Recycling Phosphorus from Agricultural Streams: Grey and Green Solutions
Abstract
:1. Introduction
2. P in the Soil Environment
2.1. Overfertilised Soils
2.2. P Losses
Catchments ID | Coordinates | Soils a | Land Use b | MAP mm year−1 | Clay % | OC b g kg−1 | pH a | P Loss kg ha−1 | P Loss mg L−1 | Ref c |
---|---|---|---|---|---|---|---|---|---|---|
cereals | ||||||||||
Robe (IR) | 53°41′32″ N 9°03′45″ W | PZ, UM | CPAH | 1150 | 19 | 50 | 6.0 | 1.09 | [50] | |
Wye (UK) | 52°03′16″ N 3°10′32″ W | PZ, CM | CMGFHP | 1000 | 13 | 132 | 5.5 | 0.52 | [4] | |
Chesapeake (US) | 37°31′15″ N 76°06′18″ W | AL, AC, LV | CSWHDP | 890 | 13 | 25 | 5.0 | 0.84 | [4] | |
Paimionjoki (FI) | 60°28′02″ N 22°40′56″ E | GL, PZ | CLDA | 680 | 35 | 19 | 4.9 | 0.88 | [4] | |
Odense (DK) | 55°13′00″ N 10°18′36″ E | CM, LV | CPAH | 580 | 15 | 17 | 6.5 | 0.75 | [50] | |
Palma del Río (ES) | 37°41′ N 5°18′ W | VR | CDWLS | 570 | 47 | 15 | 7.2 | 1.07 | [42] | |
Palma del Río (ES) | 37°41′ N 5°18′ W | LV | CDWS | 570 | 22 | 15 | 7.8 | 0.67 | [42] | |
pasture | ||||||||||
Neagh-Bann (IR) | 53°31′04″ N 6°43′34″ W | CM, LV | PPFAL | 800 | 20 | 30 | 6.7 | 0.16 | [48] | |
North-West (IR) | 54°36′18″ N 8°01′15″ W | PZ, CM | PPF | 1100 | 20 | 130 | 5.4 | 0.21 | [48] | |
Shannon (IR) | 53°16′30″ N 7°57′29″ W | PZ, CM | PPF | 750 | 20 | 50 | 6.2 | 0.16 | [48] | |
West (IR) | 53°46′40″ N 9°04′34″ W | PZ, GL | PPF | 1100 | 22 | 55 | 6.1 | 0.21 | [48] | |
South-West (IR) | 51°56′51″ N 08°52′11″ W | PZ, GL | PPF | 850 | 18 | 70 | 5.3 | 0.20 | [48] | |
South-East (IR) | 52°45′21″ N 6°54′28″ W | PZ, GL | PPF | 800 | 21 | 40 | 6.1 | 0.18 | [48] | |
forestry | ||||||||||
F26 (SE) | 57°13′45″ N 13°38′24″ E | PZ, CM | FAL | 1070 | 5 | 60 | 4.3 | 0.12 | [41] | |
N33 (SE) | 56°36′01″ N 13°03′28″ E | CM, LV | FAL | 820 | 21 | 20 | 6.2 | 0.16 | [41] | |
N34 (SE) | 56°34′46″ N 13°03′45″ E | CM, LV | FAL | 820 | 14 | 25 | 6.8 | 0.10 | [41] | |
M36 (SE) | 56°08′36″ N 13°04′51″ E | CM, FL | FAL | 720 | 26 | 30 | 6.3 | 0.20 | [41] | |
M42 (SE) | 55°20′27″ N 13°48′04″ E | FL, PZ | FAL | 710 | 16 | 50 | 6.4 | 0.15 | [41] | |
O18 (SE) | 58°26′42″ N 12°54′25″ E | PZ, CM | FAL | 660 | 35 | 40 | 4.5 | 0.50 | [41] | |
C6 (SE) | 59°42′48″ N 17°18′52″ E | PZ CM, | FAL | 620 | 42 | 65 | 4.8 | 0.21 | [41] | |
I28 (SE) | 57°30′14″ N 18°42′58″ E | FL, CM | FAL | 590 | 20 | 28 | 6.5 | 0.18 | [41] | |
U8 (SE) | 59°20′45″ N 16°33′33″ E | PZ, CM | FAL | 540 | 50 | 45 | 4.7 | 0.26 | [41] | |
E21 (SE) | 58°24′36″ N 15°20′57″ E | PZ, CM | FAL | 510 | 16 | 44 | 4.6 | 0.06 | [41] | |
Flakkensee Locknitz (DE) | 53°26′27″ N 14°13′24″ E | CM, LV | FCPAH | 550 | 13 | 21 | 7.1 | 0.27 | [50] | |
Schuitenbeek (NL) | 52°15′07″ N 5°32′20″ E | PZ | FMCFP | 780 | 15 | 26 | 5 | 1.59 | [50] |
2.3. Estimated P by Pedotransfer Functions
3. Technologies to Remove P from Water
3.1. P Adsorption
3.2. P-Adsorbent Industrial Materials: “Grey Removal”
4. P-Adsorbent Bio-Based Materials: “Green Removal”
Adsorbent | Modification | Pollutant Removed | Adsorption Capacity mg g−1 | Removal % | pH | T °C | References |
---|---|---|---|---|---|---|---|
Ficus auriculata leaves | Unmodified | Cr (VI) | 94.3 | 2.0 | 30 | [99] | |
Milled olive stones | Unmodified | Cr (VI) | 2.3 | 2.0 | - | [100] | |
Olive stone | - | Cr (VI) | 53.3 | 2.0 | 30 | [101] | |
Date pit | - | Cr (VI) | 82.6 | 2.0 | 30 | [101] | |
Cellulose derived by rice husk | Treated with alkaline humic acid | Cr (VI) | 19.3 | 5.0 | 25 | [102] | |
Exhausted coffee waste | Unmodified | Cr (VI) | 686 | 3.0 | 25 | [103] | |
Raw rice straw | Unmodified | Cr (VI) | 8.0 | 2.0 | 30 | [104] | |
Date palm trunk | Graft with diethylenetriamine and triethylamine | Cr (VI) | 129.8 | 3.5 | [105] | ||
Sludge Biomass | Immobilised with calcium alginate | Cr (VI) | 116.1 | 5.0 | 25 | [106] | |
Sugarcane bagasse pith | Immobilised with Na-alginate | Cr (VI) | 52.8 | 2.0 | 25 | [107] | |
Black wattle tannin | Immobilised with nanocellulose | Cr (VI) | 104.6 | 2.0 | 25 | [108] | |
Cactus mucilage | Unmodified | As (V) | 2.8 | 5.0–9.0 | - | [96] | |
Powder of stem of Acacia nilotica | Unmodified | As (V) | 50.8 | 4.0–7.0 | - | [109] | |
Sorghum biomass | Unmodified | As (V) | 2.8 | 5.0 | [110] | ||
Opuntia ficus indica fruit powder | Unmodified | As (V) | 85–92 | 6.0–7.0 | - | [97] | |
Mucilage cactus | Unmodified | As (V) | 98 | 30 | [98] | ||
Cactus mucilage (non-gelling extract) | Mixed with sodium alginate and CaCl2 | As (V) | 97.1 | [111] | |||
Cactus mucilage (gelling extract) | Mixed with sodium alginate and CaCl2 | As (V) | 101.6 | [111] |
Production | By-Product | P Content % a | P Rem Min mgL−1 b | P Ads Max mg g−1 c | Use | Suitability c | Extra Treatment d | References |
---|---|---|---|---|---|---|---|---|
Banana | Fruit | 1.0 | Soil conditioner | +++ | Compost | [138] | ||
Peels | 0.2 | Soil conditioner | +++ | Compost | [139] | |||
