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Abstract: A research study was conducted in an open field tomato crop in order to: (i) Evaluate the
capability of Sentinel-2 imagery to assess tomato canopy growth and its crop water requirements;
and (ii) explore the possibility to predict crop water requirements by assimilating the canopy cover
estimated by Sentinel-2 imagery into AquaCrop model. The pilot area was in Campania, a region
in the south west of Italy, characterized by a typical Mediterranean climate, where field campaigns
were conducted in seasons 2017 and 2018 on processing tomato. Crop water use and irrigation
requirement were estimated by means of three different methods: (i) The AquaCrop model; (ii) an
irrigation advisory service based on Sentinel-2 imagery known as IRRISAT and (iii) assimilating the
canopy cover estimated by Sentinel-2 imagery into AquaCrop model Sentinel-2 imagery proved to
be effective for monitoring canopy growth and for predicting irrigation water requirements during
mid-season stage of the crop, when the canopy is fully developed. Conversely, the integration of
the Sentinel-2 imagery with a crop growth model can contribute to improve the irrigation water
requirement predictions in the early and development stage of the crop, when the soil evaporation is
not negligible with respect to the total evapotranspiration.

Keywords: fractional cover; irrigation; satellite; crop simulation model; AquaCrop

1. Introduction

Worldwide significant progress has been made to utilize precision agriculture for irrigation as
a mean to increase water use efficiency or decrease the water footprint in irrigated agriculture [1,2].
The progress is mainly restricted to advances at the plot scale and individual systems such as installations
for drip irrigation or central pivots. As well known, actual crop evapotranspiration (ET) is a major term
of water budget in agriculture and it is the main variable used to determine crops water requirement.
Beside their massive progress during the recent years, accurate field measurements (soil moisture,
plant-based sensors, etc.) are very scarce because sensors and measuring devices are expensive, their
use requires specific expertise and complex maintenance and are typically limited to experimental
stations. For this reason, many attempts have been made for developing indirect ET estimation
methods based on crop data at a field scale easily available across large regions. Concordantly, the use
of remotely sensed data has become more common to monitoring and controlling activities at different
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spatial and temporal scales including precision farming. Surface energy balance methods based on
satellite observations in the thermal band [3] have been developed and applied in many areas with the
aim of determining actual evapotranspiration and assessing the water balance of irrigated areas and
the corresponding water accounting practices [4,5].

Sentinel-2 mission, launched by European Space Agency as part of the Copernicus program
(http://www.copernicus.eu/) [6], has been a great step forward for continuous crop monitoring.
Sentinel-2 carries a sensor, which captures data at 10, 20 and 60-m spatial resolution over 13 spectral
bands and with a very high temporal resolution of five days at the equator. Thanks to the characteristics
of these new technologies, commercial services started to develop for operational applications. In this
context, Irrigation Advisory Services (IASs) for optimizing water management rapidly grow. Among
them, IRRISAT is a fully operative satellite-based IAS provided in Campania Region, which combines
Copernicus Sentinel-2A data with daily weather data for estimating irrigation water requirements.
Since 2007 it has been active over the area, providing evidence of high efficiency for water saving (up to
30%) [7].

Moreover, the state of the art suggests that significant progresses in saving irrigation volumes
at the farm level can be probably attained by assessing crop water requirements through an optimal
combination of crop satellite images with a crop growth model since satellite images provide information
concerning the current state of the crop canopy and a crop model is able to simulate the biophysical
processes of the growing crop.

Ultimately, examples are implemented to derive crop water requirements from satellite estimates
of biophysical parameters assimilated into agro-meteorological models [8] to monitor the nitrogen
status and to apply fertilizer with variable rates or to derive agronomic variables [9].

