Identification of Sugarcane S. spontaneum (Poaceae) Germplasm: Evidence from rDNA-ITS and rDNA Locus Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and DNA Extraction
2.2. Molecular Cloning and Sequencing
2.3. Sequence Analysis and Tetra-Primer ARMS PCR Procedure
2.4. Determination of Basic Chromosome Numbers by FISH Location with 5S and 35S rDNA
3. Results
3.1. Detection of SNP Sites and Tetra-Primer ARMS PCR
3.2. Analysis of rDNA-ITS
3.3. Physical Mapping of 5S and 35S rDNAs in the Genus Saccharum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldemberg, J.; Coelho, S.T.; Guardabassi, P. The sustainability of ethanol production from sugarcane. Energy Policy 2008, 36, 2086–2097. [Google Scholar] [CrossRef]
- Wang, J.; Roe, B.; Macmil, S.; Yu, Q.; Murray, J.E.; Tang, H.; Chen, C.; Najar, F.; Wiley, G.; Bowers, J.; et al. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genom. 2010, 11, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Hont, A.; Paulet, F.; Glaszmann, J.C. Oligoclonal interspecific origin of ‘North Indian’ and ‘Chinese’ sugarcanes. Chromosome Res. 2002, 10, 253–262. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Li, L.; Tang, H.; Zhang, Q.; Chen, Y.; Arrow, J.; Zhang, X.; Wang, A.; Miao, C.; et al. Recent polyploidization events in three Saccharum founding species. Plant Biotechnol. J. 2019, 17, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, X.; Tang, H.; Zhang, Q.; Hua, X.; Ma, X.; Zhu, F.; Jones, T.; Zhu, X.; Bowers, J.; et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 2018, 50, 1565–1573. [Google Scholar] [CrossRef] [Green Version]
- Pastina, M.M.; Malosetti, M.; Gazaffi, R.; Mollinari, M.; Margarido, G.R.; Oliveira, K.M.; Pinto, L.R.; Souza, A.P.; van Eeuwijk, F.A.; Garcia, A.A. A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. TAG Theor. Appl. Genet. Theor. Angew. Genet. 2012, 124, 835–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panje, R.R.; Babu, C.N. Studies in Saccharum spontaneum Distribution and Geographical Association of Chromosome Numbers. Cytologia 1960, 25, 152–172. [Google Scholar] [CrossRef] [Green Version]
- D’Hont, A.; Ison, D.; Alix, K.; Roux, C.; Glaszmann, J.C. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 1998, 41, 221–225. [Google Scholar] [CrossRef]
- Dong, G.; Shen, J.; Zhang, Q.; Wang, J.; Yu, Q.; Ming, R.; Wang, K.; Zhang, J. Development and Applications of Chromosome-Specific Cytogenetic BAC-FISH Probes in S. spontaneum. Front. Plant Sci. 2018, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Zhang, Z.; Yan, T.; Lin, Q.; Wang, Y.; Huang, W.; Huang, Y.; Li, Z.; Yu, Q.; Wang, J.; et al. Comprehensively Characterizing the Cytological Features of Saccharum spontaneum by the Development of a Complete Set of Chromosome-Specific Oligo Probes. Front. Plant Sci. 2018, 9, 1624. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Zhao, X.; Chai, J.; Ding, X.; Li, X.; Huang, Y.; Wang, X.; Wu, J.; Zhang, M.; Yang, Q.; et al. Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in the Saccharum complex. New Phytol. 2022, 233, 1953–1965. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Qi, Y.; Pan, H.; Tang, H.; Wang, G.; Hua, X.; Wang, Y.; Lin, L.; Li, Z.; Li, Y.; et al. Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nat. Genet. 2022, 54, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Piperidis, N.; D’Hont, A. Sugarcane genome architecture decrypted with chromosome-specific oligo probes. Plant J. Cell Mol. Biol. 2020, 103, 2039–2051. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.T.; Wang, X.Z.; Tang, Y.Y.; Chen, D.X.; Cui, F.G.; Zhang, J.C.; Yu, S.L. Phylogeny of Arachis based on internal transcribed spacer sequences. Genet. Resour. Crop Evol. 2011, 58, 311–319. [Google Scholar] [CrossRef]