Stem | 0.5 | Soil conditioner | +++ | Vermicomposting | [140] | |||
Leaves | 0.2 | Soil conditioner | +++ | Vermicomposting | [141] | |||
Fruit and vegetables | Soil conditioner | +++ | Vermicomposting | [142] | ||||
Clover | Crop residues | 0.6 | Soil conditioner | +++ | [144] | |||
Hazelnut | Husk | Soil conditioner | +++ | Compost | [125] | |||
Poultry | Feather waste | 0.5 | Soil conditioner | +++ | [145] | |||
Eggshell | 180 | Soil conditioner | + | High temp | [122] | |||
Potato | Peel | 15 | 190 | Soil conditioner | ++ | Compost | [122] | |
Rice | Husk | 1 | Soil conditioner | ++ | High temp | [146] | ||
0.5 | Soil conditioner | ++ | High temp | [146] | ||||
12 | Soil conditioner | + | Low pH | [147] | ||||
Hull | 6.0 | Soil conditioner | + | Compost | [148] | |||
Rice | Husk | 0.04 | Soil conditioner | + | High temp | [149] | ||
300 | Soil conditioner | + | High pH | [127] | ||||
Almond | Shell | 2 | Soil conditioner | + | High pH | [126] | ||
Sugarcane | Molasse | 0.30 | 4.0 | Soil conditioner | ++ | [133] | ||
Bagasse | 10 | 250 | Soil conditioner | ++ | High temp | [150] | ||
3.0 | Soil conditioner | ++ | P added | [151] | ||||
Vinasse | 0.01 | Irrigation | + | [152] | ||||
Sugarbeet | Root | 0.5 | Energy, fertiliser | + | Digestion | [153] | ||
Orange | Peel | 0.2 | Fertiliser | +++ | [154] | |||
Palm | Kernel shell | 1 | Fertiliser | + | High temp | [123] | ||
Peanut | Shell | 30 | Fertiliser | + | High temp, low pH | [131] | ||
Coffee | Ground exhausted | 0.2 | Growth media | +++ | [155] |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petruccioli, M.; Raviv, M.; Di Silvestro, R.; Dinelli, G. Agriculture and agro-industrial wastes, by-products, and wastewaters: Origin, characteristics, and potential in bio-based compounds production. Compr. Biotechnol. 2019, 6, 477–490. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Withers, P.J.A.; Vadas, P.A.; Uusitalo, R.; Forber, K.J.; Hart, M.; Foy, R.H.; Delgado, A.; Dougherty, W.; Lilja, H.; Burkitt, L.L.; et al. A global perspective on integrated strategies to manage soil phosphorus status for eutrophication control without limiting land productivity. J. Environ. Qual. 2019, 48, 1234–1246. [Google Scholar] [CrossRef] [Green Version]
- Azam, H.M.; Alam, S.T.; Hasan, M.; Yameogo, D.D.S.; Kannan, A.D.; Rahman, A.; Kwon, M.J. Phosphorus in the environment: Characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems. Environ. Sci. Pollut. Res. 2019, 26, 20183–20207. [Google Scholar] [CrossRef] [PubMed]
- U.S. Geological Survey. Mineral Commodity Summaries. 2022. Available online: https://www.usgs.gov/centers/nmic/commodity-statistics-and-information (accessed on 16 November 2022).
- Manning, D.A.C.; Theodoro, S.H. Enabling food security through use of local rocks and minerals. Extr. Ind. Soc. 2020, 7, 480–487. [Google Scholar] [CrossRef]
- European Commission (EC). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Consultative Communication on the Sustainable Use of Phosphorus. 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:52013DC0517 (accessed on 16 November 2022).
- Cordell, D.; White, S. Sustainable phosphorus measures: Strategies and technologies for achieving phosphorus security. Agronomy 2013, 3, 86–116. [Google Scholar] [CrossRef] [Green Version]
- Canziani, R.; Di Cosmo, R. Stato dell’arte e potenzialità delle tecnologie di recupero del fosforo dai fanghi di depurazione. Ing. Dell’ambiente 2018, 5, 3. [Google Scholar] [CrossRef]
- Reta, G.; Dong, X.; Li, Z.; Su, B.; Hu, X.; Bo, H.; Yu, D.; Wan, H.; Liu, J.; Li, Y.; et al. Environmental impact of phosphate mining and beneficiation: Review. Int. J. Hydrogen Energy 2018, 2, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Bouwmana, A.F.; Beusen, A.H.W. Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Glob. Environ. Change 2010, 20, 428–439. [Google Scholar] [CrossRef]
- IFA. Fertilizer Outlook 2014–2018. In Proceedings of the 82nd IFA Annual Conference, Sydney, Australia, 26–28 May 2014; pp. 1–7. [Google Scholar]
- Eurostat. Agri-Environmental Indicator-Mineral Fertiliser Consumption. 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/aei_fm_usefert/default/table?lang=en (accessed on 15 November 2022).
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S.A. Recycling sludge on cropland as fertilizer-Advantages and risks. Resour. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Villalobos, F.J.; Delgado, A.; López-Bernal, Á.; Quemada, M. FertiliCalc: A Decision Support System for fertilizer management. Int. J. Plant Prod. 2019, 14, 299–308. [Google Scholar] [CrossRef]
- European Commission (EC). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 List of Critical Raw Materials for the Europe. 2017. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017DC0490 (accessed on 15 November 2022).