Since the rapid development and availability of products with different spatial and temporal
resolutions, the integration of remote sensing data into crop growth models has increased in recent years.
Among the existing crop models, AquaCrop has been widely used for assessing water requirements
and optimal irrigation scheduling for different crops and environments. AquaCrop, in fact, is a crop
water productivity model developed by the Land and Water Division of FAO (Food and Agriculture
Organization) in 2009 [10,11]. It simulates yield response to water of crops and it is mainly used to
increase water efficiency practices in agricultural production

Linker and Ioslovich [12] have successfully shown the possibility of assimilating ground measured
canopy cover data (using digital images above the canopy) during the growing season within the
AquaCrop model for potato and cotton, based on the Extended Kalman Filter algorithm. However,
this innovative procedure requires field data collection during the season, which is budget-and
time-consuming but today, it can be facilitated and improved using Earth Observation data, especially
from Sentinel-2 satellite sensors whose temporal and spatial resolution is adapted for parcel monitoring.
Jin et al. [13] used spectral-based biomass values computed with on field spectral measurement data to
calibrate the AquaCrop model with a particle swarm optimization (PSO) algorithm for winter wheat
in China.

The same PSO algorithm was used for winter wheat by Silvestro et al. [14] and Jin et al. [15]
to assimilate optical and radar satellite data into the AquaCrop model. Several coupling methods
have been categorized and detailed by Jin et al. [16]. One of these methods is by substituting crop
growth models variables with remotely sensed data [17]. A similar approach using remote sensing
data was used to calibrate the AquaCrop model with the leaf area index from MODIS (Moderate
Resolution Imaging Spectroradiometer) for winter wheat in Italy by Trombetta et al. [18]. It was only
applied to large agricultural parcels, due to MODIS’s limited spatial resolution. However, their use in
real/operational scenarios is generally limited by data availability, i.e., crop initial conditions, planting
date and application of inputs. Under this scenario, a possible alternative for assisting the models in
reproducing the actual processes in the field is the use of algorithms relating to remote sensing data
and key canopy biophysical parameters in the crop growth models.

This study aims to evaluate:

http://www.copernicus.eu/
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The capability of Sentinel-2 imagery to assess canopy growth of a tomato open field crop and the
corresponding irrigation water requirement by means of Sentinel-2 imagery;

The possibility to predict crop water requirements by assimilating the fractional cover estimated
by Sentinel-2 imagery into the AquaCrop model.

2. Materials and Methods

2.1. Test Site

The research was carried out in Frignano, located in Caserta province (Campania, Italy) (Figure 1).
The area is characterized by a warm-temperate climate with an average annual temperature of 15.2 ◦C
and 900 mm of annual cumulated precipitation, with the rainiest period occurring in winter and driest
period in summer.Agronomy 2019, 9, x FOR PEER REVIEW 4 of 13 
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Figure 1. Localization of the pilot area and the two experimental fields.

Processing tomato (Solanum lycopersicum L.) was cultivated in years 2017 (41◦00′26.33” N
14◦10′13.93” E) and 2018 (41◦01′39.60” N 14◦10′32.87” E) in two parcels of 4 ha each. Soil samples (three
samples were averaged for analysis) were examined for assessing the main physical–chemical properties,
including gravel (%), soil texture, bulk density (t/m3), pH and organic matter (%), at a depth of 15 cm.
In 2018 soil characteristics were obtained by the soil map of Region Campania (pedological maps 1:50,000;
http://agricoltura.regione.campania.it/pedologia/suoli.html). SPAW software (Soil–Plant–Air–Water;
v6.02.75, United States Department of Agriculture-USDA, Washington, DC, USA) was used for
assessing soil hydraulic properties, such as soil water retention, soil hydraulic conductivity, field
capacity and plant available water.

Soil was ploughed at 40 cm depth, and tomato seedlings were transplanted on April 9 in continuous
double rows with 33.5–40.0 cm space between plants, 50 cm between rows, 1.10–1.20 cm between
double rows, with a final plant density of 32,000 and 33,500 plants/ha in year 2017 and 2018, respectively.

Fertilization was applied before transplanting (broadcast) with 120 kg/ha of diammonium
phosphate (18-46-0) and 400 kg/ha of organic-mineral fertilizer (10-5-12); at transplanting (localized)
with 160 kg/ha of diammonium phosphate and 20 kg/ha of seed sprint H5 (12-43-0).

