AquaCrop Model Evaluation for Winter Wheat under Different Irrigation Management Strategies: A Case Study on the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Model Description
2.3. Crop and Soil Parameters
2.4. Climate Data
2.5. Criteria for Model Evaluation
3. Results
3.1. AquaCrop Model Calibration Results
3.2. AquaCrop Model Validation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Chen, S.; Liu, M.; Pei, D.; Sun, H. Improved water use efficiency associated with cultivars and agronomic management in the North China Plain. Agron. J. 2005, 97, 783–790. [Google Scholar] [CrossRef]
- Wang, J.; Wang, E.; Yang, X.; Zhang, F.; Yin, H. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Clim. Chang. 2012, 113, 825–840. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Zhang, X.; You, M. Dynamics of soil-water content and water-saving potential in the farmland of Taihang piedmont. Econ. Agric. Res. 1996, 4, 63–68. [Google Scholar]
- Cao, G.; Han, D.; Song, X. Evaluating actual evapotranspiration and impacts of groundwater storage change in the North China Plain. Hydrol. Process. 2014, 28, 1797–1808. [Google Scholar] [CrossRef]
- Jha, S.K. Effect of Irrigation Method and Scheduling on Development and Water Utilization in Winter Wheat. Ph.D. Dissertation, Chinese Academy of Agricultural Sciences, Beijing, China, 2018. [Google Scholar]
- Li, Y. The Northern China needs a water-saving agriculture. Irrig. Drain. 1993, 12, 10–20. [Google Scholar]
- Zhang, X.; Pei, D.; Hu, C. Conserving groundwater for irrigation in the North China Plain. Irrig. Sci. 2003, 21, 159–166. [Google Scholar] [CrossRef]
- Manoliadis, O.G. Analysis of irrigation systems using sustainability-related criteria. J. Environ. Qual. 2001, 30, 1150–1153. [Google Scholar] [CrossRef]
- Chimonyo, V.G.; Wimalasiri, E.M.; Kunz, R.; Modi, A.T.; Mabhaudhi, T. Optimizing traditional cropping systems under climate change: A case of maize landraces and bambara groundnut. Intercrop. Syst. Sustain. Agric. 2020, 4, 562568. [Google Scholar] [CrossRef]
- Korres, N.E.; Norsworthy, J.K.; Tehranchian, P.; Gitsopoulos, T.K.; Loka, D.A.; Oosterhuis, D.M.; Gealy, D.R.; Moss, S.R.; Burgos, N.R.; Miller, M.R. Cultivars to face climate change effects on crops and weeds: A review. Agron. Sustain. Dev. 2016, 36, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Fu, Z.; Wang, J.; Zhang, L. Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China. Agric. Water Manag. 2019, 212, 349–357. [Google Scholar] [CrossRef]
- Cui, Z.L.; Chen, X.P.; Zhang, F.S.; Shi, L.W.; Li, J.L. Effect of different border lengths on the irrigation homogeneity and soil nitrate-N distribution on wheat field. Chin. J. Eco-Agric. 2006, 14, 82–85. [Google Scholar]
- Bernstein, L.; Francois, L. Comparisons of drip, furrow, and sprinkler irrigation. Soil Sci. 1973, 115, 73–86. [Google Scholar] [CrossRef]
- Rötter, R.P.; Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Nendel, C. Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Res. 2012, 133, 23–36. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Modi, A.T.; Beletse, Y.G. Parameterisation and evaluation of the FAO-AquaCrop model for a South African taro (Colocasia esculenta L. Schott) landrace. Agric. For. Meteorol. 2014, 192, 132–139. [Google Scholar] [CrossRef]