- Hsiao, C.; Chatterton, N.J.; Asay, K.H.; Jensen, K.B. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 1995, 38, 211–223. [Google Scholar] [CrossRef]
- De Bustos, A.; Jouve, N. Phylogenetic relationships of the genus Secale based on the characterisation of rDNA ITS sequences. Plant Syst. Evol. 2002, 235, 147–154. [Google Scholar] [CrossRef]
- Liu, X.-L.; Su, H.-S.; Ma, L.; Lu, X.; Ying, X.-M.; Cai, Q.; Fan, Y.-H. Phylogenetic Relationships of Sugarcane Related Genera and Species Based on ITS Sequences of Nuclear Ribosomal DNA. Acta Agron. Sin. 2010, 36, 1853–1863. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Huang, F.; Huang, Y.; Liu, X.; Wu, J.; Wang, Q.; Deng, Z.; Chen, R.; Zhang, M. A new method based on SNP of nrDNA-ITS to identify Saccharum spontaneum and its progeny in the genus Saccharum. PLoS ONE 2018, 13, e0197458. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.N., Jr.; Via, L.E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. BioTechniques 1993, 14, 748–750. [Google Scholar]
- Besse, P. Nuclear Ribosomal RNA Genes: ITS Region. Methods Mol. Biol. 2021, 2222, 119–129. [Google Scholar] [CrossRef]
- Kumar, S.; Nei, M.; Dudley, J.; Tamura, K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 2008, 9, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Luo, L.; Hu, X.; Yu, F.; Yang, Y.; Deng, Z.; Wu, J.; Chen, R.; Zhang, M. Characterization, Genomic Organization, Abundance, and Chromosomal Distribution of Ty1-copia Retrotransposons in Erianthus arundinaceus. Front. Plant Sci. 2017, 8, 924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerlach, W.L.; Bedbrook, J.R. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 1979, 7, 1869–1885. [Google Scholar] [CrossRef] [PubMed]
- Hillis, D.M.; Dixon, M.T. Ribosomal DNA: Molecular evolution and phylogenetic inference. Q. Rev. Biol. 1991, 66, 411–453. [Google Scholar] [CrossRef] [PubMed]
- Schlötterer, C.; Hauser, M.T.; von Haeseler, A.; Tautz, D. Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol. Biol. Evol. 1994, 11, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Garzón, C.D.; Yánez, J.M.; Moorman, G.W. Pythium cryptoirregulare, a new species within the P. irregulare complex. Mycologia 2007, 99, 291–301. [Google Scholar] [CrossRef]
- Coleman, A.W.; Vacquier, V.D. Exploring the phylogenetic utility of ITS sequences for animals: A test case for abalone (Haliotis). J. Mol. Evol. 2002, 54, 246–257. [Google Scholar] [CrossRef]
- Gurushidze, M.; Mashayekhi, S.; Blattner, F.R.; Friesen, N.; Fritsch, R.M. Phylogenetic relationships of wild and cultivated species of Allium section Cepa inferred by nuclear rDNA ITS sequence analysis. Plant Syst. Evol. 2007, 269, 259–269. [Google Scholar] [CrossRef]