Meteorological daily data of maximum and minimum temperature (◦C), relative humidity (%),
wind speed (m s−1) and precipitation (mm) were collected at a complete weather station located in the
study area for the two cropping seasons.

Plants were watered by light driplines, with 30 cm dripper spacing and 2 L/h flow rate at 1 bar.

http://agricoltura.regione.campania.it/pedologia/suoli.html
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Based on the farmer best knowledge, a total volume of 130 L/plant of water, corresponding to 4160
m3/ha, and 120 L/plant corresponding to 4020 m3/ha of irrigation was given throughout the growing
period in 2017 and 2018, respectively. Such volumes were then considered as reference values against
which the different estimation methods (AquaCrop, IRRISAT, integration of Sentinel 2A imagery into
AquaCrop model) were tested.

2.2. Satellite-Based Assessment of Crop Water Requirement: IRRISAT

The remote sensing technique employed is the one employed by IRRISAT, a satellite-based
irrigation advisory service developed in Italy and operational since 2007 in Southern Italy [7]. The
service aims at providing farmers and water managers with real time information on crop water
needs, which are estimated by combining high resolution data from Earth Observation satellites
with weather data for the calculation of crop water requirements. More recently, IRRISAT has been
combined with numerical weather predictions for forecasting crop water needs up to five days in
advance [19,20]. Information is delivered in near-real time (24 h) to users (farmers, Water User
Association and water agencies) by means of a dedicated WebGIS accessible from PC, tablets and
smartphones (https://www.irrisat.com/en/). In 2016, the operational irrigation advisory service of the
Campania region has reached about 2000 farmers with a total irrigation area larger than 80,000 hectares:
The achieved water saving has been estimated to be larger than 30% [7]. In 2016 the Italian Ministry of
Agriculture has listed IRRISAT among the applicable methodologies for the estimation of the irrigation
volume, complying with the EU Water Framework Directive.

The IRRISAT methodology is summarized in Figure 2. Crop potential evapotranspiration (ETp)
is computed with the Penman–Monteith equation, with crop parameters albedo (α) and leaf area
index (LAI) derived from processing Sentinel-2A/B images in the visible and infrared regions [7] while
assuming fixed values for the stomatal resistance (sr ≈ 100 sm−1) and crop height (hc = 0.4 m) for
herbaceous crop [8]. Following this approach, the calculation of ETp requires standard meteorological
data (daily air temperature, relative humidity, solar radiation, wind speed and precipitation), LAI and
surface α.Agronomy 2019, 9, x FOR PEER REVIEW 5 of 13 

 

 
Figure 2. Flowchart shows dataset and processing procedure required to estimate crop potential 
evapotranspiration (ETp), and irrigation water requirements (IWR), Earth Observation-based direct 
FAO-56 Penman-Monteith equation method. Legend: Ta = air temperature, RH = relative humidity; 
Rs = solar radiation; U = wind speed; P = precipitation. 

The irrigation water requirement (IWR) is then calculated as the difference between ETp and the 
crop effective rainfall (Pn), according to the following equation:  

IWR = ETp – Pn (1) 

It is assumed that capillary rise does not contribute to root zone soil moisture in the summer 
season, as usually occurs in the southern European regions. Runoff and deep drainage are assumed 
to be negligible considering the low amount of rainfall during the two growing seasons. Pn is 
obtained by reducing the precipitation above canopy (P) by a quantity that depends on canopy 
development, according to an empirical function of the LAI and the fractional vegetation cover fc, as 
reported in Vuolo et al. [7]. 

In this study, 10 and 21 multispectral high-resolution images from Sentinel-2A and 2B have been 
acquired during 2017 and 2018, respectively. The multi spectral instrument (MSI) on board of 
Sentinel-2A/2B captures data at 10, 20 and 60 m of spatial resolution over 13 spectral bands with a 
very high temporal resolution of five days at the equator. Individual Sentinel-2 granules Level-1C 
(processed at the top-of-atmosphere reflectance) were acquired from Copernicus Open Access Hub 
(https://scihub.copernicus.eu/), already ortho-rectified in UTM/WGS84 (image tiles of 100 × 100 km2). 
The information gathered by Sentinel-2 system (orbit, attitude, date accuracy and viewing directions 
of all detectors) are exploited for geolocating all Sentinel-2 pixels with an accuracy of about 11 m for 
about 97% of the cases, which is about the size of one Sentinel-2 pixel. The standard need for multi-
temporal registration errors is 0.3 pixels, and the current performances show that for more than 50% 
of the cases, the performance does not meet that requirement. The resolution is estimated to be three 
times the registration error, thus the resolution Sentinel-2 time series is around 30 m.  