- Li, B.; Bicknell, K.B.; Renwick, A. Peak phosphorus, demand trends and implications for the sustainable management of phosphorus in China. Resour. Conserv. Recycl. 2019, 146, 316–328. [Google Scholar] [CrossRef]
- Vaccari, D.; Daneshgar, S.; Callegari, A.; Capodaglio, A.G. The potential phosphorus crisis: Resource conservation and possible escape technologies: A review. Resources 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Martín-Hernandez, E.; Hu, Y.; Zavala, V.M.; Martín, M.; Ruiz-Mercado, G.J. Analysis of incentive policies for phosphorus recovery at livestock facilities in the Great Lakes area. Resour. Conserv. Recycl. 2022, 177, 105973. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A. Changing Climate and Resource Use Efficiency in Plants; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Plant Nutrition for Food Security: A Guide for Integrated Nutrient Management; FAO Fertilizer and Plant Nutrition Bulletin 16 for Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Panagos, P.; Köninger, J.; Ballabio, C.; Liakos, L.; Muntwyler, A.; Borrelli, P.; Lugato, E. Improving the phosphorus budget of European agricultural soils. Sci. Total Environ. 2022, 853, 158706. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Hodgkinson, R.A.; Rollett, A.; Dyer, C.; Dils, R.; Collins, A.L.; Bilsborrow, P.E.; Bailey, G.; Sylvester-Bradley, R. Reducing soil phosphorus fertility brings potential long-term environmental gains: A UK analysis. Environ. Res. Lett. 2017, 12, 063001. [Google Scholar] [CrossRef] [Green Version]
- Nawara, S.; van Dael, T.; Merckx, R.; Amery, F.; Elsen, A.; Odeurs, W.; Vandendriessche, H.; Mcgrathe, S.; Roisin, C.; Jouany, C.; et al. A comparison of soil tests for available phosphorus in long-term field experiments in Europe. Eur. J. Soil Sci. 2017, 68, 873–885. [Google Scholar] [CrossRef] [Green Version]
- Gourley, C.J.P.; Aarons, S.R.; Hannah, M.C.; Awty, I.M.; Dougherty, W.J.; Burkitt, L.L. Soil phosphorus, potassium, and sulphur excesses, regularities and heterogeneity in grazing-based dairy farms. Agric. Ecosyst. Environ. 2015, 201, 70–82. [Google Scholar] [CrossRef]
- International Plant Nutrition Institute (IPNI). Soil Test Levels in North America; International Plant Nutrition Institute: Peachtree Corners, GA, USA, 2015. [Google Scholar]
- Tóth, G.; Guicharnaud, R.A.; Tóth, B.; Hermann, T. Phosphorus levels in croplands of the European Union with implications for P fertilizer use. Eur. J. Agron. 2014, 55, 42–52. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Bennett, E.M. Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett. 2011, 6, 1. [Google Scholar] [CrossRef]
- Compton, J.S.; Mallinson, D.J.; Glenn, C.R.; Filippelli, G.; Follmi, K.; Shields, G.; Zanin, Y. Variations in the global phosphorus cycle. Mar. Authigenesis Glob. Microb. 2000, 66, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Cordell, D.; White, S. Life’s bottleneck: Sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour. 2014, 39, 161–188. [Google Scholar] [CrossRef]
- EEA. European Environment Agency, European Waters—Assessment of Status and Pressures. European Environment Agency, Copenhagen. 2012. Available online: https://www.eea.europa.eu/publications/european-waters-assessment-2012 (accessed on 16 November 2022).
- Liu, W.; Yao, L.; Wang, Z.; Xiong, Z.; Liu, G. Human land uses enhance sediment denitrification and N2O production in Yangtze lakes primarily by influencing lake water quality. Biogeosciences 2015, 12, 6059–6070. [Google Scholar] [CrossRef] [Green Version]
- Soranno, P.A.; Cheruvelil, K.S.; Wagner, T.; Webster, K.E.; Bremigan, M.T. Effects of land use on lake nutrients: The importance of scale, hydrologic connectivity, and region. PLoS ONE 2015, 10, e0135454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schröder, J.J.; Schulte, R.P.O.; Creamer, R.E.; Delgado, A.; van Leeuwen, J.; Lehtinen, T.; Rutgers, M.; Spiegel, H.; Staes, J.; Tóth, G.; et al. The elusive role of soil quality in nutrient cycling: A review. Soil Use Manag. 2016, 32, 476–486. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Bowes, M.J. Phosphorus the pollutant. In Phosphorus: Polluter and Resource of the Future: Removal and Recovery from Wastewater; Schaum, C., Ed.; IWA Publishing: London, UK, 2018; pp. 3–34. [Google Scholar] [CrossRef]
- Wollmann, I.; Möller, K. Increased phosphorus availability from sewage sludge ashes to maize in a crop rotation with clover. Soil Use Manag. 2022, 38, 1394–1402. [Google Scholar] [CrossRef]
- Fischer, P.; Pöthig, R.; Venohr, M. The degree of phosphorus saturation of agricultural soils in Germany: Current and future risk of diffuse P loss and implications for soil P management in Europe. Sci. Total Environ. 2017, 599–600, 1130–1139. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Ntislidou, C.; Kagalou, I. Multipurpose plans for the sustainability of the Greek lakes: Emphasis on multiple stressors. Environ. Process. 2016, 3, 589–602. [Google Scholar] [CrossRef]
- Mavromati, E.; Kagalou, I.; Kemitzoglou, D.; Apostolakis, A.; Seferlis, M.; Tsiaoussi, V. Relationships among land use patterns, hydromorphological features and physicochemical parameters of surface waters: WFD lake monitoring in Greece. Environ. Process. 2018, 5, 139–151. [Google Scholar] [CrossRef]
- Sandström, S.; Futter, M.N.; Kyllmar, K.; Bishop, K.; O’Connell, D.W.; Djodjic, F. Particulate phosphorus and suspended solids losses from small agricultural catchments: Links to stream and catchment characteristics. Sci. Total Environ. 2020, 711, 134616. [Google Scholar] [CrossRef] [PubMed]
- Díaz, I.; del Campillo, M.C.; Barrón, V.; Torrent, J.; Delgado, A. Phosphorus losses from two representative small catchments in the Mediterranean part of Spain. J. Soils Sediments 2013, 13, 1369–1377. [Google Scholar] [CrossRef]
