportunities, challenges, and prospects. Food Energy Secur. 2020, 9, e220. [Google Scholar] [CrossRef]
- Akinola, R.; Pereira, L.M.; Mabhaudhi, T.; de Bruin, F.-M.; Rusch, L. A review of indigenous food crops in Africa and the implications for more sustainable and healthy food systems. Sustainability 2020, 12, 3493. [Google Scholar] [CrossRef] [Green Version]
- Benchasri, S. Okra (Abelmoschus esculentus (L.) Moench) as a valuable vegetable of the world. Ratar. Povrt. 2012, 49, 105–112. [Google Scholar]
- Mkhabela, S.S.; Shimelis, H.; Gerrano, A.S.; Mashilo, J. Phenotypic and genotypic divergence in Okra (Abelmoschus esculentus (L.) Moench) and implications for drought tolerance breeding: A review. S. Afr. J. Bot. 2021. [Google Scholar] [CrossRef]
- Patil, P.; Sutar, S.; Malik, S.K.; John, J.; Yadav, S.; Bhat, K.V. Numerical taxonomy of Abelmoschus Medik. (Malvaceae) in India. Bangladesh J. Plant Taxon. 2015, 22, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Das, U.; Islam, M.S. A review study on different plants in Malvaceae family and their medicinal uses. Am. J. Biomed. Sci. Res. 2019, 3, 94–97. [Google Scholar]
- Kumar, U.; Nayak, A.K.; Shahid, M.; Gupta, V.V.; Panneerselvam, P.; Mohanty, S.; Kaviraj, M.; Kumar, A.; Chatterjee, D.; Lal, B.; et al. Continuous application of inorganic and organic fertilizers over 47 years in paddy soil alters the bacterial community structure and its influence on rice production. Agric. Ecosyst. Environ. 2018, 262, 65–75. [Google Scholar] [CrossRef]
- Kumar, D.S.; Tony, D.E.; Kumar, A.P.; Kumar, K.A.; Rao, D.B.S.; Nadendla, R. A review on: Abelmoschus esculentus (Okra). Int. Res. J. Pharm. Appl. Sci. 2013, 3, 129–132. [Google Scholar]
- Gemede, H.F. Nutritional quality and health benefits of “okra” (Abelmoschus esculentus): A review. Int. J. Nutr. Food Sci. 2015, 4, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.T. Phytochemical information and pharmacological activities of Okra (Abelmoschus esculentus): A literature-based review. Phytother. Res. 2019, 33, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Shrivastava, S.L.; Mandal, S.M. Functional properties of Okra Abelmoschus esculentus L. (Moench): Traditional claims and scientific evidences. Plant Sci. Today 2014, 1, 121–130. [Google Scholar] [CrossRef]
- Onakpa, M. Ethnomedicinal, phytochemical and pharmacological profile of genus Abelmoschus. Phytopharmacology 2013, 4, 648–669. [Google Scholar]
- Aslam, M.S.; Ahmad, M.S. Worldwide Importance of medicinal plants: Current and historical perspectives. Recent Adv. Biol. Med. 2016, 02, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Muller, T.; Yermiyahu, U. The use of biostimulants for enhancing nutrient uptake. Adv. Agron. 2015, 130, 141–174. [Google Scholar] [CrossRef]
- Ngoroyemoto, N.; Gupta, S.; Kulkarni, M.; Finnie, J.; Van Staden, J. Effect of organic biostimulants on the growth and biochemical composition of Amaranthus hybridus L. S. Afr. J. Bot. 2019, 124, 87–93. [Google Scholar] [CrossRef]
