Impact of 2,4-D and Glyphosate on Soil Enzyme Activities in a Resistant Maize Cropping System
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description, Experimental Design, and Plot Management
2.2. Sample Collection
2.3. Soil Sample Analyses
2.4. Statistics
3. Results and Discussion
3.1. Effects of 2,4-D and Glyphosate on Bulk Soil
3.2. Activities in Rhizosphere Soil from 2,4-D and Glyphosate Treated Maize
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nandula, V.K. Herbicide Resistance Traits in Maize and Soybean: Current Status and Future Outlook. Plants 2019, 8, 337. [Google Scholar] [CrossRef] [PubMed]
- Sikorski, J.A.; Gruys, K.J. Understanding glyphosate’s molecular mode of action with EPSP Synthase: Evidence favoring an allosteric inhibitor model. Acc. Chem. Res. 1997, 30, 2–8. [Google Scholar] [CrossRef]
- Moorman, T.B.; Becerril, J.M.; Lydon, J.; Duke, S.O. Production of hydroxybenzoic acids by Bradyrhizobium japonicum strains after treatment with glyphosate. J. Agric. Food Chem. 1992, 40, 289–293. [Google Scholar] [CrossRef]
- Fischer, R.S.; Berry, A.; Gaines, C.G.; Jensen, R.A. Comparative action of glyphosate as a trigger of energy drain in Eubacteria. J. Bacteriol. 1986, 168, 1147–1154. [Google Scholar] [CrossRef]
- Gomez, E.; Ferreras, L.; Lovotti, L.; Fernandez, E. Impact of glyphosate application on microbial biomass and metabolic activity in a Vertic Argiudoll from Argentina. Eur. J. Soil Biol. 2009, 45, 163–167. [Google Scholar] [CrossRef]
- Dick, R.E.; Quinn, J.P. Glyphosate-degrading isolates from environmental samples: Occurrence and pathways of degradation. Appl. Microbiol. Biotechnol. 1995, 43, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Haney, R.L.; Senseman, S.A.; Hons, F.M. Effect of roundup ultra on microbial activity and biomass from selected soils. J. Environ. Qual. 2002, 31, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Joshi, N. Changes in microbial biomass and phosphatase activity exposed to 2,4-D and glyphosate. J. Environ. Res. Dev. 2009, 3, 663–669. [Google Scholar]
- Haney, R.L.; Senseman, S.A.; Hons, F.M.; Zuberer, D.A. Effect of glyphosate on soil microbial activity and biomass. Weed Sci. 2000, 48, 89–93. [Google Scholar] [CrossRef]
- Liphadzi, K.B.; Al-Khatib, K.; Bensch, C.N.; Stahlman, P.W.; Dille, J.A.; Todd, T.; Rice, C.W.; Horak, M.J.; Head, G. Soil microbial and nematode communities as affected by glyphosate and tillage practices in a glyphosate-resistant cropping system. Weed Sci. 2005, 53, 536–545. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Blackshaw, R.E.; Geddes, C.M.; Dunn, R.; Petri, R.M. Multi-year and multi-site effects of recurrent glyphosate applications on the wheat rhizosphere microbiome. Environ. Res. 2022, 215, 114363. [Google Scholar] [CrossRef]
- Araújo, A.S.F.; Monteiro, R.T.R.; Abarkeli, R.B. Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 2003, 52, 799–804. [Google Scholar] [CrossRef]
- Jenkins, M.B.; Locke, M.A.; Reddy, K.N.; McChesney, D.S.; Steinriede, R.W. Impact of glyphosate-resistant corn, glyphosate applications and tillage on soil nutrient ratios, exoenzyme activities and nutrient acquisition ratios. Pest Manag. Sci. 2017, 73, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Sannino, F.; Gianfreda, L. Pesticide influence on soil enzymatic activities. Chemosphere 2001, 45, 417–425. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, H.; Zhou, Q. Using soil available P and activities of soil dehydrogenase and phosphatase as indicators for biodegradation of organophosphorus pesticide methamidophos and glyphosate. Soil Sediment Contam. 2011, 20, 688–701. [Google Scholar] [CrossRef]