- Ekholm, P.; Rankinen, K.; Rita, H.; Räike, A.; Sjöblom, H.; Raateland, A.; Vesikko, L.J.E.; Bernal, C.; Taskinen, A. Phosphorus and nitrogen fluxes carried by 21 Finnish agricultural rivers in 1985–2006. Environ. Monit. Assess. 2015, 187, 216. [Google Scholar] [CrossRef] [PubMed]
- Jarvie, H.P.; Withers, P.J.A.; Hodgkinson, R.; Bates, A.; Neal, M.; Wickham, H.D.; Harman, S.A.; Armstrong, L. Influence of rural land use on streamwater nutrients and their ecological significance. J. Hydrol. 2008, 350, 166–186. [Google Scholar] [CrossRef]
- Tattari, S.; Koskiaho, J.; Kosunen, M.; Lepistö, A.; Linjama, J.; Puustinen, M. Nutrient loads from agricultural and forested areas in Finland from 1981 up to 2010: Can the efficiency of undertaken water protection measures seen? Environ. Monit. Assess. 2017, 189, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuorenmaa, J.; Rekolainen, S.; Lepistö, A.; Kenttämies, K.; Kauppila, P. Losses of nitrogen and phosphorus from agricultural and forested areas in Finland during the 1980s and 1990s. Environ. Monit. Assess. 2002, 76, 213–248. [Google Scholar] [CrossRef]
- Dodd, R.J.; Sharpley, A.N. Conservation practice effectiveness and adoption: Unintended consequences and implications for sustainable phosphorus management. Nutr. Cycl. Agroecosyst. 2016, 104, 373–392. [Google Scholar] [CrossRef]
- Mockler, E.M.; Deakin, J.; Archbold, M.; Gill, L.; Daly, D.; Bruen, M. Sources of nitrogen and phosphorus emissions to Irish rivers and coastal waters: Estimates from a nutrient load apportionment framework. Sci. Total Environ. 2017, 601–602, 326–339. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, K.C.; Lesschen, J.P.; Oenema, O. Phosphorus flows and balances of the European Union Member States. Sci. Total Environ. 2016, 542, 1078–1093. [Google Scholar] [CrossRef] [PubMed]
- De Klein, J.J.M.; Koelmans, A.A. Quantifying seasonal export and retention of nutrients in West European lowland rivers at catchment scale. Hydrol. Process. 2011, 25, 2102–2111. [Google Scholar] [CrossRef]
- Buol, S.W.; Certini, G.; Scalenghe, R. Appendix: Naming soils and soil horizons. In Soils: Basic Concepts and Future Challenges; Certini, G., Scalenghe, R., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 265–275. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, R.; Doody, D.G.; Watson, C.J. Impact of legacy soil phosphorus on losses in drainage and overland flow from grazed grassland soils. Sci. Total Environ. 2017, 575, 474–484. [Google Scholar] [CrossRef]
- Duncan, E.W.; King, K.W.; Williams, M.R.; LaBarge, G.; Pease, L.A.; Smith, D.R.; Fausey, N.R. Linking soil phosphorus to dissolved phosphorus losses in the Midwest. Agric. Environ. Lett. 2017, 2, 170004. [Google Scholar] [CrossRef] [Green Version]
- Vadas, P.A.; Fiorellino, N.M.; Coale, F.J.; Kratochvil, R.; Mulkey, A.S.; McGrath, J.M. Estimating legacy soil phosphorus impacts on phosphorus loss in the Chesapeake Bay watershed. J. Environ. Qual. 2018, 47, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, N. Environment: The disappearing nutrient. Nature 2009, 461, 716–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Bai, L.; Li, X.; Zhang, Y.; Qiao, Q.; Lu, Z.; Liu, J. Spatial characteristics and driving forces of anthropogenic phosphorus emissions in the Yangtze River. Resour. Conserv. Recycl. 2022, 176, 105937. [Google Scholar] [CrossRef]
- Henze, M.; van Loosdrecht, M.C.M.; Ekama, G.A.; Brdjanovic, D. Biological Wastewater Treatment: Principles, Modeling, and Design; IWA Publishing: London, UK, 2008. [Google Scholar] [CrossRef] [Green Version]
- Di Capua, F.; de Sario, S.; Ferraro, A.; Petrella, A.; Race, M.; Pirozzi, F.; Fratino, U.; Spasiano, D. Phosphorous removal and recovery from urban wastewater: Current practices and new directions. Sci. Total Environ. 2022, 823, 153750. [Google Scholar] [CrossRef] [PubMed]
- Ehama, M.; Hashihama, F.; Kinouchi, S.; Kanda, J.; Saito, H. Sensitive determination of total particulate phosphorus and particulate inorganic phosphorus in seawater using liquid waveguide spectrophotometry. Talanta 2016, 153, 66–70. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Krampe, J.; Zessner, M. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci. Total Environ. 2016, 571, 522–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malagó, A.; Bouraoui, F.; Grizzetti, B.; De Roo, A. Modelling nutrient fluxes into the Mediterranean Sea. J. Hydrol. Reg. Stud. 2019, 22, 100592. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; Pellerin, S. Optimizing N and P recycling from organic amendments via agroecological incentives and concep–s-scope for further developments. Soil Use Manag. 2016, 32, 64–72. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, M.; Tsang, D.C.W.; Geng, N.; Lu, D.; Zhu, L.; Igalavithana, A.D.; Dissanayake, P.D.; Rinklebe, J.; Yang, X.; et al. Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: Current practices and future prospects. Appl. Biol. Chem. 2020, 63, 8. [Google Scholar] [CrossRef]
- Bouwman, L.; Goldewijk, K.K.; Van Der Hoek, K.W.; Beusen, A.H.W.; Van Vuuren, D.P.; Willems, J.; Rufino, M.C.; Stehfest, E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 21195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fertilizers Europe. Fertilizers Europe Annual Overview 2019/2020; Fertilizers Europe: Brussels, Belgium, 2020. [Google Scholar]
- Mia, S.; Dijkstra, F.A.; Singh, B. Aging induced changes in bioc’ar’s functionality and adsorption behavior for phosphate and ammonium. Environ. Sci. Technol. 2017, 51, 8359–8367. [Google Scholar] [CrossRef]