- Greaves, G.E.; Wang, Y.M. Assessment of FAO AquaCrop model for simulating maize growth and productivity under deficit irrigation in a tropical environment. Water 2016, 8, 557. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Rötter, R.; Tao, F.; Höhn, J.; Palosuo, T. Use of crop simulation modelling to aid ideotype design of future cereal cultivars. J. Exp. Bot. 2015, 66, 3463–3476. [Google Scholar] [CrossRef] [Green Version]
- Azam-Ali, S.; Crout, N.; Bradley, R. Perspectives in modelling resource capture by crops. In Resource Capture by Crops; Nottingham University Press: Nottingham, UK, 1994; pp. 125–148. [Google Scholar]
- Jamieson, P.; Porter, J.; Wilson, D. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Res. 1991, 27, 337–350. [Google Scholar] [CrossRef]
- Jamieson, P.; Semenov, M.; Brooking, I.; Francis, G. Sirius: A mechanistic model of wheat response to environmental variation. Eur. J. Agron. 1998, 8, 161–179. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Donatelli, M.; Nelson, R. CropSyst, a cropping systems simulation model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- Jha, P.K.; Kumar, S.N.; Ines, A.V. Responses of soybean to water stress and supplemental irrigation in upper Indo-Gangetic plain: Field experiment and modeling approach. Field Crops Res. 2018, 219, 76–86. [Google Scholar] [CrossRef]
- Araya, A.; Prasad, P.; Ciampitti, I.; Jha, P. Using crop simulation model to evaluate influence of water management practices and multiple cropping systems on crop yields: A case study for Ethiopian highlands. Field Crops Res. 2021, 260, 108004. [Google Scholar] [CrossRef]
- Foster, T.; Brozović, N.; Butler, A.; Neale, C.; Raes, D.; Steduto, P.; Fereres, E.; Hsiao, T.C. AquaCrop-OS: An open source version of FAO’s crop water productivity model. Agric. Water Manag. 2017, 181, 18–22. [Google Scholar] [CrossRef]
- Farahani, H.J.; Izzi, G.; Oweis, T.Y. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron. J. 2009, 101, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Dalla Marta, A.; Chirico, G.B.; Falanga Bolognesi, S.; Mancini, M.; D’Urso, G.; Orlandini, S.; De Michele, C.; Altobelli, F. Integrating Sentinel-2 imagery with AquaCrop for dynamic assessment of tomato water requirements in Southern Italy. Agronomy 2019, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.L.; Feng, H.K.; Zhu, X.K.; Li, Z.H.; Song, S.N.; Song, X.Y.; Yang, G.J.; Xu, X.G.; Guo, W.S. Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. PLoS ONE 2014, 9, e86938. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Shen, Y.; Stricevic, R.; Pei, H.; Sun, H.; Amiri, E.; Penas, A.; del Rio, S. Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agric. Water Manag. 2014, 135, 61–72. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, L.; Shen, X.; Li, X.; Sun, J.; Duan, A.; Wu, L. Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency. Agric. Water Manag. 2014, 146, 1–10. [Google Scholar] [CrossRef]
- Bergaust, L.; Mao, Y.; Bakken, L.R.; Frostegård, Å. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide reductase in Paracoccus denitrificans. Appl. Environ. Microbiol. 2010, 76, 6387–6396. [Google Scholar] [CrossRef] [Green Version]
- Geerts, S.; Raes, D.; Garcia, M.; Miranda, R.; Cusicanqui, J.A.; Taboada, C.; Mendoza, J.; Huanca, R.; Mamani, A.; Condori, O.; et al. Simulating Yield Response of Quinoa to Water Availability with AquaCrop. Agron. J. 2009, 101, 499–508. [Google Scholar] [CrossRef]