- Román-Ponce, B.; Reza-Vázquez, D.M.; Gutiérrez-Paredes, S.; Haro-Cruz, M.D.J.D.; Maldonado-Hernández, J.; Bahena-Osorio, Y.; Santos, P.E.D.L.; Wang, E.T.; Vásquez-Murrieta, M.S. Plant growth-promoting traits in rhizobacteria of heavy metal-resistant plants and their effects on Brassica nigra seed germination. Pedosphere 2017, 27, 511–526. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Rathore, S.; Chaudhary, D.; Boricha, G.; Ghosh, A.; Bhatt, B.; Zodape, S.; Patolia, J. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S. Afr. J. Bot. 2009, 75, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.; Ashour, M.; Sakai, N.; Zhang, L.; Hassanien, H.; Gaber, A.; Ammar, G. Impact of seaweed liquid extract biostimulant on growth, yield, and chemical composition of cucumber (Cucumis sativus). Agriculture 2021, 11, 320. [Google Scholar] [CrossRef]
- Hassan, S.; Ashour, M.; Soliman, A.; Hassanien, H.; Alsanie, W.; Gaber, A.; Elshobary, M. The potential of a new commercial seaweed extract in stimulating morpho-agronomic and bioactive properties of Eruca vesicaria (L.) Cav. Sustainability 2021, 13, 4485. [Google Scholar] [CrossRef]
- Ashour, M.; Hassan, S.; Elshobary, M.; Ammar, G.; Gaber, A.; Alsanie, W.; Mansour, A.; El-Shenody, R. Impact of commercial seaweed liquid extract (TAM®) biostimulant and its bioactive molecules on growth and antioxidant activities of hot pepper (Capsicum annuum). Plants 2021, 10, 1045. [Google Scholar] [CrossRef]
- Mannino, G.; Campobenedetto, C.; Vigliante, I.; Contartese, V.; Gentile, C.; Bertea, C.M. The application of a plant biostimulant based on seaweed and yeast extract improved tomato fruit development and quality. Biomolecules 2020, 10, 1662. [Google Scholar] [CrossRef] [PubMed]
- Chiappero, J.; Cappellari, L.R.; Alderete, L.G.S.; Palermo, T.B.; Banchio, E. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind. Crops Prod. 2019, 139, 111553. [Google Scholar] [CrossRef]
- Makhaye, G.; Aremu, A.O.; Gerrano, A.S.; Tesfay, S.; Du Plooy, C.P.; Amoo, S.O. Biopriming with seaweed extract and microbial-based commercial biostimulants influences seed germination of five Abelmoschus esculentus genotypes. Plants 2021, 10, 1327. [Google Scholar] [CrossRef]
- Makkar, H. Quantification of tannins in tree and shrub foliage. In A Laboratory Manual for the FAO/IAEA Co-Ordinated Research Project on ‘Use of Nuclear and Related Techniques to Develop Simple Tannin Assays for Predicting and Improving the Safety and Efficiency of Feeding Ruminants on Tanniniferous Tree Foliage; Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture: Vienna, Austria, 2000. [Google Scholar]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- Biehler, E.; Mayer, F.; Hoffmann, L.; Krause, E.; Bohn, T. Comparison of three spectrophotometric methods for carotenoid determination in frequently consumed fruits and vegetables. J. Food Sci. 2010, 75, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Moyo, M.; Amoo, S.O.; Aremu, A.O.; Gruz, J.; Šubrtová, M.; Jarošová, M.; Tarkowski, P.; Doležal, K. Determination of mineral constituents, phytochemicals and antioxidant qualities of Cleome gynandra, compared to Brassica oleracea and Beta vulgaris. Front. Chem. 2018, 5, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odriozola-Serrano, I.; Aguilό-Aquayo, I.; Soliva-Fortuny, R.; Gimeno-Añό, V.; Martίn-Belloso, O. Lycopene, vitamin C, and antioxidant capacity of tomato juice as affected by high-intensity pulsed electric fields critical parameters. J. Agric. Food Chem. 2007, 55, 9036–9042. [Google Scholar] [CrossRef]