- Weng, L.; Van Riemsdijk, W.H.; Hiemstra, T. Factors controlling phosphate interaction with iron oxides. J. Environ. Qual. 2012, 41, 628–635. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Z.; Shu, Q.; Takala, J.; Hiltunen, E.; Feng, P.; Yuan, Z. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res. 2013, 47, 4294–4302. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Liu, H.; Liu, R.; Zhao, X.; Sun, L.; Qu, J. Adsorptive removal of phosphate by a nanostructured FeeAleMn trimetal oxide adsorbent. Powder Technol. 2013, 233, 146–154. [Google Scholar] [CrossRef]
- Xie, F.; Wu, F.; Liu, G.; Mu, Y.; Feng, C.; Wang, H.; Giesy, J.P. Removal of phosphate from eutrophic lakes through adsorption by in situ formation of magnesium hydroxide from diatomite. Environ. Sci. Technol. 2014, 48, 582–590. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Riddicka, B.A.; Li, R.; Able, J.R.; Boakye-Boaten, N.A.; Shahbazi, A. Sustainable production of algal biomass and biofuels using swine wastewater in North Carolina, US. Sustainability 2016, 8, 477. [Google Scholar] [CrossRef]
- Kumar, P.S.; Korving, L.; van Loosdrecht, M.C.M.; Witkamp, G.J. Adsorption as a technology to achieve ultra-low concentrations of phosphate: Research gaps and economic analysis. Water Res. X 2019, 4, 100029. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, Y.; Dai, C. Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 433–440. [Google Scholar] [CrossRef]
- Fang, L.; Wu, B.; Lo, I.M.C. Fabrication of silica-free superparamagnetic ZrO2@Fe3O4 with enhanced phosphate recovery from sewage: Performance and adsorption mechanism. Chem. Eng. J. 2017, 319, 258–267. [Google Scholar] [CrossRef]
- He, Y.; Lin, H.; Dong, Y.; Wang, L. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism. Appl. Surf. Sci. 2017, 426, 995–1004. [Google Scholar] [CrossRef]
- Zhou, A.; Zhu, C.; Chen, W.; Wan, J.; Tao, T.; Zhang, T.C.; Xie, P. Phosphorus recovery from water by lanthanum hydroxide embedded interpenetrating network poly (vinyl alcohol)/sodium alginate hydrogel beads. Colloids Surf. A 2018, 554, 237–244. [Google Scholar] [CrossRef]
- Ostrom, T.K.; Davis, A.P. Evaluation of an enhanced treatment media and permeable pavement base to remove stormwater nitrogen, phosphorus, and metals under simulated rainfall. Water Res. 2019, 166, 115071. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X. Kinetics and thermodynamics of efficient phosphorus removal by a composite fiber. Appl. Sci. 2019, 9, 2220. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Chen, Y.; Du, Q.; Shi, J. Adsorption of different forms of phosphorus on modified corn bracts. Water Environ. Res. 2019, 91, 748–755. [Google Scholar] [CrossRef]
- Wang, L.; Rinklebe, J.; Tack, F.M.G.; Hou, D. A review of green remediation strategies for heavy metal contaminated soil. Soil Use Manag. 2021, 37, 936–963. [Google Scholar] [CrossRef]
- Arenas-Montaño, V.; Fenton, O.; Moore, B.; Healy, M.G. Evaluation of the fertiliser replacement value of phosphorus-saturated filter media. J. Clean. Prod. 2021, 291, 125943. [Google Scholar] [CrossRef]
- Gubernat, S.; Masłoń, A.; Czarnota, J.; Koszelnik, P. Reactive materials in the removal of phosphorus compounds from wastewater-a review. Materials 2020, 13, 3377. [Google Scholar] [CrossRef]
- Cusack, P.; Callery, O.; Courtney, R.; Ujaczki, E.; O’Donoghuef, L.M.T.; Healy, M.G. The use of rapid, small-scale column tests to determine the efficiency of bauxite residue as a low-cost adsorbent in the removal of dissolved reactive phosphorus from agricultural waters. J. Environ. Manag. 2019, 241, 273–283. [Google Scholar] [CrossRef]
- Hu, Y.; Du, Y.; Nie, G.; Zhu, T.; Ding, Z.; Wang, H.; Zhang, L.; Xu, Y. Selective and efficient sequestration of phosphate from waters using reusable nano-Zr(IV) oxide impregnated agricultural residue anion exchanger. Sci. Total Environ. 2020, 700, 134999. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, H.; Li, Y.; Cheng, L.; Zhang, M.; Zhang, L.; Wang, W. Novel bioconversions of municipal effluent and CO2 into protein riched Chlorella vulgaris biomass. Bioresour. Technol. 2013, 132, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Guo, K.; Jiang, P.; Xu, X.; Gao, B. Adsorption of phosphate by the cellulose-based biomaterial and its sustained release of laden phosphate in aqueous solution and soil. Int. J. Biol. Macromol. 2018, 109, 524–534. [Google Scholar] [CrossRef]
- Pepper, R.A.; Couperthwaite, S.J.; Millar, G.J. Re-use of waste red mud: Production of a Functional iron oxide adsorbent for removal of phosphorous. J. Water Process Eng. 2018, 25, 138–148. [Google Scholar] [CrossRef] [Green Version]
- de Alva, M.S.; Pabello, V.M.L.; Ledesma, M.T.O.; Gómez, M.J.C. Carbon, nitrogen, and phosphorus removal, and lipid production by three saline microalgae grown in synthetic wastewater irradiated with different photon fluxes. Algal Res. 2018, 34, 97–103. [Google Scholar] [CrossRef]
- Wong, P.Y.; Cheng, K.Y.; Kaksonen, A.H.; Sutton, D.C.; Ginige, M.P. A novel post denitrification configuration for phosphorus recovery using polyphosphate accumulating organisms. Water Res. 2013, 47, 6488–6495. [Google Scholar] [CrossRef]
- Sellner, B.M.; Hua, G.; Ahiablame, L.M. Fixed bed column evaluation of phosphate adsorption and recovery from aqueous solutions using recycled steel byproducts. J. Environ. Manag. 2019, 233, 595–602. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Yamashita, H. Phosphate removal from aqueous solutions using calcium silicate hydrate prepared from blast furnace slag. ISIJ Int. 2017, 57, 1657–1664. [Google Scholar] [CrossRef] [Green Version]
- Kasak, K.; Mander, U.; Truu, J.; Truu, M.; Järveoja, J.; Maddison, M.; Teemusk, A. Alternative filter material removes phosphorus and mitigates greenhouse gas emission in horizontal subsurface flow filters for wastewater treatment. Ecol. Eng. 2015, 77, 242–249. [Google Scholar] [CrossRef]