Level-1C products were processed into Level-2A-Bottom-of-Atmosphere (BoA) reflectance-data 
using the ESA’s Sen2Cor v2.5.5 tool (http://step.esa.int/main/third-party-plugins-
2/sen2cor/sen2cor_v2-5-5/). Sen2Cor tool performs the atmospheric, terrain and cirrus correction of 
Top-Of-Atmosphere Level 1C input data, and creates Bottom-Of-Atmosphere, optionally terrain and 
cirrus corrected reflectance images; additional, aerosol optical thickness, water vapor, scene 
classification maps and quality indicators for cloud and snow probabilities.  

Figure 2. Flowchart shows dataset and processing procedure required to estimate crop potential
evapotranspiration (ETp), and irrigation water requirements (IWR), Earth Observation-based direct
FAO-56 Penman-Monteith equation method. Legend: Ta = air temperature, RH = relative humidity;
Rs = solar radiation; U = wind speed; P = precipitation.

https://www.irrisat.com/en/
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The irrigation water requirement (IWR) is then calculated as the difference between ETp and the
crop effective rainfall (Pn), according to the following equation:

IWR = ETp − Pn (1)

It is assumed that capillary rise does not contribute to root zone soil moisture in the summer
season, as usually occurs in the southern European regions. Runoff and deep drainage are assumed to
be negligible considering the low amount of rainfall during the two growing seasons. Pn is obtained
by reducing the precipitation above canopy (P) by a quantity that depends on canopy development,
according to an empirical function of the LAI and the fractional vegetation cover fc, as reported in
Vuolo et al. [7].

In this study, 10 and 21 multispectral high-resolution images from Sentinel-2A and 2B have
been acquired during 2017 and 2018, respectively. The multi spectral instrument (MSI) on board of
Sentinel-2A/2B captures data at 10, 20 and 60 m of spatial resolution over 13 spectral bands with a
very high temporal resolution of five days at the equator. Individual Sentinel-2 granules Level-1C
(processed at the top-of-atmosphere reflectance) were acquired from Copernicus Open Access Hub
(https://scihub.copernicus.eu/), already ortho-rectified in UTM/WGS84 (image tiles of 100 × 100 km2).
The information gathered by Sentinel-2 system (orbit, attitude, date accuracy and viewing directions of
all detectors) are exploited for geolocating all Sentinel-2 pixels with an accuracy of about 11 m for about
97% of the cases, which is about the size of one Sentinel-2 pixel. The standard need for multi-temporal
registration errors is 0.3 pixels, and the current performances show that for more than 50% of the cases,
the performance does not meet that requirement. The resolution is estimated to be three times the
registration error, thus the resolution Sentinel-2 time series is around 30 m.

Level-1C products were processed into Level-2A-Bottom-of-Atmosphere (BoA) reflectance-data
using the ESA’s Sen2Cor v2.5.5 tool (http://step.esa.int/main/third-party-plugins-2/sen2cor/sen2cor_v2-
5-5/). Sen2Cor tool performs the atmospheric, terrain and cirrus correction of Top-Of-Atmosphere
Level 1C input data, and creates Bottom-Of-Atmosphere, optionally terrain and cirrus corrected
reflectance images; additional, aerosol optical thickness, water vapor, scene classification maps and
quality indicators for cloud and snow probabilities.