- Nakatani, A.S.; Fernandes, M.F.; De Souza, R.A.; Da Silva, A.P.; Dos Reis-Junior, F.B.; Mendes, I.C.; Hungria, M. Effects of the glyphosate-resistance gene and of herbicides applied to the soybean crop on soil microbial biomass and enzymes. Field Crops Res. 2014, 162, 20–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Tang, L.; Che, R.; Chen, H.; Blumfield, T.; Boyd, S.; Nouansyvong, M.; Xu, Z. Long-term harvest residue retention could decrease soil bacterial diversities probably due to favouring oligotrophic lineages. Microb. Ecol. 2018, 76, 771–781. [Google Scholar] [CrossRef]
- Fournier, J.C. Enumeration of the soil micro-organisms able to degrade 2,4-D by metabolism or co-metabolism. Chemosphere 1980, 9, 169–174. [Google Scholar] [CrossRef]
- Rivarola, V.; Fabra, A.; Mori, G.; Balegno, H. In vitro protein synthesis is affected by the herbicide 2,4-dichlorophenoxyacetic acid in Azospirillum brasilense. Toxicology 1992, 73, 71–79. [Google Scholar] [CrossRef]
- Fabra, A.; Duffard, R.; De Duffard, A.E. Toxicity of 2,4-dichlorophenoxyacetic acid to Rhizobium sp. in pure culture. Bull. Environ. Contam. Toxicol. 1997, 59, 645–652. [Google Scholar] [CrossRef]
- Durga Devi, K.M.; Beena, S.; Abraham, C.T. Effect of 2,4-D residues on soil microflora. J. Trop. Agric. 2008, 46, 64–66. [Google Scholar]
- Haahtela, K.; Kilpi, S.; Kari, K. Effects of phenoxy acid herbicides and glyphosate on nitrogenase activity (acetylene reduction) in root-associated Azospirillum, Enterobacter and Klebsiella. FEMS Microbiol. Lett. 1988, 53, 123–127. [Google Scholar] [CrossRef]
- Sachu, M.; Kynshi, B.L.; Syiem, M.B. A biochemical, physiological and molecular evaluation of how the herbicide 2, 4-dichlorophenoxyacetic acid intercedes photosynthesis and diazotrophy in the cyanobacterium Nostoc muscorum Meg 1. Environ. Sci. Pollut. Res. 2022, 29, 36684–36698. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Zhang, J.; Fang, Y.; Zheng, X.; Zhang, Y.; Chen, D. Impact of herbicide 2,4-dichlorophenoxyacetic acid butyl ester on soil nitrogen-transforming bacterial populations in two soils. Int. J. Agric. Biol. 2017, 19, 812–816. [Google Scholar] [CrossRef]
- De Oliveira, E.P.; Rovida, A.F.D.S.; Martins, J.G.; Pileggi, S.A.V.; Schemczssen-Graeff, Z.; Pileggi, M. Tolerance of Pseudomonas strain to the 2,4-D herbicide through a peroxidase system. PLoS ONE 2021, 16, e0257263. [Google Scholar] [CrossRef]
- Nandula, V.K.; Tyler, H.L. Effect of new auxin herbicide formulations on control of herbicide resistant weeds and on microbial activities in the rhizosphere. Am. J. Plant Sci. 2016, 7, 2429–2439. [Google Scholar] [CrossRef][Green Version]
- Wei, F.; Hu, X.; Xu, X. Dispersal of Bacillus subtilis and its effect on strawberry phyllosphere microbiota under open field and protection conditions. Sci. Rep. 2016, 6, 22611. [Google Scholar] [CrossRef]
- Mississippi State University Delta Agricultural Weather Center. Available online: http://deltaweather.extension.msstate.edu/coop-stoneville (accessed on 24 May 2022).
- NRCS Web Soil Survey. Available online: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (accessed on 29 October 2020).