- Karunaratne, A.; Azam-Ali, S.; Izzi, G.; Steduto, P. Calibration and validation of FAO-AquaCrop model for irrigated and water deficient bambara groundnut. Exp. Agric. 2011, 47, 509–527. [Google Scholar] [CrossRef]
- Smith, M.; Steduto, P. Yield response to water: The original FAO water production function. FAO Irrig. Drain. Pap. 2012, 66, 6–13. [Google Scholar]
- Hillel, D. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations; Academic Press: London, UK, 1998. [Google Scholar]
- Sun, H.-Y.; Liu, C.-M.; Zhang, X.-Y.; Shen, Y.-J.; Zhang, Y.-Q. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric. Water Manag. 2006, 85, 211–218. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, B.; Xu, D.; Cai, J. Optimization of irrigation schedule based on the response relationship of water consumption and yield for winter wheat in North China Plain. Desalination Water Treat. 2018, 118, 26–38. [Google Scholar] [CrossRef]
- Gao, Y.; Duan, A.; Qiu, X.; Liu, Z.; Sun, J.; Zhang, J.; Wang, H. Distribution of roots and root length density in a maize/soybean strip intercropping system. Agric. Water Manag. 2010, 98, 199–212. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Heng, L.; Steduto, P.; Rojas-Lara, B.; Raes, D.; Fereres, E. AquaCrop-the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J. 2009, 101, 448–459. [Google Scholar] [CrossRef]
- Heng, L.K.; Hsiao, T.; Evett, S.; Howell, T.; Steduto, P. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agron. J. 2009, 101, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Saxton, K.; Rawls, W.J.; Romberger, J.S.; Papendick, R. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Gong, Z.; Zhang, G.; Chang, Z. Pedogenesis and Soil; Taxonomy Science Press: Beijing, China, 2007. [Google Scholar]
- Xie, Y.X.; Zhang, H.; Zhu, Y.J.; Li, Z.; Yang, J.H.; Cha, F.N.; Cao, L.; Wang, C.Y.; Guo, T.C. Grain yield and water use of winter wheat as affected by water and sulfur supply in the North China Plain. J. Integr. Agric. 2017, 16, 614–625. [Google Scholar] [CrossRef] [Green Version]
- FAO. ETo calculator version 3.1. In Evapotranspiration from Reference Surface; FAO, Land and Water Division: Rome, Italy, 2009. [Google Scholar]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Bullock, P.R. Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada. Agric. Water Manag. 2012, 110, 16–24. [Google Scholar] [CrossRef]
- Stricevic, R.; Cosic, M.; Djurovic, N.; Pejic, B.; Maksimovic, L. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agric. Water Manag. 2011, 98, 1615–1621. [Google Scholar] [CrossRef]
- Andarzian, B.; Bannayan, M.; Steduto, P.; Mazraeh, H.; Barati, M.; Barati, M.; Rahnama, A. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agric. Water Manag. 2011, 100, 1–8. [Google Scholar] [CrossRef]
- Hussein, F.; Janat, M.; Yakoub, A. Simulating cotton yield response to deficit irrigation with the FAO AquaCrop model. Span. J. Agric. Res. 2011, 9, 1319–1330. [Google Scholar] [CrossRef] [Green Version]
- Zeleke, K.T.; Luckett, D.; Cowley, R. Calibration and testing of the FAO AquaCrop model for canola. Agron. J. 2011, 103, 1610–1618. [Google Scholar] [CrossRef]