- Banu, H.A.T.; Karthikeyan, P.; Meenakshi, S. Comparative studies on revival of nitrate and phosphate ions using quaternized corn husk and jackfruit peel. Bioresour. Technol. Rep. 2019, 8, 100331. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Y.; Li, H.; Shen, C. Comparison study of phosphorus adsorption on different waste solids: Fly ash, red mud and ferric–alum water treatment residues. J. Environ. Sci. 2016, 50, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Altamira-Algarra, B.; Puigagut, J.; Day, J.W.; Mitsch, W.J.; Vymazal, J.; Hunter, R.G.; García, J. A review of technologies for closing the P loop in agriculture runoff: Contributing to the transition towards a circular economy. Ecol. Eng. 2022, 177, 106571. [Google Scholar] [CrossRef]
- Fox, D.I.; Pichler, T.; Yeh, D.H.; Alcantar, N.A. Removing heavy metals in water: The interaction of Cactus mucilage and arsenate (As (V)). Environ. Sci. Technol. 2012, 46, 4553–4559. [Google Scholar] [CrossRef]
- Gandhi, N.; Sirisha, D.; Sekhar, K.B.C. Biodepollution of paint manufacturing industry waste-water containing chromium by using coagulation process. J. Arts Sci. Commer. 2013, 4, 110–118. [Google Scholar]
- Asha, S.; Tabitha, C.; Himabindu, N.; Kumar, R.B. Efficiency of Opuntia ficus indica (L.) Mill. In removal of chromium from synthetic solution. Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 1244–1251. [Google Scholar]
- Rangabhashiyam, S.; Selvaraju, N. Evaluation of the biosorption potential of a novel Caryota urens inflorescence waste biomass for the removal of hexavalent chromium from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2015, 47, 59–70. [Google Scholar] [CrossRef]
- Amar, M.B.; Walha, K.; Salvadó, V. Evaluation of Olive Stones for Cd(II), Cu(II), Pb(II) and Cr(VI) Biosorption from Aqueous Solution: Equilibrium and Kinetics. Int. J. Environ. Res. 2020, 14, 193–204. [Google Scholar] [CrossRef]
- Mangwandi, C.; Kurniawan, T.A.; Albadarin, A.B. Comparative biosorption of chromium (VI) using chemically modified date pits (CM-DP) and olive stone (CMOS): Kinetics, isotherms and influence of co-existing ions. Chem. Eng. Res. Des. 2020, 156, 251–262. [Google Scholar] [CrossRef]
- Basu, H.; Saha, S.; Mahadevan, I.A.; Pimple, M.V.; Singhal, R.K. Humic acid coated cellulose derived from rice husk: A novel biosorbent for the removal of Ni and Cr. J. Water Process Eng. 2019, 32, 100892. [Google Scholar] [CrossRef]
- Fiol, N.; Escudero, C.; Villaescusa, I. Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark. Bioresour. Technol. 2008, 99, 5030–5036. [Google Scholar] [CrossRef]
- Elmolla, E.S.; Hamdy, W.; Kassem, A.; Abdel Hady, A. Comparison of different rice straw based adsorbents for chromium removal from aqueous solutions. Desalin. Water Treat. 2016, 57, 6991–6999. [Google Scholar] [CrossRef]
- Yadav, S.K.; Sinha, S.; Singh, D.K. Chromium(VI) removal from aqueous solution and industrial wastewater by modified date palm trunk. Environ. Prog. Sustain. Energy 2015, 34, 452–460. [Google Scholar] [CrossRef]
- Ramteke, L.P.; Gogate, P.R. Removal of copper and hexavalent chromium using immobilized modified sludge biomass-based adsorbent. Clean Soil Air Water 2016, 44, 1051–1065. [Google Scholar] [CrossRef]
- Ullah, I.; Nadeem, R.; Iqbal, M.; Manzoor, Q. Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecololog. Eng. 2013, 60, 99–107. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, Y.; Jin, L.; Wang, Y.; Qin, M. Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. J. Hazard. Mater. 2017, 339, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Baig, J.A.; Kazi, T.G.; Shah, A.Q.; Kandhro, G.A.; Afridi, H.I.; Khan, S.; Kolachi, N.F. Biosorption studies on powder of stem of Acacia nilotica: Removal of arsenic from surface water. J. Hazard. Mater. 2010, 178, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Haque, N.M.; Morrison, G.M.; Perrusquia, G.; Gutierrez, M.; Aguilera, A.F.; Cano-Aguilera, I.; Gardea-Torresdey, J.L. Characteristics of arsenic adsorption to sorghum biomass. J. Hazard. Mater. 2007, 145, 30–35. [Google Scholar] [CrossRef]
- Vecino, X.; Devesa-Rey, R.; de Lima Stebbins, D.M.; Moldes, A.B.; Cruz, J.M.; Alcantar, N.A. Evaluation of a cactus mucilage biocomposite to remove total arsenic from water. Environ. Technol. Innov. 2016, 6, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Alqadami, A.A.; Naushad, M.; Abdalla, M.A.; Ahamad, T.; ALOthman, Z.A.; Alshehri, S.M.; Ghfar, A.A. Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: A study of adsorption parameters and interaction mechanism. J. Clean. Prod. 2017, 156, 426–436. [Google Scholar] [CrossRef]
- Shahat, A.; Awual, M.R.; Naushad, M. Functional ligand anchored nanomaterial based facial adsorbent for cobalt (II) detection and removal from water samples. Chem. Eng. J. 2015, 271, 155–163. [Google Scholar] [CrossRef]
- Mezenner, N.Y.; Bensmaili, A. Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem. Eng. J. 2009, 147, 87–96. [Google Scholar] [CrossRef]
- Xue, Y.; Hou, H.; Zhu, S. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. J. Hazard. Mater. 2009, 162, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Bai, C.; Xia, W.; Xie, B.; An, J. Phosphate adsorption characteristics of wasted low-grade iron ore with phosphorus used as natural adsorbent for aqueous solution. Desalination Water Treat. 2015, 54, 3020–3030. [Google Scholar] [CrossRef]
- Zeng, L.; Li, X.; Liu, J. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Res. 2004, 38, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.E.; Olin, T.J.; Bricka, R.M.; Adrian, D.D. A review of potential low-cost sorbents for heavy metals. Water Res. 1999, 33, 2469–2479. [Google Scholar] [CrossRef]
- Berecha, G.; Lemessa, F.; Wakjira, M. Exploring the suitability of coffee pulp compost as growth media substitute in greenhouse production. Int. J. Agric. Res. 2011, 6, 255–267. [Google Scholar] [CrossRef] [Green Version]