- Tyler, H.L. Winter cover crops and no till management enhance enzyme activities in soybean field soils. Pedobiologia 2020, 81-82, 150666. [Google Scholar] [CrossRef]
- Jackson, C.R.; Tyler, H.L.; Millar, J.J. Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays. J. Vis. Exp. 2013, 80, e50399. [Google Scholar] [CrossRef]
- Burns, R.G.; DeForest, J.L.; Marxsen, J.; Sinsabaugh, R.L.; Stromberger, M.E.; Wallenstein, M.D.; Weintraub, M.N.; Zoppini, A. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 2013, 58, 216–234. [Google Scholar] [CrossRef]
- Weintraub, S.R.; Wieder, W.R.; Cleveland, C.C.; Townsend, A.R. Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest. Biogeochemistry 2013, 114, 313–326. [Google Scholar] [CrossRef]
- Štursová, M.; Baldrian, P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant Soil 2011, 338, 99–110. [Google Scholar] [CrossRef]
- Schnecker, J.; Wild, B.; Hofhansl, F.; Alves, R.J.E.; Bárta, J.; Čapek, P.; Fuchslueger, L.; Gentsch, N.; Gittel, A.; Guggenberger, G.; et al. Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils. PLoS ONE 2014, 9, e94076. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.; Dong, F.; Xu, J.; Zheng, Y.; Li, J. Soil microbial communities response to herbicide 2,4-dichlorophenoxyacetic acid butyl ester. Eur. J. Soil Biol. 2010, 46, 175–180. [Google Scholar] [CrossRef]
- Nowak, J.; Telesiński, A.; Szymczak, J. Comparison of herbicides containing isoproturon, 2.4-D and dicamba on phosphatase activity in the soil and in spring wheat (Triticum aestivum L.). Electron. J. Pol. Agric. Univ. 2006, 9, 17. [Google Scholar]
- Ljungdahl, L.G.; Eriksson, K.-E. Ecology of Microbial Cellulose Degradation. In Advances in Microbial Ecology; Marshall, K.C., Ed.; Springer: Boston, MA, USA, 1985; Volume 8, pp. 237–299. [Google Scholar]
- Tabatabai, M.A.; Ekenler, M.; Senwo, Z.N. Significance of enzyme activities in soil nitrogen mineralization. Commun. Soil Sci. Plant Anal. 2010, 41, 595–605. [Google Scholar] [CrossRef]
- Turner, B.L.; McKelvie, I.D.; Haygarth, P.M. Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biol. Biochem. 2002, 34, 27–35. [Google Scholar] [CrossRef]
- Schnürer, J.; Rosswall, T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 1982, 43, 1256–1261. [Google Scholar] [CrossRef]
- Dennis, P.G.; Kukulies, T.; Forstner, C.; Orton, T.G.; Pattison, A.B. The effects of glyphosate, glufosinate, paraquat and paraquat-diquat on soil microbial activity and bacterial, archaeal and nematode diversity. Sci. Rep. 2018, 8, 2119. [Google Scholar] [CrossRef]
- Zablotowicz, R.M.; Reddy, K.N.; Weaver, M.A.; Mengistu, A.; Krutz, L.J.; Gordon, R.E.; Bellaloui, N. Cover crops, tillage, and glyphosate effects on chemical and biological properties of a lower Mississippi Delta soil and soybean yield. Environ. Res. J. 2010, 4, 227–251. [Google Scholar]