- Ang, H.H.; Lee, K.L. Analysis of mercury in Malaysian herbal preparations. J. Med. Biomed. Res. 2009, 4, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, D.; Subrahmanyam, D.; Badri, J.; Raju, A.K.; Rao, Y.V.; Beerelli, K.; Mesapogu, S.; Surapaneni, M.; Ponnuswamy, R.; Padmavathi, G.; et al. Genotype × environment interactions of yield traits in backcross introgression lines derived from Oryza sativa cv. Swarna/Oryza nivara. Front. Plant Sci. 2016, 7, 1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.S. Genotype-environment interaction: Progress and prospects. Quant. Genet. Genom. Plant Breed. 2002, 2002, 221–243. [Google Scholar] [CrossRef]
- Goloran, J.; Johnson-Beebout, S.; Morete, M.; Impa, S.; Kirk, G.; Wissuwa, M. Grain Zn concentrations and yield of Zn-biofortified versus Zn-efficient rice genotypes under contrasting growth conditions. Field Crops Res. 2019, 234, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Pazos, J.V.; Rosero, A.; Martínez, R.; Pérez, J.; Morelo, J.; Araujo, H.; Burbano-Erazo, E. Influence of morpho-physiological traits on root yield in sweet potato (Ipomoea batatas Lam.) genotypes and its adaptation in a sub-humid environment. Sci. Hortic. 2021, 275, 109703. [Google Scholar] [CrossRef]
- Bowman, J.C. Genotype x environment interactions. Ann. Génétique Sélection Anim. 1972, 4, 117–123. [Google Scholar] [CrossRef]
- Leon, N.D.; Jannink, J.-L.; Edwards, J.W.; Kaeppler, S.M. Introduction to a special issue on genotype by environment interaction. Crop Sci. Soc. Am. 2016, 56, 2081–2089. [Google Scholar] [CrossRef] [Green Version]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.H.; Saa, S. Biostimulants in agriculture. Front. Plant Sci. 2015, 6, 671. [Google Scholar] [CrossRef] [Green Version]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [Green Version]
- Makhaye, G.; Mofokeng, M.M.; Tesfay, S.; Aremu, A.O.; Van Staden, J.; Amoo, S.O. Influence of plant biostimulant application on seed germination. In Biostimulants for Crops from Seed Germination to Plant Development—A Practical Approach; Academic Press: Salt Lake City, UT, USA, 2021; pp. 109–135. [Google Scholar] [CrossRef]
- Gowtham, H.; Murali, M.; Singh, S.B.; Lakshmeesha, T.; Murthy, K.N.; Amruthesh, K.; Niranjana, S. Plant growth promoting rhizobacteria-Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease. Biol. Control 2018, 126, 209–217. [Google Scholar] [CrossRef]
- Gámez, B.S.; Garruña, R.; Tun-Suárez, J.; Kantun-Can, J.; Reyes-Ramírez, A.; Cervantes-Díaz, L. Bacillus spp. inoculation improves photosystem II efficiency and enhances photosynthesis in pepper plants. Chil. J. Agric. Res. 2016, 76, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Jamal, Q.; Lee, Y.S.; Jeon, H.D.; Kim, K.Y. Effect of plant growth promoting bacteria Bacillus amyloliquefaciens Y1 on soil properties, pepper seedling growth, rhizosphere bacterial flora and soil enzymes. Plant Prot. Sci. 2018, 54, 129–137. [Google Scholar]