- Yang, Y.; Watanabe, M.; Zhang, X.; Zhang, J.; Wang, Q.; Hayashi, S. Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain. Agric. Water Manag. 2006, 82, 25–44. [Google Scholar] [CrossRef]
- Fang, Q.; Ma, L.; Yu, Q.; Ahuja, L.; Malone, R.; Hoogenboom, G. Irrigation strategies to improve the water use efficiency of wheat–maize double cropping systems in North China Plain. Agric. Water Manag. 2010, 97, 1165–1174. [Google Scholar] [CrossRef]
- Katerji, N.; Campi, P.; Mastrorilli, M. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agric. Water Manag. 2013, 130, 14–26. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Salemi, H.; Soom, M.A.M.; Lee, T.S.; Mousavi, S.F.; Ganji, A.; Yusoff, M.K. Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. Afr. J. Agric. Res. 2011, 6, 2204–2215. [Google Scholar]
- Fang, Q.X.; Chen, Y.H.; Li, Q.Q.; Yu, S.Z.; Luo, Y. Effect of irrigation on water use efficiency of winter wheat. Trans. Chin. Soc. Agric. Eng. 2004, 20, 34–39. (In Chinese) [Google Scholar]
- Kumar, P.; Sarangi, A.; Singh, D.; Parihar, S. Evaluation of AquaCrop model in predicting wheat yield and water productivity under irrigated saline regimes. Irrig. Drain. 2014, 63, 474–487. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.; White, J.W. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Brown, L.R. Plan B 3.0: Mobilizing to Save Civilization (Substantially Revised); WW Norton & Company: New York, NY, USA, 2008. [Google Scholar]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svoboda, N.; Strer, M.; Hufnagel, J. Rainfed winter wheat cultivation in the North German Plain will be water limited under climate change until 2070. Environ. Sci. Eur. 2015, 27, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.L.; Liao, S.H.; Wang, Z.M.; Wang, P.; Zhang, Y.H.; Yan, H.J.; Gao, Z.; Shen, S.; Liang, X.G.; Wang, J.H. A simulation of winter wheat crop responses to irrigation management using CERES-Wheat model in the North China Plain. J. Integr. Agric. 2018, 17, 1181–1193. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, C.; Zhou, X.; Moore, B. A simulation model linking crop growth and soil biogeochemistry for sustainable agriculture. Ecol. Model. 2002, 151, 75–108. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, T.; Fereres, E. AquaCrop Reference Manual; (Version 4.0); FAO: Rome, Italy, 2012; Chapter 3. [Google Scholar]
2017 | 2018 | |||||
---|---|---|---|---|---|---|
Treatments | Date (Day after Sowing) | Irrigations Times | Amount (mm) | Date (Day after Sowing) | Irrigation Times | Amount (mm) |
S1 | 174, 180, 202, 214 | 4 | 120 | 163, 174, 199 | 3 | 90 |
D1 | 174, 180, 207, 214 | 4 | 120 | 163, 174, 199 | 3 | 90 |
F1 | 174, 202, 214 | 3 | 180 | 174 | 1 | 60 |
S2 | 174, 180, 193, 207, 214 | 5 | 150 | 163, 174, 185, 199 | 4 | 120 |
D2 | 174, 180, 193, 207, 214 | 5 | 150 | 163, 174, 185, 199 | 4 | 120 |
F2 | 174, 180, 207, 214 | 4 | 240 | 174, 192 | 2 | 120 |
S3 | 174, 180, 193, 202, 207, 214 | 6 | 180 | 163, 174, 185, 192, 199 | 5 | 150 |
D3 | 174, 180, 193, 202, 207, 214 | 6 | 180 | 163, 174, 185, 192, 199 | 5 | 150 |
F3 | 174, 180, 193, 202, 207 | 5 | 300 | 174, 185, 199 | 3 | 180 |
Depth (m) | Particle Size Distribution | Texture | θFC (Vol %) | θPWP (Vol %) | θsat (Vol %) | Ksat (mm day−1) | CN | ||
---|---|---|---|---|---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | |||||||