- Yao, H.; Song, J.; Liu, C.; Luo, K.; Han, J.; Li, Y.; Pang, X.; Xu, H.; Zhu, Y.; Xiao, P.; et al. Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE 2010, 5, e13102. [Google Scholar] [CrossRef] [Green Version]
- Hodkinson, T.R.; Chase, M.W.; Lledó, M.D.; Salamin, N.; Renvoize, S.A. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnLintron and trnL-F intergenic spacers. J. Plant Res. 2002, 115, 381–392. [Google Scholar] [CrossRef]
- Ha, S.; Moore, P.H.; Heinz, D.; Kato, S.; Ohmido, N.; Fukui, K. Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods. Plant Mol. Biol. 1999, 39, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- D’Hont, A. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet. Genome Res. 2005, 109, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Edmé, S.J.; Glynn, N.G.; Comstock, J.C. Genetic segregation of microsatellite markers in Saccharum officinarum and S. spontaneum. Heredity 2006, 97, 366–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mary, S.; Nair, N.V.; Chaturvedi, P.K.; Selvi, A. Analysis of Genetic Diversity Among Saccharum spontaneum L. From Four Geographical Regions of India, Using Molecular Markers. Genet. Resour. Crop Evol. 2006, 53, 1221–1231. [Google Scholar] [CrossRef]
- Devarumath, R.M.; Kalwade, S.B.; Kawar, P.G.; Sushir, K.V. Assessment of Genetic Diversity in Sugarcane Germplasm Using ISSR and SSR Markers. Sugar Tech. 2012, 14, 334–344. [Google Scholar] [CrossRef]
- Chandra, A.; Grisham, M.P.; Pan, Y.B. Allelic divergence and cultivar-specific SSR alleles revealed by capillary electrophoresis using fluorescence-labeled SSR markers in sugarcane. Genome 2014, 57, 363–372. [Google Scholar] [CrossRef]
- Upadhyay, A.; Kadam, U.S.; Chacko, P.; Karibasappa, G.J.I.J.H. Microsatellite and RAPD analysis of grape (Vitis spp.) accessions and identification of duplicates/misnomers in germplasm collection. Indian J. Hortic. 2010, 67, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, A.; Kadam, U.S.; Chacko, P.M.; Aher, L.; Karibasappa, G.S. Microsatellite analysis to differentiate clones of Thompson seedless grapevine. Indian J. Hortic. 2010, 67, 260–263. [Google Scholar] [CrossRef]
- Hinge, V.R.; Shaikh, I.M.; Chavhan, R.L.; Deshmukh, A.S.; Shelake, R.M.; Ghuge, S.A.; Dethe, A.M.; Suprasanna, P.; Kadam, U.S. Assessment of genetic diversity and volatile content of commercially grown banana (Musa spp.) cultivars. Sci. Rep. 2022, 12, 1–16. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.; Tian, L.; Chen, L.; Yu, W. Identification of peanut (Arachis hypogaea) chromosomes using a fluorescence in situ hybridization system reveals multiple hybridization events during tetraploid peanut formation. New Phytol. 2016, 211, 1424–1439. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, F.; Li, X.; Luo, L.; Wu, J.; Yang, Y.; Deng, Z.; Chen, R.; Zhang, M. Comparative genetic analysis of the 45S rDNA intergenic spacers from three Saccharum species. PLoS ONE 2017, 12, e0183447. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kumar, R.; Nagpure, N.S.; Kushwaha, B.; Gond, I.; Lakra, W.S. Chromosomal localization of 18S and 5S rDNA using FISH in the genus Tor (Pisces, Cyprinidae). Genetica 2009, 137, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Vaio, M.; Speranza, P.; Valls, J.F.; Guerra, M.; Mazzella, C. Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae). Ann. Bot. 2005, 96, 191–200. [Google Scholar] [CrossRef] [PubMed]