- Tsukanova, K.A.; Chebotar, V.K.; Meyer, M.; Bibikova, T.N. Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis. S. Afr. J. Bot. 2017, 113, 91–102. [Google Scholar] [CrossRef]
- Sansinenea, E. Bacillus spp.: As plant growth promoting bacteria. In Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms; Singh, H., Keswani, C., Reddy, M., Sansinenea, E., García-Estrada, C., Eds.; Springer: Singapore, 2019; pp. 1–14. [Google Scholar]
- Radhakrishnan, R.; Baek, K.H. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity. Plant Physiol. Biochem. 2017, 116, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ruzzi, M.; Aroca, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic. 2015, 196, 124–134. [Google Scholar] [CrossRef]
- Yadav, J.; Verma, J.P.; Tiwari, K.N. Effect of plant growth promoting rhizobacteria on seed germination and plant growth Chickpea (Cicer arietinum L.) under in vitro conditions. Biol. Forum-Int. J. 2010, 2, 15–18. [Google Scholar]
- Wang, Y.; Xiang, L.; Wang, S.; Wang, X.; Chen, X.; Mao, Z. Effects of seaweed fertilizer on the Malus hupehensis Rehd. seedlings growth and soil microbial numbers under continue cropping. Acta Ecol. Sin. 2017, 37, 180–186. [Google Scholar] [CrossRef]
- Di Stasio, E.; Rouphael, Y.; Colla, G.; Raimondi, G.; Giordano, M.; Pannico, A.; El-Nakhel, C.; De Pascale, S. The influence of Ecklonia maxima seaweed extract on growth, photosynthetic activity and mineral composition of Brassica rapa L. subsp. sylvestris under nutrient stress conditions. Eur. J. Hortic. Sci. 2017, 86, 286–293. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Salama, D.M.; El-Tanahy, A.M.M.; El-Samad, E.H.A. Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Ann. Agric. Sci. 2019, 64, 167–175. [Google Scholar] [CrossRef]
- Kocira, A.; Lamorska, J.; Kornas, R.; Nowosad, N.; Tomaszewska, M.; Leszczyńska, D.; Kozłowicz, K.; Tabor, S. Changes in biochemistry and yield in response to biostimulants applied in bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Lötze, E.; Hoffman, E.W. Nutrient composition and content of various biological active compounds of three South African-based commercial seaweed biostimulants. Environ. Boil. Fishes 2016, 28, 1379–1386. [Google Scholar] [CrossRef]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C.M. Effect of genotype and growing year on the nutritional, phytochemical, and antioxidant properties of industrial hemp (Cannabis sativa L.) seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokrab, A.M.; Ahmed, I.A.M.; Babiker, E.E. Effect of genotype on chemical composition, total energy, antinutrients, and total and extractable minerals of corn. Int. J. Agric. Res. Rev. 2011, 1, 38–43. [Google Scholar]
- Kocira, A.; Świeca, M.; Kocira, S.; Złotek, U.; Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 2018, 25, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Ngoroyemoto, N.; Kulkarni, M.G.; Stirk, W.A.; Gupta, S.; Finnie, J.F.; Van Staden, J. Interactions between microorganisms and a seaweed-derived biostimulant on the growth and biochemical composition of Amaranthus hybridus L. Nat. Prod. Commun. 