0–0.2 | 3.8 | 43.1 | 53.1 | Sandy Loam | 21.8 | 7.4 | 36.7 | 1191.1 | 65 |
0.2–0.4 | 6.6 | 45.4 | 48.0 | Sandy Loam | 22.9 | 8.3 | 40.2 | 937.1 | |
0.4–0.6 | 6.0 | 48.4 | 45.6 | Sandy Loam | 23.6 | 8.3 | 39.8 | 982.3 | |
0.6–0.8 | 4.6 | 47.4 | 48.0 | Sandy Loam | 23.1 | 7.9 | 38.2 | 1097.8 | |
0.8–1.0 | 1.6 | 16.9 | 81.5 | Loamy Sand | 13.2 | 4.5 | 29.9 | 2288.2 |
Depth (m) | pH | EC (µs cm−1) | Available N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) | Organic Carbon (g kg−1) |
---|---|---|---|---|---|---|
0–0.2 | 8.5 | 132.4 | 44.6 | 16.1 | 128.8 | 1.9 |
0.2–0.4 | 8.6 | 140.3 | 44.6 | 15.0 | 126.2 | 1.6 |
0.4–0.6 | 8.7 | 146.3 | 42.7 | 14.4 | 128.3 | 1.0 |
0.6–0.8 | 8.8 | 155.6 | 41.8 | 14.3 | 124.1 | 0.7 |
0.8–1.0 | 8.9 | 147.6 | 41.8 | 15.3 | 122.1 | 0.5 |
Crop Parameters | Value | Unit | Determination |
---|---|---|---|
Base temperature | 0 | °C | Calibrated |
Upper temperature | 35 | °C | Calibrated |
Canopy growth coefficient (CGC): Increase in CC per day | 0.10 | %/day | Calibrated |
Canopy decline coefficient (CDC): decrease in CC per day | 0.831 | %/day | Calibrated |
Maximum canopy cover (CCx) | 99 | % | Measured |
Normalized water productivity (WP*) | 16 | g/m2 | Calibrated |
Reference harvest index (HIo) | 0.55 | - | Calibrated |
Upper threshold for canopy expansion (Pupper) | 0.25 | TAW% | Calibrated |
Lower threshold for canopy expansion (Plower) | 0.60 | TAW% | Calibrated |
Minimum rooting depth (m) | 0.30 | m | Default |
Maximum rooting depth (m) | 1.0 | m | Measured |
Canopy senescence stress coefficient (Pupper) | 0.65 | TAW % | Calibrated |
Shape factor describing root zone expansion | 1.5 | - | Calibrated |
Crop coefficient when canopy is complete but prior to senescence (Kcb,Trx) | 1.10 | - | Calibrated |
Senescence stress coefficient curve shape | 3.0 | - | Calibrated |
The maximum allowable increase of specified HI | 15 | % | Calibrated |
Minimum air temperature below which pollination starts to fail | 5 | °C | Calibrated |
Maximum air temperature above which pollination starts to fail | 35 | °C | Calibrated |
Water use efficiency normalized for ET0 and CO2 during yield formation | 100 | % | Calibrated |
Fertility stress a | Calibrated | - | Calibrated |
Time from sowing to emergence | 10 | Days | Measured |
Time to reach a maximum canopy cover | 185 | Days | Measured |
Time to reach a maximum rooting depth | 215 | Days | Measured |
Time from sowing to start senescence | 215 | Days | Measured |
Time from sowing to flowering | 195 | Days | Measured |
Flowering stage duration | 10 | Days | Measured |
Canopy Cover (%) | Grain Yield (t ha−1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50% FC | 60% FC | 70% FC | 50% FC | 60% FC | 70% FC | |||||||||||||
Irrigation Methods | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) |
Sprinkler | 70.13 | 72.30 | 3.10 | 72.88 | 75.94 | 4.20 | 78.50 | 81.03 | 3.22 | 8.56 | 8.69 | 1.52 | 9.19 | 8.94 | −2.72 | 9.10 | 9.33 | 2.53 |
Drip | 70.31 | 72.85 | 3.61 | 72.50 | 74.49 | 2.74 | 78.50 | 80.61 | 2.69 | 8.48 | 8.76 | 3.30 | 9.67 | 9.63 | −0.41 | 9.43 | 9.68 | 2.69 |
Flood | 70.63 | 73.40 | 3.93 | 76.88 | 78.03 | 1.50 | 79.63 | 82.84 | 4.03 | 8.29 | 8.52 | 2.77 | 9.10 | 8.88 | −2.42 | 8.95 | 9.22 | 3.02 |
CRM | −0.04 | −0.03 | −0.03 | −0.03 | 0.02 | −0.03 | ||||||||||||