In order to obtain homogeneous and comparable products as time series, all value-added products
(LAI, α and fc) are calculated based on atmospherically corrected Level-2A data. LAI and fc are
calculated by S2ToolBox [21], an artificial neural network (ANN) algorithm, trained by using radiative
transfer simulations from PROSPECT [22] and SAIL [23] models, and tailored for Sentinel-2 data.
The algorithm requires eight Sentinel-2 spectral bands (B3–B7, B8a, B11 and B12) at 10 and 20 m (pixel
size), which are all resampled to 10 m to derive LAI and fc. Experimental studies have shown the
accuracy of this approach for LAI estimation in different environments and crops [24,25]. In this study,
average and variance of LAI and fc at parcel scale were assessed by taking a minimum of 50 pixels
falling within each parcel, after excluding pixels affected by boundary effects or cloudiness, according
to the quality indicator provided by S2ToolBox.

The broadband surface albedo has been calculated, when the observed surface is considered as
Lambertian, as the integration of at-surface reflectance across the shortwave spectrum [26], as shown
in equation:

α =
∑

bi

∣∣∣ρbi·ωbi
∣∣∣ (2)

where α is albedo, ρbi is surface reflectance for a given band bi at Level-2A Sentinel-2 surface reflectance,
ωbi is the weighting coefficient representing the solar radiation fraction derived from the solar irradiance
spectrum [26] within the spectral range (spectral response curves) for bands bi and is calculated as
equation:

ωbi =

∫ UPbi
LObi

Rsλ·dλ∫ 2.4
0.4 Rsλ·dλ

(3)

https://scihub.copernicus.eu/
http://step.esa.int/main/third-party-plugins-2/sen2cor/sen2cor_v2-5-5/
http://step.esa.int/main/third-party-plugins-2/sen2cor/sen2cor_v2-5-5/
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where Rsλ is extra-terrestrial irradiance for wavelength λ (µm); and UPbi and LObi are upper and lower
wavelength bounds for Sentinel-2A/B band bi, respectively.

2.3. Model-Based Assessment of Crop Water Requirement: AquaCrop

AquaCrop simulates crop yield in four steps: Crop development, crop transpiration, biomass
production and yield formation. It calculates the daily soil water balance and divides evapotranspiration
into soil evaporation and crop transpiration. AquaCrop describes the foliage development of the crop
by the canopy cover (CC), that is formally equivalent to the fractional cover (fc) estimated by Sentinel-2
imagery, i.e., it is the fraction of soil surface covered by the green canopy. Hereinafter, we use the two
terms canopy cover (CC) and fractional cover (fc) just to distinguish the two variables, respectively
derived with AquaCrop and Sentinel-2 imagery.

Transpiration is a function of CC, while evaporation is proportional to the area of soil not covered
by vegetation. The CC is multiplied by reference evapotranspiration (ETo), determined by the FAO
Penman–Monteith equation, and the crop coefficient (Kc) to calculate potential crop transpiration.
Actual transpiration (Ta) is calculated starting from potential one by accounting for water stress.
Then, Ta is used for the calculation of crop biomass though its multiplication with water productivity
normalized for climate. By using a harvest index (HI), crop yield is obtained by the biomass. To describe
the effect of water stress, the model considers different thresholds of water available to the root zone.
The first affects leaf canopy expansion (slowing down); the second threshold affects canopy senescence
(quickening); the third is referred to as stomata closure (increase) and so to transpiration. Stress
coefficients (Ks) range between 1 (no stress) and 0 (complete stress) and are multiplicative factors of
the target process.

Model parameters are grouped into two classes: Conservative and non-conservative. Conservative
parameters are not dependent on local and management conditions: Canopy growth (CGC) and canopy
decline (CDC) coefficients; full canopy crop transpiration coefficient (Kc); biomass WP and soil water
depletion thresholds. Non-conservative parameters vary depending on crop and field management,
soil type, and climate (sowing date and density, length of crop cycle and phenological stages, maximum
canopy cover, etc.). Such parameters can be either retrieved from AquaCrop literature or calibrated by
the user (e.g., by means of field experiments). Main AquaCrop outputs are crop production (biomass
and yield) and crop water use.