No. | Clone | Species | Ploidy | Chromosome Number | Analysis |
---|---|---|---|---|---|
1 | Badila-CN | S. officinarum | 8 | 80 | rDNA-ITS and locus |
2 | LA Purple | S. officinarum | 8 | 80 | rDNA-ITS and locus |
3 | 51NG63 | S. robustum | 8 | 80 | rDNA-ITS and locus |
4 | 57NG208 | S. robustum | 8 | 80 | rDNA-ITS and locus |
5 | SES208 | S. spontaneum | 8 | 64 | rDNA-ITS and locus |
6 | Yunnan82-63 | S. spontaneum | 8 | 64 | rDNA locus |
7 | Yunnan83-160 | S. spontaneum | 8 | 64 | rDNA locus |
8 | Sichuan92-42 | S. spontaneum | 9 | 72 | rDNA locus |
9 | Yunnan82-50 | S. spontaneum | 9 | 72 | rDNA locus |
10 | Yunnan82-114 | S. spontaneum | 10 | 80 | rDNA-ITS and locus |
11 | Yunnan83-171 | S. spontaneum | 10 | 80 | rDNA locus |
12 | Guizhou78-2-28 | S. spontaneum | 12 | 96 | rDNA locus |
13 | Nepal2013-6 | S. spontaneum | 4 | 40 | rDNA-ITS and locus |
14 | Hainan92-77 | Tripidium arundinaceum | 6 | 60 | rDNA-ITS |
15 | Hainan92-105 | Tripidium arundinaceum | 6 | 60 | rDNA-ITS |
16 | Jiangxi91-8 | Miscanthus sinensis | 4 | 38 | rDNA-ITS |
17 | Yunnan95-9 | Miscanthus sinensis | 4 | 38 | rDNA-ITS |
18 | Guangdong64 | Narenga pophyrocoma | 4 | 30 | rDNA-ITS |
19 | Sichuan92-11 | Narenga pophyrocoma | 4 | 30 | rDNA-ITS |
Clone | Origin | No. of Chromosomes | No. of 5S rDNA Loci | No. of 35S rDNA Loci | Location Type |
---|---|---|---|---|---|
Badila-CN | / | 2n = 80 | 8 | 8 | telomere |
LA Purple | / | 2n = 80 | 8 | 8 | telomere |
51NG63 | / | 2n = 80 | 8 | 6 | telomere |
57NG208 | / | 2n = 80 | 8 | 8 | telomere |
Nepal2013-6 | Nepal | 2n = 40 | 4 | 4 | telomere |
SES208 | / | 2n = 64 | 8 | 7 | subtelomere |
Yunnan82-63 | Yunnan | 2n = 64 | 8 | 6 | subtelomere |
Yunnan83-160 | Yunnan | 2n = 64 | 8 | 7 | subtelomere |
Sichuan92-42 | Sichuan | 2n = 72 | 9 | 8 | subtelomere |
Yunnan82-50 | Yunnan | 2n = 72 | 9 | 7 | subtelomere |
Yunnan82-114 | Yunnan | 2n = 80 | 10 | 6 | subtelomere |
Yunnan83-171 | Yunnan | 2n = 80 | 10 | 5 | subtelomere |
Guizhou78-2-28 | Guizhou | 2n = 96 | 12 | 8 | subtelomere |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.; Hu, X.; Xue, L.; Li, X.; Wang, P.; Zhao, X.; Zhang, M.; Deng, Z.; Yu, F. Identification of Sugarcane S. spontaneum (Poaceae) Germplasm: Evidence from rDNA-ITS and rDNA Locus Analyses. Agronomy 2022, 12, 3167. https://doi.org/10.3390/agronomy12123167
Lin P, Hu X, Xue L, Li X, Wang P, Zhao X, Zhang M, Deng Z, Yu F. Identification of Sugarcane S. spontaneum (Poaceae) Germplasm: Evidence from rDNA-ITS and rDNA Locus Analyses. Agronomy. 2022; 12(12):3167. https://doi.org/10.3390/agronomy12123167
Chicago/Turabian StyleLin, Pingping, Xuguang Hu, Li Xue, Xinyi Li, Ping Wang, Xinwang Zhao, Muqing Zhang, Zuhu Deng, and Fan Yu. 2022. "Identification of Sugarcane S. spontaneum (Poaceae) Germplasm: Evidence from rDNA-ITS and rDNA Locus Analyses" Agronomy 12, no. 12: 3167. https://doi.org/10.3390/agronomy12123167
APA StyleLin, P., Hu, X., Xue, L., Li, X., Wang, P., Zhao, X., Zhang, M., Deng, Z., & Yu, F. (2022). Identification of Sugarcane S. spontaneum (Poaceae) Germplasm: Evidence from rDNA-ITS and rDNA Locus Analyses. Agronomy, 12(12), 3167. https://doi.org/10.3390/agronomy12123167