RMSE | 2.51 | 2.21 | 2.66 | 0.22 | 0.19 | 0.25 | ||||||||||||
NRMSE (%) | 3.57 | 2.98 | 3.37 | 2.65 | 2.10 | 2.75 |
Biomass (t ha−1) | SWC (mm) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50% FC | 60% FC | 70% FC | 50% FC | 60% FC | 70% FC | |||||||||||||
Irrigation Methods | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) |
Sprinkler | 17.22 | 17.55 | 1.92 | 18.47 | 18.86 | 2.11 | 18.61 | 19.19 | 3.12 | 196 | 201 | 2.60 | 209 | 212 | 1.20 | 221 | 227 | 3.0 |
Drip | 16.87 | 17.21 | 2.02 | 18.10 | 18.55 | 2.49 | 18.38 | 18.76 | 2.07 | 215 | 232 | 7.73 | 208 | 210 | 0.55 | 212 | 221 | 4.1 |
Flood | 17.27 | 18.00 | 4.53 | 19.31 | 19.48 | 0.88 | 19.77 | 20.22 | 2.28 | 223 | 231 | 3.72 | 275 | 283 | 3.13 | 298 | 311 | 4.3 |
CRM | −0.03 | −0.02 | −0.02 | −0.10 | −0.02 | −0.04 | ||||||||||||
RMSE | 0.53 | 0.36 | 0.48 | 11.12 | 5.21 | 9.72 | ||||||||||||
NRMSE (%) | 3.10 | 1.92 | 2.52 | 5.30 | 2.30 | 4.0 |
50% FC | 60% FC | 70% FC | |||||||
---|---|---|---|---|---|---|---|---|---|
Sprinkler | Drip | Flood | Sprinkler | Drip | Flood | Sprinkler | Drip | Flood | |
Irrigation I (mm) | 120 | 120 | 180 | 150 | 150 | 240 | 180 | 180 | 300 |
Precipitation P (mm) | 185 | 185 | 185 | 185 | 185 | 185 | 185 | 185 | 185 |
Downward flux Dw (mm) | 18 | 18 | 27 | 23 | 23 | 36 | 27 | 27 | 60 |
Change in soil water storage ΔS (mm) | 146 | 147 | 105 | 150 | 170 | 98 | 145 | 155 | 78 |
Observed ETC (mm) | 433 | 434 | 443 | 463 | 483 | 487 | 483 | 493 | 503 |
Simulated ETC (mm) | 446 | 437 | 454 | 450 | 477 | 483 | 493 | 496 | 502 |
ETC (mm) | WP (kg m−3) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50% FC | 60% FC | 70% FC | 50% FC | 60% FC | 70% FC | |||||||||||||
Irrigation Methods | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) |
Sprinkler | 433 | 446 | 3.10 | 463 | 456 | −2.81 | 483 | 493 | 2.10 | 1.98 | 1.95 | −1.66 | 1.98 | 1.99 | 0.51 | 1.88 | 1.89 | 0.66 |
Drip | 434 | 437 | 1.00 | 483 | 477 | −1.24 | 493 | 496 | 0.60 | 1.96 | 2.01 | 2.31 | 2.00 | 2.02 | 1.0 | 1.91 | 1.95 | 2.22 |
Flood | 443 | 454 | 2.50 | 487 | 483 | −0.84 | 503 | 502 | −0.30 | 1.87 | 1.88 | 0.36 | 1.86 | 1.84 | −1.1 | 1.78 | 1.84 | 3.24 |
CRM | −0.02 | 0.01 | −0.01 | 0.00 | 0.00 | −0.02 | ||||||||||||
RMSE | 10.16 | 5.83 | 6.10 | 0.03 | 0.02 | 0.04 | ||||||||||||
NRMSE (%) | 2.33 | 1.22 | 1.23 | 1.68 | 0.90 | 2.26 |
Canopy Cover (%) | Grain Yield (t ha−1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50% FC | 60% FC | 70% FC | 50% FC | 60% FC | 70% FC | |||||||||||||
Irrigation Methods | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) |
Sprinkler | 59.63 | 60.93 | 2.18 | 64.60 | 67.44 | 4.39 | 65.73 | 68.11 | 3.63 | 7.94 | 8.30 | 4.53 | 9.04 | 9.28 | 2.68 | 8.95 | 9.28 | 3.70 |
Drip | 61.20 | 61.95 | 1.23 | 65.75 | 68.75 | 4.56 | 66.88 | 69.25 | 3.55 | 8.21 | 8.64 | 5.24 | 9.72 | 9.62 | −1.03 | 9.30 | 9.35 | 0.58 |
Flood | 58.38 | 59.25 | 1.50 | 67.10 | 69.38 | 3.43 | 68.24 | 70.51 | 3.33 | 7.13 | 7.58 | 6.34 | 9.10 | 8.88 | −2.38 | 8.88 | 8.81 | −0.75 |
CRM | −0.02 | −0.04 | −0.04 | −0.05 | 0.00 | −0.01 | ||||||||||||
RMSE | 1.00 | 2.73 | 2.35 | 0.42 | 0.19 | 0.20 | ||||||||||||
NRMSE (%) | 1.68 | 4.15 | 3.50 | 5.36 | 2.11 | 2.18 |
Biomass (t ha−1) | SWC (mm) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50% FC | 60% FC | 70% FC | 50% FC | 60% FC | 70% FC | |||||||||||||