- Zabaloy, M.C.; Carné, I.; Viassolo, R.; Gómez, M.A.; Gomez, E. Soil ecotoxicity assessment of glyphosate use under field conditions: Microbial activity and community structure of Eubacteria and ammonia-oxidising bacteria. Pest Manag. Sci. 2016, 72, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Zabaloy, M.C.; Garland, J.L.; Gómez, M.A. An integrated approach to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Appl. Soil Ecol. 2008, 40, 1–12. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Harker, K.N.; Clayton, G.W.; O’Donovan, J.T.; Blackshaw, R.E. Soil microbial response to herbicides applied to glyphosate-resistant canola. Agric. Ecosyst. Environ. 2009, 129, 171–176. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.; Tang, L.; Heenan, M.; Xu, Z. Effects of nitrification inhibitor and herbicides on nitrification, nitrite and nitrate consumptions and nitrous oxide emission in an Australian sugarcane soil. Biol. Fert. Soils 2018, 54, 697–706. [Google Scholar] [CrossRef]
- Martens, D.A.; Bremner, J.M. Influence of herbicides on transformations of urea nitrogen in soil. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 1993, 28, 377–395. [Google Scholar] [CrossRef]
- Newman, M.M.; Lorenz, N.; Hoilett, N.; Lee, N.R.; Dick, R.P.; Liles, M.R.; Ramsier, C.; Kloepper, J.W. Changes in rhizosphere bacterial gene expression following glyphosate treatment. Sci. Total Environ. 2016, 553, 32–41. [Google Scholar] [CrossRef]
Activity | Year 1 | Year 2 | Field Site |
---|---|---|---|
Sowing | 20 March 2019 | 5 April 2021 | All plots |
Herbicide application 1 | 17 April 2019 | 7 May 2021 | Treatment-specific plots |
Herbicide application 2 | 17 May 2019 | 26 May 2021 | Treatment-specific plots |
Harvest | 11 September 2019 | 15 September 2019 | All plots |
Moisture Content (%) | pH | Organic Matter (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Depth | Treatment | Sowing | V2 | V8 | Harvest | Sowing | V2 | V8 | Harvest | Sowing | V2 | V8 | Harvest |
Year 1 | |||||||||||||
0–5 cm | 24D | 15.22 | 15.43 | 14.76 | 6.4 | 7.11 | 7.39 | 7.02 | 6.76 | 3.95 | 3.97 | 4 | 3.72 |
glyphosate+24D | 14.55 | 15.74 | 15.2 | 5.37 | 6.9 | 7.07 | 7 | 6.7 | 3.86 | 4.02 | 3.99 | 3.78 | |
none | 15.1 | 14.53 | 14.56 | 6.58 | 7.02 | 7.07 | 6.98 | 6.72 | 3.9 | 3.82 | 3.84 | 3.7 | |
5–15 cm | 24D | 14.49 | 19.4 | 17.1 | 9.65 | 7.24 | 7.13 | 6.53 | 6.86 | 3.52 | 3.29 | 3.54 | 3.13 |
glyphosate+24D | 15.12 | 20.89 | 15.61 | 9.19 | 7.02 | 7.14 | 6.29 | 6.81 | 3.4 | 3.17 | 3.41 | 3.11 | |
none | 15.11 | 15.98 | 16.07 | 9.69 | 7.12 | 6.97 | 6.81 | 6.74 | 3.4 | 3.2 | 3.42 | 3.13 | |
2-way ANOVA | |||||||||||||
Depth | ns | ns | 0.005 | <0.0001 | ns | ns | 0.0027 | ns | 0.001 | <0.0001 | <0.0001 | <0.0001 | |
Treatment | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | |
Depth × Treatment | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | |
Year 2 | |||||||||||||
0–5 cm | 24D | 12.92 | 14.35 | 11.16 | 11.93 | 6.48 | 6.79 ab | 7.29 | 7.59 | 3.92 | 4.15 | 3.94 | 3.91 |
glyphosate+24D | 12.54 | 14.96 | 11.7 | 12.86 | 6.45 | 6.83 a | 7.38 | 7.51 | 3.86 | 3.98 | 3.54 | 3.82 | |