- Hernández, D.; Sánchez, J.E.; Yamasaki, K. () A simple procedure for preparing substrate for Pleurotus ostreatus cultivation. Bioresour. Technol. 2003, 90, 145–150. [Google Scholar] [CrossRef]
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef] [PubMed]
- Quisperima, A.; Pérez, S.; Flórez, E.; Acelas, N. Valorization of potato peels and eggshells wastes: Ca-biocomposite to remove and recover phosphorus from domestic wastewater. Bioresour. Technol. 2022, 343, 126106. [Google Scholar] [CrossRef]
- Akinbile, C.O.; Ikuomola, B.T.; Olanrewaju, O.O.; Babalola, T.E. Assessing the efficacy of Azolla pinnata in four different wastewater treatment for agricultural re-use: A case history. Sustain. Water Resour. Manag. 2019, 5, 1009–1015. [Google Scholar] [CrossRef]
- González Bautista, E.; Gutierrez, E.; Dupuy, N.; Gaime-Perraud, I.; Ziarelli, F.; Farnet da Silva, A.M. Pre-treatment of a sugarcane bagasse-based substrate prior to saccharification: Effect of coffee pulp and urea on laccase and cellulase activities of Pycnoporus sanguineus. J. Environ. Manag. 2019, 239, 178–186. [Google Scholar] [CrossRef]
- Ozdemir, S.; Dede, O.H.; Yaqub, M. Assessment of Long-Term Nutrient Effective Waste-Derived Growth Media for Ornamental Nurseries. Waste Biomass Valorization 2017, 8, 2663–2671. [Google Scholar] [CrossRef]
- Sharmin, N.; Sabatini, D.A.; Butler, E.C. Phosphorus recovery and reuse using calcium-silicate hydrate made from rice husk. J. Environ. Chem. Eng. 2021, 147, 04021015. [Google Scholar] [CrossRef]
- Xiong, Q.; Wu, X.; Lv, H.; Liu, S.; Hou, H.; Wu, X. Influence of rice husk addition on phosphorus fractions and heavy metals risk of biochar derived from sewage sludge. Chemosphere 2021, 280, 130566. [Google Scholar] [CrossRef]
- Imamoglu, M.; Tekir, O. Removal of copper II and lead II ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 2008, 228, 108–113. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Ince, M. Absorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stones. Bioresour. Technol. 2005, 96, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.; Yang, H.; Seo, C.W.; Marshall, W.E. Select Metal adsorption by activated carbon made from peanut shells. Bioresour. Technol. 2006, 97, 2266–2270. [Google Scholar] [CrossRef]
- Fang, L.; Li, J.; Donatello, S.; Cheeseman, C.R.; Poon, C.S.; Tsang, D.C.W. Use of Mg/Ca modified biochars to take up phosphorus from acid-extract of incinerated sewage sludge ash (ISSA) for fertilizer application. J. Clean. Prod. 2020, 244, 118853. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Y.; Bai, L.; Zhao, Y.; Yan, Z.; Jiang, H.; Liu, X. Recycling of drinking water treatment residue as an additional medium in columns for effective P removal from eutrophic surface water. J. Environ. Manag. 2018, 217, 363–372. [Google Scholar] [CrossRef]
- Faraji, B.; Zarabi, M.; Kolahchi, Z. Phosphorus removal from aqueous solution using modified walnut and almond wooden shell and recycling as soil amendment. Environ. Monit. Assess. 2020, 192, 373. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Gao, B.; Wang, W.; Yue, Q.; Wang, Y.; Ni, S. Adsorption of phosphate from aqueous solutions onto modified wheat residue: Characteristics, kinetic and column studies. Colloids Surf. B Biointerfaces 2009, 70, 46–52. [Google Scholar] [CrossRef]
- Brod, E.; Toven, K.; Haraldsen, T.K.; Krogstad, T. Unbalanced nutrient ratios in pelleted compound recycling fertilizers. Soil Use Manag. 2018, 34, 18–27. [Google Scholar] [CrossRef]
- Müller-Stöver, D.S.; Jakobsen, I.; Grønlund, M.; Rolsted, M.M.M.; Magid, J.; Hauggaard-Nielsen, H. Phosphorus bioavailability in ash from straw and sewage sludge processed by low-temperature biomass gasification. Soil Use Manag. 2018, 34, 9–17. [Google Scholar] [CrossRef]
- Roman, B.; Brennan, R.A. A beneficial by-product of ecological wastewater treatment: An evaluation of wastewater-grown duckweed as a protein supplement for sustainable agriculture. Ecol. Eng. 2019, 142, 100004. [Google Scholar] [CrossRef]
- Lim, S.L.; Wu, T.Y.; Sim, E.Y.S.; Lim, P.N.; Clarke, C. Biotransformation of rice husk into organic fertilizer through vermicomposting. Ecol. Eng. 2012, 41, 60–64. [Google Scholar] [CrossRef]
- Kalemelawa, F.; Nishihara, E.; Endo, T.; Ahmad, Z.; Yeasmin, R.; Tenywa, M.M.; Yamamoto, S. An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment. Bioresour. Technol. 2012, 126, 375–382. [Google Scholar] [CrossRef]
- Khatua, C.; Sengupta, S.; Balla, V.K.; Kundu, B.; Chakraborti, A.; Tripathi, S. Dynamics of organic matter decomposition during vermicomposting of banana stem waste using Eisenia fetida. Waste Manag. 2018, 79, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Mago, M.; Yadav, A.; Gupta, R.; Garg, V.K. Management of banana crop waste biomass using vermicomposting technology. Bioresour. Technol. 2021, 326, 124742. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Bhat, S.A.; Li, J.; Cui, G.; Wei, Y.; Yamada, T.; Li, F. Effect of excess activated sludge on vermicomposting of fruit and vegetable waste by using novel vermireactor. Bioresour. Technol. 2020, 302, 122816. [Google Scholar] [CrossRef] [PubMed]
- Withers, P.J.A.; Flynn, N.J.; Warren, G.P.; Taylor, M.; and Chambers, B.J. Sustainable management of biosolid phosphorus: A field study. Soil Use Manag. 2016, 32, 54–63. [Google Scholar] [CrossRef]
- Torma, S.; Vilček, J.; Lošák, T.; Kužel, S.; Martensson, A. Residual plant nutrients in crop residues—An important resource. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2018, 68, 358–366. [Google Scholar] [CrossRef]
- Gurav, R.G.; Jadhav, J.P. A novel source of biofertilizer from feather biomass for banana cultivation. Environ. Sci. Pollut. Res. 2013, 20, 4532–4539. [Google Scholar] [CrossRef] [PubMed]