2020, 5, 1–11. [Google Scholar]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant- and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Rengasamy, K.R.R.; Kulkarni, M.G.; Stirk, W.A.; Van Staden, J. Eckol—A new plant growth stimulant from the brown seaweed Ecklonia maxima. Environ. Boil. Fishes 2015, 27, 581–587. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Kuboń, M.; Czerwińska, E.; Piskier, T. Morphological and biochemical responses of Glycine max (L.) Merr. to the use of seaweed extract. Agronomy 2019, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Pagnani, G.; Pellegrini, M.; Galieni, A.; D’egidio, S.; Matteucci, F.; Ricci, A.; Stagnari, F.; Sergi, M.; Sterzo, C.L.; Pisante, M.; et al. Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’ cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Ind. Crops Prod. 2018, 123, 75–83. [Google Scholar] [CrossRef]
- Orhan, E.; Esitken, A.; Ercisli, S.; Turan, M.; Sahin, F. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci. Hortic. 2006, 111, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Aloo, B.; Makumba, B.; Mbega, E. The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol. Res. 2019, 219, 26–39. [Google Scholar] [CrossRef] [PubMed]
Source of Variation | df | Mean Square | ||||||
---|---|---|---|---|---|---|---|---|
Plant Height | Number of Leaves | Chlorophyll Content | Stem Diameter | No. of Pods | Total Pod Fresh Weight | Total Pod Dry Weight | ||
Genotype (G) | 4 | 102,823 * | 39 * | 6 n.s | 7 n.s | 33 n.s | 930 n.s | 18 n.s |
Biostimulant (B) | 6 | 225,161 *** | 19 n.s | 143 *** | 35 *** | 94 *** | 8696 *** | 256 *** |
G × B | 24 | 28,253 n.s | 13 n.s | 21 n.s | 2 n.s | 24 n.s | 711 n.s | 16 n.s |
Residual | 140 | 34,271 | 15 | 18 | 3 | 16 | 740 | 13 |
Total | 174 |
Treatment | Plant Height (mm) | Chlorophyll Content (SPAD) | Stem Diameter (mm) | Number of Pods | Total Pod Fresh Weight (g) | Total Pod Dry Weight (g) |
---|---|---|---|---|---|---|
Control | 460.0 d | 35.4 cd | 7.5 b | 5.8 c | 32.4 e | 3.9 e |
KLP 1:20 | 594.4 bc | 35.3 cd | 8.4 b | 8.3 b | 55.7 cd | 6.9 cd |
KLP 1:40 | 632.8 abc | 34.4 cd | 8.3 b | 7.9 bc | 47.6 d | 5.5 de |
KLP 1:100 | 530.8 cd | 33.4 d | 7.8 b | 5.7 c | 46.7 de | 5.1 de |
PGPR 1:5 | 727.2 a | 40.5 a | 10.5 a | 9.7 ab | 88.5 a | 13.1 a |
PGPR 1:10 | 698.4 a | 38.2 ab | 10.1 a | 10.7 a | 72.9 b | 9.8 b |
PGPR 1:15 | 666.4 ab | 35.8 bc | 9.5 a | 9.7 ab | 64.2 bc | 8.8 bc |
LSD (p ≤ 0.05) | 103.5 | 2.4 | 1.0 | 2.3 | 15.2 | 2.1 |
Genotype | Plant Height (mm) | Number of Leaves |
---|---|---|
VI037996 | 599.4 abc | 9.1 a |
VI046567 | 657.7 ab | 9.2 a |
VI055421 | 592.3 bc | 7.1 b |
VI050956 | 546.9 c | 8.6 ab |
VI033796 | 682.3 a | 7.1 b |
LSD (p ≤ 0.05) | 87.5 | 1.8 |
Source of Variation | df | Mean Square | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BCB | Vit C | TP | Flav | CT | Ca | Fe | K | Mg | Na | Zn | ||
Genotype (G) | 4 | 3.07 *** | 17.79 *** | 17.84 *** | 9.18 *** | 3.42 *** | 57,997,755 *** | 27,175 *** | 7.8 *** | 79,595,816 *** | 15,911,508 *** | 9086 *** |
Treatment (T) | 6 | 1.31 *** | 37.38 *** | 7.34 *** | 5.49 *** | 0.43 *** | 57,00,772 *** | 3781 *** | 4.9 *** | 2,373,265 *** | 401,018 *** | 372 *** |
G × T | 24 | 1.27 *** | 34.95 *** | 12.71 *** | 7.96 *** | 0.31 *** | 6,410,035 *** | 7071 *** | 1.15 *** | 10,056,126 *** | 1,522,153 *** | 1388 *** |