Irrigation Methods | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) |
Sprinkler | 17.10 | 17.65 | 3.22 | 18.17 | 18.33 | 0.88 | 18.46 | 19.45 | 5.36 | 267 | 283 | 6.0 | 292 | 303 | 3.71 | 307 | 319 | 3.84 |
Drip | 16.89 | 17.55 | 3.91 | 18.04 | 18.24 | 1.11 | 18.30 | 18.70 | 2.19 | 268 | 282 | 5.40 | 287 | 299 | 4.20 | 282 | 300 | 6.40 |
Flood | 16.66 | 17.50 | 5.04 | 19.18 | 19.54 | 1.88 | 19.52 | 20.0 | 2.46 | 265 | 279 | 5.13 | 298 | 306 | 2.80 | 315 | 328 | 4.20 |
CRM | −0.04 | −0.01 | −0.03 | −0.10 | −0.04 | −0.05 | ||||||||||||
RMSE | 0.70 | 0.26 | 0.68 | 14.70 | 10.50 | 14.55 | ||||||||||||
NRMSE (%) | 4.11 | 1.38 | 3.60 | 5.52 | 3.60 | 4.83 |
50% FC | 60% FC | 70% FC | |||||||
---|---|---|---|---|---|---|---|---|---|
Sprinkler | Drip | Flood | Sprinkler | Drip | Flood | Sprinkler | Drip | Flood | |
Irrigation I (mm) | 90 | 90 | 60 | 120 | 120 | 120 | 150 | 150 | 180 |
Precipitation P (mm) | 259 | 259 | 259 | 259 | 259 | 259 | 259 | 259 | 259 |
Downward flux D (mm) | 14 | 14 | 6 | 18 | 18 | 18 | 23 | 23 | 27 |
Change in soil water storage ΔS (mm) | 130 | 132 | 100 | 135 | 145 | 138 | 151 | 138 | 125 |
Observed ETC (mm) | 465 | 467 | 413 | 496 | 506 | 499 | 537 | 524 | 537 |
Simulated ETC (mm) | 470 | 478 | 445 | 500 | 498 | 498 | 523 | 531 | 529 |
ETC (mm) | WP (kg m−3) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50% FC | 60% FC | 70% FC | 50% FC | 60% FC | 70% FC | |||||||||||||
Irrigation Methods | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) | O | S | Pe (%) |
Sprinkler | 465 | 470 | 1.0 | 496 | 500 | 0.82 | 537 | 523 | −2.62 | 1.71 | 1.77 | 3.27 | 1.82 | 1.86 | 2.0 | 1.67 | 1.77 | 6.25 |
Drip | 467 | 478 | 2.32 | 506 | 498 | −1.53 | 524 | 531 | 1.30 | 1.76 | 1.81 | 2.84 | 1.92 | 1.93 | 0.61 | 1.77 | 1.76 | −0.42 |
Flood | 413 | 445 | 7.90 | 499 | 498 | −0.13 | 537 | 529 | −1.50 | 1.73 | 1.70 | −1.51 | 1.82 | 1.78 | −1.99 | 1.65 | 1.67 | 1.01 |
CRM | −0.04 | 0.00 | 0.01 | −0.02 | 0.00 | −0.02 | ||||||||||||
RMSE | 20 | 5.10 | 10 | 0.10 | 0.03 | 0.10 | ||||||||||||
NRMSE (%) | 4.46 | 1.0 | 1.90 | 2.70 | 1.64 | 3.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Mehmood, F.; Zain, M.; Hamani, A.K.M.; Xue, J.; Gao, Y.; Duan, A. AquaCrop Model Evaluation for Winter Wheat under Different Irrigation Management Strategies: A Case Study on the North China Plain. Agronomy 2022, 12, 3184. https://doi.org/10.3390/agronomy12123184
Wang G, Mehmood F, Zain M, Hamani AKM, Xue J, Gao Y, Duan A. AquaCrop Model Evaluation for Winter Wheat under Different Irrigation Management Strategies: A Case Study on the North China Plain. Agronomy. 2022; 12(12):3184. https://doi.org/10.3390/agronomy12123184
Chicago/Turabian StyleWang, Guangshuai, Faisal Mehmood, Muhammad Zain, Abdoul Kader Mounkaila Hamani, Jingjie Xue, Yang Gao, and Aiwang Duan. 2022. "AquaCrop Model Evaluation for Winter Wheat under Different Irrigation Management Strategies: A Case Study on the North China Plain" Agronomy 12, no. 12: 3184. https://doi.org/10.3390/agronomy12123184
APA StyleWang, G., Mehmood, F., Zain, M., Hamani, A. K. M., Xue, J., Gao, Y., & Duan, A. (2022). AquaCrop Model Evaluation for Winter Wheat under Different Irrigation Management Strategies: A Case Study on the North China Plain. Agronomy, 12(12), 3184. https://doi.org/10.3390/agronomy12123184