- Melia, P.M.; Busquets, R.; Hooda, P.S.; Cundy, A.B.; Sohi, S.P. Driving forces and barriers in the removal of phosphorus from water using crop residue, wood and sewage sludge derived biochars. Sci. Total Environ. 2019, 675, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquali, M.; Zanoletti, A.; Benassi, L.; Federici, S.; Depero, L.E.; Bontempi, E. Stabilized biomass ash as a sustainable substitute for commercial P-fertilizers. Land Degrad. Dev. 2018, 29, 2199–2207. [Google Scholar] [CrossRef]
- Wan, J.; Liu, X.; Wu, C.; Wu, Y. Nutrient capture and recycling by periphyton attached to modified agrowaste carriers. Environ. Sci. Pollut. Res. 2016, 23, 8035–8043. [Google Scholar] [CrossRef]
- Tabinda, A.B.; Fatima, U.; Batool, M.; Yasar, A.; Rasheed, R.; Iqbal, A.; Mahfooz, Y. A study on recycling and reuse of sugar mill industrial waste. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 43, 1759–1768. [Google Scholar] [CrossRef]
- Liao, Y.; Chen, S.; Zheng, Q.; Huang, B.; Zhang, J.; Fu, H.; Gao, H. Removal and recovery of phosphorus from solution by bifunctional biochar. Inorg. Chem. Commun. 2022, 139, 109341. [Google Scholar] [CrossRef]
- Manca, A.; da Silva, M.R.; Guerrini, I.A.; Fernandes, D.M.; Villas Bôas, R.L.; da Silva, L.C.; da Fonseca, A.C.; Ruggiu, M.C.; Cruz, C.V.; Sivisaca, D.C.L.; et al. Composted sewage sludge with sugarcane bagasse as a commercial substrate for Eucalyptus urograndis seedling production. J. Clean. Prod. 2020, 269, 122145. [Google Scholar] [CrossRef]
- Yin, J.; Deng, C.B.; Wang, X.F.; Chen, G.; Mihucz, V.G.; Xu, P.G.; Deng, Q.C. Effects of Long-Term Application of Vinasse on Physicochemical Properties, Heavy Metals Content and Microbial Diversity in Sugarcane Field Soil. Sugar Technol. 2019, 21, 62–70. [Google Scholar] [CrossRef]
- Shilpi, S.; Lamb, D.; Bolan, N.; Seshadri, B.; Choppala, G.; Naidu, R. Waste to watt: Anaerobic digestion of wastewater irrigated biomass for energy and fertiliser production. J. Environ. Manag. 2019, 239, 73–83. [Google Scholar] [CrossRef]
- Guerrero, C.C.; de Brito, J.C.; Lapa, N.; Oliveira, J.F.S. Re-use of industrial orange wastes as organic fertilizers. Bioresour. Technol. 1995, 53, 43–51. [Google Scholar] [CrossRef]
- Ma, N.L.; Khoo, S.C.; Peng, W.; Ng, C.M.; the, C.H.; Park, Y.K.; Lam, S.S. Green application and toxic risk of used diaper and food waste as growth substitute for sustainable cultivation of oyster mushroom (Pleurotus ostreatus). J. Clean. Prod. 2020, 268, 122272. [Google Scholar] [CrossRef]
Raw Materials | Main World Producers (Average 2010–2014) | Main EU Importers (Average 2010–2014) | EU Source of Supply (Average 2010–2014) | Import Reliance Rate * |
---|---|---|---|---|
Phosphorite | China (44%) Morocco (13%) United States (13%) | Morocco (31%) Russia (18%) Syria (12%) Algeria (12%) | Morocco (28%) Russia (16%) Finland (12%) Syria (11%) Algeria (10%) | 88% |
Phosphorus | China (58%) Vietnam (19%) Kazakhstan (13%) United States (11%) | Kazakhstan (77%) China (14%) Vietnam (8%) | Kazakhstan (77%) China (14%) Vietnam (8%) | 100% |
Technologies | Function | Pros | Cons | Constriction | Operative Costs a EUR per 106 L of Treated Water | Cost of 1 kg of P Recovered a |
---|---|---|---|---|---|---|
Membrane filtration | Semi-permeable selective separation wall | Low energy cost, low capital investment, high productivity | Membrane fouling | Membrane cleaning | 42–744 | - |
Ion exchange | Functionalised polymeric matrices | Suitable for all ions, high productivity | Economic viability | Pre-treatment | 42–330 | - |
Precipitation | Salt added | Removal of suspended and dissolved solids | Sodium carbonate management or H2S emissions | Plant maintenance | 32–330 | 1.59 |
Crystallisation | Ca and/or Mg added | Produce granular hydroxyapatite or struvite | - | - | 148–305 | 0.64 |
Coagulation/flocculation | Adding polymers or metal ions | - | - | - | 32–330 | - |
Thermochemical treatment of sewage sludge | Mixes the ash with sodium-based salts | Produce P-enrich ash | - | Heavy metal-rich ash | 28–180 * | - |
Biological treatment | Selected bacteria | Low cost, high productivity | Additional treatment before P recovery | High concentrations of organic substrate | 32–330 | - |
Adsorption | Surface phenomenon of molecular interaction | Low cost, high productivity | Reduced ability to remove organic P | Surface area and selectivity of adsorbent; contact time | 42–130 | - |
Material a | P0 b mg L−1 | pH | Recovery % | Ref c |
---|---|---|---|---|
Bauxite residue | 1 | 7.7 | 95 | [83] |
HPMM | 1 | 5.9 | 85 | [77] |
Zr@MCS | 2 | 5.0 | 97 | [84] |
Chrorella vulgaris | 3 | 7.0 | 93 | [85] |
BS | 5 | 5.0 | 93 | [86] |
Lanthanum-based hydrogel beads | 5 | 4.0 | 92 | [76] |
RMA | 5 | 7.0 | 85 | [87] |
Microalgae | 5 | 7.0 | 90 | [88] |
PAO | 7 | 7.0 | 83 | [89] |
ZSFB | 10 | 4.4 | 99 | [78] |
Steel chips bed | 10 | 7.0 | 83 | [90] |
CSH | 13 | 7.0 | 97 | [91] |
Oil shale ash | 22 | 7.1 | 99 | [92] |
ZrMCB | 40 | 2.0 | 94 | [79] |
JP | 50 | 7.0 | 96 | [93] |
CH | 50 | 7.0 | 83 | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auteri, N.; Saiano, F.; Scalenghe, R. Recycling Phosphorus from Agricultural Streams: Grey and Green Solutions. Agronomy 2022, 12, 2938. https://doi.org/10.3390/agronomy12122938
Auteri N, Saiano F, Scalenghe R. Recycling Phosphorus from Agricultural Streams: Grey and Green Solutions. Agronomy. 2022; 12(12):2938. https://doi.org/10.3390/agronomy12122938
Chicago/Turabian StyleAuteri, Nicolò, Filippo Saiano, and Riccardo Scalenghe. 2022. "Recycling Phosphorus from Agricultural Streams: Grey and Green Solutions" Agronomy 12, no. 12: 2938. https://doi.org/10.3390/agronomy12122938
APA StyleAuteri, N., Saiano, F., & Scalenghe, R. (2022). Recycling Phosphorus from Agricultural Streams: Grey and Green Solutions. Agronomy, 12(12), 2938. https://doi.org/10.3390/agronomy12122938