Residual | 70 | 0.00 | 0.17 | 0.47 | 0.12 | 0.01 | 340,822 | 113 | 6.22 | 375,455 | 50,733 | 36 |
Total | 104 |
Genotype | Treatment | BCB | Vit C | TP | Flav | CT | Ca | Fe | K | Mg | Na | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
VI037996 | Control | 4.57 d | 13.80 j | 10.13 d–k | 4.83 h–l | 1.74 d | 6287 def | 88.40 d–h | 51,933 e | 6020 i–l | 2327 h | 60.53 jk |
KLP 1:100 | 3.15 t | 11.98 m–p | 9.41 i–l | 4.30 l–o | 1.41 fg | 3240 nop | 45.13 m–p | 27,667 gh | 3144 opq | 1336 lm | 35.45 n–q | |
KLP 1:40 | 3.56 lm | 8.91 x | 11.97 b | 5.87 def | 1.84 cd | 5493 fgh | 68.60 ijk | 54,733 e | 5513 klm | 2567 gh | 57.20 kl | |
KLP 1:20 | 3.01 u | 17.85 de | 9.48 i–l | 5.19 g–h | 2.52 a | 5393 fgh | 75.47 hij | 51,600 e | 4987 m | 2443 h | 51.60 kl | |
PGPR 1:5 | 3.16 st | 14.02 ij | 10.70 c–h | 5.88 de | 1.61 e | 3933 k–n | 81.62 f–i | 42,860 ef | 4917 mn | 2514 h | 73.93 ghi | |
PGPR 1:10 | 3.45 o | 14.15 hij | 11.23 bcd | 6.39 c–d | 1.89 c | 3080 nop | 48.67 mn | 32,540 fg | 3668 op | 1498 j–m | 39.13 mno | |
PGPR 1:15 | 4.07 gh | 10.60 s–v | 10.01 e–k | 4.66 j–n | 2.34 b | 2517 opq | 40.93 nop | 26,380 gh | 2904 pq | 1363 lm | 35.40 n–q | |
VI046567 | Control | 3.69 k | 9.83 w | 11.10 b–e | 4.18 no | 1.23 i | 7433 bc | 105.20 cd | 68,467 d | 7147 fgh | 3240 def | 90.27 cde |
KLP 1:100 | 3.53 mn | 12.25 l–o | 10.36 c–j | 4.44 k–o | 0.48 r | 6107 efg | 74.53 hij | 72,000 cd | 5767 j–m | 3350 de | 67.53 ij | |
KLP 1:40 | 3.48 no | 10.38 uvw | 10.20 c–k | 11.95 a | 1.09 j–n | 5267 ghi | 78.93 f–j | 55,133 e | 6707 g–j | 2540 gh | 80.67 e–h | |
KLP 1:20 | 4.09 g | 14.50 hi | 7.79 n | 4.69 j–n | 0.80 q | 7673 bc | 86.87 e–h | 79,267 bcd | 8040 def | 3020 ef | 89.20 cde | |
PGPR 1:5 | 2.96 uv | 10.90 r–u | 8.10 mn | 4.71 j–n | 0.95 op | 3720 k–n | 62.13 j–m | 34,400 fg | 3933 no | 1959 i | 40.93 mn | |
PGPR 1:10 | 3.53 mn | 11.41 pqr | 5.34 o | 2.63 r | 1.38 fgh | 7953 b | 262.67 a | 100,667 a | 9207 abc | 3973 b | 100.40 ab | |
PGPR 1:15 | 3.23 r | 20.03 b | 9.28 jkl | 4.02 op | 1.07 k–o | 7127 bcd | 276.87 a | 86,400 b | 8233 cde | 3567 cd | 91.67 bcd | |
VI055421 | Control | 6.15 a | 14.76 h | 7.88 n | 5.33 e–h | 0.50 r | 9107 a | 120.13 bc | 100,333 a | 10,200 a | 4460 a | 103.80 a |
KLP 1:100 | 3.21 rs | 17.39 ef | 8.81 lmn | 4.52 k–o | 1.00 nop | 6893 cde | 83.20 f–i | 82,067 bc | 7853 ef | 3247 def | 71.67 hi | |
KLP 1:40 | 3.56 lm | 11.23 qrs | 10.93 b–f | 4.85 h–l | 1.241 i | 5927 fg | 83.60 f–i | 71,400 cd | 7100 fgh | 3000 ef | 76.87 f–i | |
KLP 1:20 | 3.40 p | 11.70 n–q | 9.47 i–l | 6.75 c | 1.18 i–m | 7500 bc | 92.87 d–g | 82,800 bc | 8173 de | 3727 bc | 97.73 abc | |
PGPR 1:5 | 5.04 c | 12.36 lmn | 9.09 klm | 3.97 op | 1.05 l–p | 4660 h–k | 74.60 hij | 52,133 e | 6353 h–k | 3019 ef | 74.40 ghi | |
PGPR 1:10 | 5.26 b | 11.06 q–t | 9.59 h–l | 5.15 g–j | 0.96 nop | 5467 fgh | 95.40 def | 70,867 cd | 7353 efg | 2953 f | 90.20 cde | |
PGPR 1:15 | 4.34 e | 17.09 f | 7.91 n | 4.02 op | 1.04 m–p | 7860 b | 103.60 cde | 90,267 ab | 9527 ab | 4433 a | 97.60 abc | |
VI050956 | Control | 3.35 pq | 23.00 a | 10.42 c–i | 4.53 k–o | 1.21 ij | 3015 nop | 46.00 mno | 33,867 fg | 3060 opq | 1161 m | 30.47 o–r |