AquaCrop Implementation

In this study, a limited number of AquaCrop parameters were partly calibrated with field
observations, including management information: Transplant dates and densities, flowering date and
duration, starting of senescence, maturity, and final yield were used for local calibration of the model.
For simulating irrigation, the model was set in net irrigation requirement mode, which estimates the
crop water requirement based on a selected threshold of allowed root zone (water) depletion (RZD).
In order to reproduce the irrigation method adopted by the farmer, drip irrigation was simulated to
ensure that RZD was always above 50% of the readily available water (RAW).

2.4. Assimilation-Based Assessment of Crop Water Requirement

The third method for assessing crop water requirements was based on the integration of Sentinel-2
crop derived data with AquaCrop. The fractional cover (fc) estimated by Sentinel-2 has been sequentially
assimilated into AquaCrop, by direct insertion, in place of the canopy cover (CC) simulated by the
model. The sequential direct insertion is applied under the assumption that a continuous update
of one crop model state based on remote observations can reduce the biases induced by the model
simplifications of the processes and environmental conditions influencing the crop growth dynamics.

Crop CC simulated by AquaCrop along the growing season and the fc values measured by satellite
were compared and the differences were statistically analyzed by means of the Pearson correlation
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coefficient (r), root mean square error (RMSE%), Nash–Sutcliffe model efficiency coefficient (EF) and
Willmott index of agreement (d).

3. Results and Discussion

3.1. Test Site Characteristics

The parcel cultivated in 2017 had a Vitric Phaeozems (Eutric) soil (WRB classification), with a
loamy texture (USDA classification), while soil was Vitric Cambisols with a loamy-sand texture in 2018.
Soils were both deep, well drained and with no fertility constraints (Table 1).

Table 1. Main soil characteristics of the two soils.

Parameter Unit 2017 2018

Texture Loam Silty loam
Gravel (vol%) <5 <5

Saturation (vol%) 52 46
Field Capacity (vol%) 29 33
Wilting Point (vol%) 10 13

Cation Exchange Capacity (meq/100g) 32 24
Bulk Density (t/m3) 1.1 1.3
pH in H2O U.pH 6.9 7.1

Organic Matter (%) 2.6 2.7

Considering the climatology of the study area, average temperature of 15.2 ◦C and precipitation
of 900 mm (period 1982–2012), year 2017 was relatively dry, with a cumulated rainfall of 579 mm and
16.6 ◦C of average temperature, whereas 2018 was relatively wet and warm, with 1047 mm of rainfall
and an average temperature of 17.25 ◦C (Figure 3). Observed processing tomato yield (expressed in
dry matter) was 7.20 t/ha in 2017 and 7.35 t/ha in 2018.Agronomy 2019, 9, x FOR PEER REVIEW 8 of 13 
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Figure 3. Temperature (line) and precipitation (bars) in the experimental area in year 2017 (a) and
2018 (b).

3.2. AquaCrop Calibration and Implementation

AquaCrop parameters were calibrated to obtain the best fit between field observations and
simulations, both in 2017 and 2018 (Table 2). AquaCrop simulated yields were 7.23 and 7.60 t/ha (dry
weight) in 2017 and 2018, with an error of 0.42% and 3.40%, respectively (Table 3). The growth of
the green canopy simulated by the model was compared with the fc values observed by IRRISAT.
In both seasons the simulated growing curve fitted well with the satellite observations, although an
underestimation for the initial canopy cover (late April–early May) and an overestimation during the
last part of the growing season (July) was observed (Figure 4). Nevertheless, the statistical analysis
(RMSE, EF, d) showed a very good agreement between simulated CC and fc, which correlation was
highly significant in both years (α = 0.001; Table 4; Figure 5). In 2017 the spatial variability of the crop
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canopy within the study parcel was larger than in 2018, as testified by the larger variance of the fc
values retrieved in 2017.

Table 2. Input crop file used for AquaCrop simulations (HI: Harvest index, GDD: Growing degree days).