none | 13.46 | 14.44 | 9.85 | 13.36 | 6.5 | 6.69 b | 7.31 | 7.47 | 3.72 | 3.92 | 3.77 | 3.83 | |
5–15 cm | 24D | 14.31 | 16.18 | 13.29 | 14.08 | 6.47 | 7.44 cd | 7.87 | 7.59 | 3.45 | 3.75 | 3.4 | 3.45 |
glyphosate+24D | 14.83 | 15.85 | 12.49 | 13.76 | 6.61 | 7.57 c | 7.91 | 7.59 | 3.37 | 3.65 | 3.34 | 3.281 | |
none | 16.18 | 15.99 | 12.36 | 14.41 | 6.6 | 7.26 d | 7.92 | 7.63 | 3.28 | 3.56 | 3.37 | 3.37 | |
2-way ANOVA | |||||||||||||
Depth | 0.0008 | 0.001 | 0.0324 | 0.0226 | ns | <0.0001 | <0.0001 | ns | 0.0011 | 0.0002 | 0.0215 | <0.0001 | |
Treatment | ns | ns | ns | ns | ns | 0.0493 | ns | ns | ns | ns | ns | ns | |
Depth × Treatment | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
SM | pH | SOM | Phos | BG | NAGase | Cello | FDA | |
---|---|---|---|---|---|---|---|---|
SM | 1 | 0.0976 | 0.0536 | −0.322 | −0.1889 | −0.0849 | −0.1996 | 0.0546 |
pH | 1 | 0.0293 | 0.2219 | −0.0343 | −0.1118 | −0.1551 | −0.1179 | |
SOM | 1 | 0.2048 | 0.6585 | 0.508 | 0.6598 | 0.6381 | ||
Phos | 1 | 0.5895 | 0.5492 | 0.4467 | 0.3753 | |||
BG | 1 | 0.8343 | 0.9197 | 0.7793 | ||||
NAGase | 1 | 0.8223 | 0.7262 | |||||
Cello | 1 | 0.8469 | ||||||
FDA | 1 |
Year 1 | Year 2 | |||
---|---|---|---|---|
Treatment | V2 | V8 | V2 | V8 |
Beta-glucosidase | ||||
2,4-D | 1.74 ± 0.23 | 1.32 ± 0.17 | 1.33 ± 0.09 | 2.62 ± 0.42 |
2,4-D+Glyphosate | 2.42 ± 0.39 | 1.66 ± 0.36 | 1.21 ± 0.09 | 2.24 ± 0.1 |
No herbicide | 1.98 ± 0.47 | 2.06 ± 0.3 | 1.76 ± 0.31 | 2.36 ± 0.33 |
Cellobiohydrolase | ||||
2,4-D | 0.53 ± 0.09 | 0.22 ± 0.01 | 0.23 ± 0 | 0.26 ± 0.01 |
2,4-D+Glyphosate | 0.61 ± 0.07 | 0.27 ± 0.05 | 0.2 ± 0.01 | 0.26 ± 0.01 |
No herbicide | 0.52 ± 0.08 | 0.31 ± 0.02 | 0.27 ± 0.03 | 0.27 ± 0.02 |
NAGase | ||||
2,4-D | 0.72 ± 0.05 | 0.38 ± 0.05 | 0.34 ± 0.02 | 0.53 ± 0.05 |
2,4-D+Glyphosate | 0.56 ± 0.06 | 0.38 ± 0.07 | 0.33 ± 0.02 | 0.46 ± 0.05 |
No herbicide | 0.53 ± 0.09 | 0.43 ± 0.04 | 0.35 ± 0.07 | 0.49 ± 0.05 |
Phosphatase | ||||
2,4-D | 3.53 ± 0.17 | 2.03 ± 0.19 | 4.11 ± 0.22 | 4.98 ± 0.69 |
2,4-D+Glyphosate | 3.98 ± 0.59 | 2.24 ± 0.42 | 3.74 ± 0.25 | 4.13 ± 0.31 |
No herbicide | 3.49 ± 0.59 | 2.66 ± 0.24 | 4.6 ± 0.54 | 4.17 ± 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyler, H.L. Impact of 2,4-D and Glyphosate on Soil Enzyme Activities in a Resistant Maize Cropping System. Agronomy 2022, 12, 2747. https://doi.org/10.3390/agronomy12112747
Tyler HL. Impact of 2,4-D and Glyphosate on Soil Enzyme Activities in a Resistant Maize Cropping System. Agronomy. 2022; 12(11):2747. https://doi.org/10.3390/agronomy12112747
Chicago/Turabian StyleTyler, Heather L. 2022. "Impact of 2,4-D and Glyphosate on Soil Enzyme Activities in a Resistant Maize Cropping System" Agronomy 12, no. 11: 2747. https://doi.org/10.3390/agronomy12112747
APA StyleTyler, H. L. (2022). Impact of 2,4-D and Glyphosate on Soil Enzyme Activities in a Resistant Maize Cropping System. Agronomy, 12(11), 2747. https://doi.org/10.3390/agronomy12112747