KLP 1:100 | 4.13 fg | 12.78 kl | 11.13 bcd | 5.21 g–j | 1.40 fgh | 4373 i–l | 75.93 g–j | 70,467 cd | 6820 ghi | 2387 h | 83.40 d–g | |
KLP 1:40 | 2.85 w | 11.22 qrs | 8.13 mn | 3.53 pq | 0.93 pq | 1639 qr | 30.47 opq | 17,327 hi | 1786 rs | 765 n | 29.03 pqr | |
KLP 1:20 | 3.60 l | 11.64 opq | 9.78 g–l | 4.75 i–m | 1.29 ghi | 3123 nop | 50.21 lmn | 32,360 fg | 3032 opq | 1445 lm | 35.51 n–q | |
PGPR 1:5 | 4.15 f | 15.72 g | 18.80 a | 5.31 f–i | 0.98 nop | 1058 r | 14.78 q | 13,507 i | 1453 s | 639 n | 16.09 s | |
PGPR 1:10 | 3.83 j | 12.64 klm | 9.98 f–k | 3.18 qr | 0.61 r | 3407 mno | 37.25 nop | 35,800 fg | 3780 op | 1527 j–m | 40.93 mn | |
PGPR 1:15 | 3.48 no | 18.92 c | 9.20 klm | 4.26 mno | 1.30 ghi | 2367 pq | 43.53 nop | 27,200 gh | 2500 qr | 1677 i–l | 22.67 rs | |
VI033796 | Control | 2.94 v | 18.28 cd | 10.78 c–g | 6.55 c | 1.85 cd | 3513 lmn | 37.60 nop | 44,467 ef | 3773 op | 1479 klm | 37.00 nop |
KLP 1:100 | 3.31 q | 13.10 k | 9.17 klm | 6.49 c | 1.18 ijk | 3545 lmn | 28.27 pq | 28,933 gh | 2573 pr | 1340 lm | 26.87 qr | |
KLP 1:40 | 3.82 j | 17.98 de | 10.89 b–g | 5.52 efg | 1.18 i–l | 7333 bc | 73.67 hij | 88,467 ab | 6793 ghi | 3113 ef | 68.93 ij | |
KLP 1:20 | 2.98 uv | 12.58 klm | 11.09 b–f | 6.87 c | 2.37 b | 5213 g–j | 67.53 i–l | 72,133 cd | 6807 ghi | 2887 fg | 68.33 ij | |
PGPR 1:5 | 4.16 f | 11.56 pqr | 9.29 jkl | 4.88 h–k | 1.50 ef | 7007 b–e | 129.93 b | 82,533 bc | 9033 bcd | 3047 ef | 101.67 a | |
PGPR 1:10 | 4.02 h | 10.18 vw | 11.29 bc | 7.83 b | 1.48 ef | 4613 h–k | 53.20 k–n | 49,800 e | 5300 lm | 1824 ijk | 84.19 def | |
PGPR 1:15 | 3.91 i | 10.50 tuv | 9.10 klm | 5.36 e–h | 1.27 hi | 4280 j–m | 51.07 lmn | 44,800 ef | 4907 mn | 1862 ij | 48.07 lm | |
LSD (p ≤ 0.05) | 0.06 | 0.66 | 1.11 | 0.56 | 0.13 | 950.7 | 17.32 | 12,845.1 | 997.8 | 366.8 | 9.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aremu, A.O.; Makhaye, G.; Tesfay, S.Z.; Gerrano, A.S.; Du Plooy, C.P.; Amoo, S.O. Influence of Commercial Seaweed Extract and Microbial Biostimulant on Growth, Yield, Phytochemical Content, and Nutritional Quality of Five Abelmoschus esculentus Genotypes. Agronomy 2022, 12, 428. https://doi.org/10.3390/agronomy12020428
Aremu AO, Makhaye G, Tesfay SZ, Gerrano AS, Du Plooy CP, Amoo SO. Influence of Commercial Seaweed Extract and Microbial Biostimulant on Growth, Yield, Phytochemical Content, and Nutritional Quality of Five Abelmoschus esculentus Genotypes. Agronomy. 2022; 12(2):428. https://doi.org/10.3390/agronomy12020428
Chicago/Turabian StyleAremu, Adeyemi O., Gugulethu Makhaye, Samson Zeray Tesfay, Abe Shegro Gerrano, Christian P. Du Plooy, and Stephen O. Amoo. 2022. "Influence of Commercial Seaweed Extract and Microbial Biostimulant on Growth, Yield, Phytochemical Content, and Nutritional Quality of Five Abelmoschus esculentus Genotypes" Agronomy 12, no. 2: 428. https://doi.org/10.3390/agronomy12020428
APA StyleAremu, A. O., Makhaye, G., Tesfay, S. Z., Gerrano, A. S., Du Plooy, C. P., & Amoo, S. O. (2022). Influence of Commercial Seaweed Extract and Microbial Biostimulant on Growth, Yield, Phytochemical Content, and Nutritional Quality of Five Abelmoschus esculentus Genotypes. Agronomy, 12(2), 428. https://doi.org/10.3390/agronomy12020428