Crop Parameter Unit Value

Max canopy cover GDD 686
Flowering GDD 612

Flowering duration GDD 531
Length building up HI GDD 448

Senescence GDD 1013
Maturity GDD 1358

Max rooting depth GDD 612

Initial canopy cover % 0.64
Maxi canopy cover % 75

Reference HI % 63

Base temperature ◦C 5
Upper temperature ◦C 30

Canopy expansion Upper 0.15
Canopy expansion Lower 0.55

Stomatal closure 0.5
Early canopy senescence 0.7

Table 3. Crop and water balance variables (Tr: Crop transpiration, E: Soil evaporation, ETp: Potential
evapotranspiration, IWR: Irrigation water requirement, WPET: Evapotranspiration water productivity,
WPIWR: Irrigation water requirement water productivity).

Yield
(t/ha)

Tr
(mm)

E
(mm)

ETp
(mm)

IWR
(mm)

WPET
(kg/m3)

WPIWR
(kg/m3)

2017

Observed 7.20 416 1.73
IRRISAT 450 450

AquaCrop 7.23 345 192 537 461 1.35 1.57
Assimilation 8.23 372 165 537 461 1.52 1.79

2018

Observed 7.35 402 1.82
IRRISAT 349 298

AquaCrop 7.60 291 137 428 332 1.78 2.29
Assimilation 7.34 273 139 412 317 1.78 2.31
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Table 4. Evaluation of canopy cover simulation results: Number of observations/simulations (n),
Pearson correlation coefficient (r), root mean square error (RMSE%), Nash–Sutcliffe model efficiency
coefficient (EF) and Willmott index of agreement (d).

n r RMSE EF d

2017 10 0.95 9.10 0.8 0.96

2018 22 0.97 8.10 0.91 0.98
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3.3. Estimation of Crop Water Irrigation Requirements

During the 2017 crop growing season, spanning from June 9th to July 20th, the accumulated rainfall
was 40.4 mm, the estimated reference evapotranspiration (ETo) was 553 mm, while crop transpiration
(Tr) and soil evaporation (E) estimated by AquaCrop were 345 and 192 mm, respectively. In such
conditions, AquaCrop modeled an irrigation water requirement (IWR) of 461 mm corresponding to
144 L/plants.

In year 2018, wetter conditions occurred, with an accumulated rainfall of 125 mm and an estimated
ETo of 439 mm. Under such conditions, both crop Tr (291 mm) and E (137 mm) were lower. Accordingly,
a lower IWR, 332 mm, was estimated by the model. Being the final yields very similar, the consequent
evapotranspiration (WPET) was higher in 2018 than 2017 (Tab 3).

In Figure 6, three different daily ETp series were compared, respectively produced by calibrated
AquaCrop, IRRISAT and AquaCrop after replacing CC with fc estimated by IRRISAT.
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Figure 6. Crop evapotranspiration estimated by AquaCrop (blue), IRRISAT (red) and direct insertion
(green) of fc retrieved by Sentinel-2 imagery into AquaCrop, in 2017 (a) and 2018 (b).
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The agreement between AquaCrop and IRRISAT ETp estimates is excellent in the mid-season
stage, between about the 50th and 85th day after transplant, when the crop canopy is fully developed.
This result is remarkable considering that IRRISAT is fully based on remote observations weather data,
and not relying on field or crop data. Moreover, IRRISAT predictions are not based on a continuous
assessment of the crop dynamics, rather it provides ETp estimates based on crop parameters retrieved
from the last available image, thus with a delay of five or more days, depending on the sky conditions
(i.e., cloudiness).

In the initial stage and in the crop development stage (first 50 days after transplant), before canopy
is fully developed, the estimation of ETp in AquaCrop is higher than the one determined by IRRISAT.
This is due to the conceptually different calculation schemes: Whilst IRRISAT has a resistance-based
approach in the Penman–Monteith linked to the LAI at the pixel scale (according to the “big leaf”
schematization), AquaCrop has a crop coefficient approach for soil evaporation depending on soil
properties. Diversely, with growing LAI and soil cover, the two estimates converge toward very similar
values of ETp, hence irrigation requirements.

In the senescence stage, after about the 85th day from transplant, the values of ETp derived by
means of the two methods slightly diverge again, with higher ETp for IRRISAT respect to AquaCrop,
again due to the difference between the LAI-based approach of the first one and the crop coefficient of
the second one. Furthermore, AquaCrop explicitly consider the transpiration reduction associated
with the senescence, which cannot be fully predicted by the reduction of the observed LAI applied into
the Penman–Monteith equation.

The canopy cover fc maps retrieved from Sentinel-2 imagery can be more effectively employed for
constraining AquaCrop predictions to the actual observed crop growth and for assessing its spatial
variability. In this study we applied a simple assimilation technique, known in the literature as “direct”
insertion [27], consisting in replacing the model state variable CC with the remotely retrieved variable
fc. As displayed in Figure 6, AquaCrop ETp estimates after direct insertion are essentially equal to the
calibrated AquaCrop, except for the development and senescence stages, when the average fc sensibly
deviates from the model calibrated growth curve. As illustrated in Table 3, fc direct insertion does
not affect the cumulative ETp, rather it affects its partitioning in transpiration (Tr) an evaporation
(E), with a slight increase in Tr and a decrease in E. In 2018, instead, fc direct insertion implies a
slight reduction of ETp, mainly associated with a reduction of Tr. Correspondingly, tomato yield
was overestimated compared with the observed and the calibrated values in 2017 (+14.3%), while
slightly underestimated in 2018 (−1.03%). This result confirmed that sequential assimilation of one
state variable does not necessarily improve the prediction performance of all model state variables.
In this sense, more complex sequential assimilation techniques are needed, in order to account for the
structure of the observation and prediction errors [28], as well of the atmospheric forcing [29].

The impact of the direct insertion in terms of irrigation water requirement (IWR) is null in 2017,
while it determines a 5% decrease in 2018. As illustrated in Figure 7, also the temporal pattern of
IWR is almost unchanged in the two simulated seasons. A potential water saving of 70 mm could be
achieved in 2018 according to AquaCrop, by accounting for the effective contribution of the summer
rainfall (125 mm) to the soil water deficit.

Looking again at Table 3, it is interesting to note that IRRISAT, despite the significant reduction
of the cumulative ETp both in 2017 (16%) and 2018 (19%) compared with the calibrated AquaCrop,
predicts cumulative IWR just 3% smaller in 2017 and 11% smaller in 2018 than the calibrated AquaCrop.
As illustrated in Figure 7, this reduction is essentially due to the initial and development stage, when
AquaCrop, differently form IRRISAT, accounts for the soil evaporation in the IWR assessment. After the
crop is fully developed, the cumulative IWR curves are almost parallel, testifying the good agreement
of the remotely assessed daily IWR with AquaCrop.
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Figure 7. Cumulated irrigation water requirement (mm) estimated by the three methods: AquaCrop
(blue), IRRISAT (red) and direct insertion (green) of fractional cover retrieved by Sentinel-2 imagery
into AquaCrop, in 2017 (a) and 2018 (b). Rainfall is also plotted (histograms).

4. Conclusions

Sentinel-2 imagery can be effectively exploited for monitory canopy growth of tomato crops in
open field. Irrigation advisory services, such as IRRISAT, which are only based on crop data retrieved
by Sentinel-2 and weather data, can provide a reliable assessment of crop water requirements of tomato
field crops especially when crop canopy is fully developed. It should be considered that IRRISAT
does not require input data concerning the soil or crop phenology, since it is entirely based on crop
growth monitoring from space. Hence, integrating Sentinel-2 imagery with a crop growth model
such as AquaCrop can be an effective strategy for assessing crop water requirement in the initial and
development stage of the crop, as well as for identifying the senescence stage. Further, being the
satellite imagery a spatial information, the integration into a crop model can help in assessing crop
water requirement at field or higher scales, i.e., at territorial level. Thus, a sequential assimilation
can be used to support irrigation planning by Irrigation and Land Reclamation consortia. In this
study a simple direct insertion method has been applied for assimilating canopy cover retrieved by
Sentinel-2 imagery into AquaCrop, which does not guarantee an optimal model-data integration.
Additional studies are required for testing more advanced data assimilation techniques, accounting for
the structure of the model state and observation errors.
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