Effects of Cover Crops and Drip Fertigation Regime in a Young Almond Agroecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Field Conditions
2.2. Treatments and Experimental Design
2.3. Measurements and Determinations
2.4. Analysis of Results
3. Results
4. Discussion
4.1. Fertigation Regime (Do)
4.2. Soil Management (SM)
4.3. Soil C and N Concentration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinclair, T.R.; Rufty, T.W. Nitrogen and Water Resources Commonly Limit Crop Yield Increases, Not Necessarily Plant Genetics. Glob. Food Secur. 2012, 1, 94–98. [Google Scholar] [CrossRef]
- Tejero, I.F.G.; Zuazo, V.H.D. Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies, and Challenges for Woody Crops; Academic Press: Cambridge, MA, USA, 2018; ISBN 978-0-12-813165-7. [Google Scholar]
- Felipe, A.J.; Rius García, X.; Rubio-Cabetas, M.J. El Cultivo Del Almendro, 2022nd ed.; 2022. [Google Scholar]
- García-Tejero, I.F.; Rubio, A.E.; Viñuela, I.; Hernández, A.; Gutiérrez-Gordillo, S.; Rodríguez-Pleguezuelo, C.R.; Durán-Zuazo, V.H. Thermal Imaging at Plant Level to Assess the Crop-Water Status in Almond Trees (Cv. Guara) under Deficit Irrigation Strategies. Agric. Water Manag. 2018, 208, 176–186. [Google Scholar] [CrossRef]
- Moldero, D.; López-Bernal, Á.; Testi, L.; Lorite, I.J.; Fereres, E.; Orgaz, F. Long-Term Almond Yield Response to Deficit Irrigation. Irrig. Sci. 2021, 39, 409–420. [Google Scholar] [CrossRef]
- Alcon, F.; Egea, G.; Nortes, P.A. Financial Feasibility of Implementing Regulated and Sustained Deficit Irrigation in Almond Orchards. Irrig. Sci. 2013, 31, 931–941. [Google Scholar] [CrossRef]
- Romero, P.; García, J.; Botía, P. Cost–Benefit Analysis of a Regulated Deficit-Irrigated Almond Orchard under Subsurface Drip Irrigation Conditions in Southeastern Spain. Irrig. Sci. 2006, 24, 175–184. [Google Scholar] [CrossRef]
- Montoya, F.; Sánchez-Tomás, J.; Gonzalez-Piqueras, J.; López-Urrea, R. Is the Subsurface Drip the Most Sustainable Irrigation System for Almond Orchards in Water-Scarce Areas? Agronomy 2022, 12, 1778. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Durand, J.-L.; Gastal, F. Water Deficit and Nitrogen Nutrition of Crops. A Review. Agron. Sustain. Dev. 2010, 30, 529–544. [Google Scholar] [CrossRef] [Green Version]
- Kiggundu, N.; Migliaccio, K.W.; Schaffer, B.; Li, Y.; Crane, J.H. Water Savings, Nutrient Leaching, and Fruit Yield in a Young Avocado Orchard as Affected by Irrigation and Nutrient Management. Irrig. Sci. 2012, 30, 275–286. [Google Scholar] [CrossRef]
- Kunrath, T.R.; Lemaire, G.; Teixeira, E.; Brown, H.E.; Ciampitti, I.A.; Sadras, V.O. Allometric Relationships between Nitrogen Uptake and Transpiration to Untangle Interactions between Nitrogen Supply and Drought in Maize and Sorghum. Eur. J. Agron. 2020, 120, 126145. [Google Scholar] [CrossRef]
- Pascual, M.; Villar, J.M.; Rufat, J. Water Use Efficiency in Peach Trees over a Four-Years Experiment on the Effects of Irrigation and Nitrogen Application. Agric. Water Manag. 2016, 164, 253–266. [Google Scholar] [CrossRef]
- Rathore, V.; Nathawat, N.S.; Bhardwaj, S.; Yadav, B.; Kumar, M.; Santra, P.; Kumar, P.; Reager, M.; Yadava, N.; Yadav, O. Optimization of Deficit Irrigation and Nitrogen Fertilizer Management for Peanut Production in an Arid Region. Sci. Rep. UK 2021, 11, 5456. [Google Scholar] [CrossRef] [PubMed]
- Sadras, V.O.; Hayman, P.T.; Rodriguez, D.; Monjardino, M.; Bielich, M.; Unkovich, M.; Mudge, B.; Wang, E.; Sadras, V.O.; Hayman, P.T.; et al. Interactions between Water and Nitrogen in Australian Cropping Systems: Physiological, Agronomic, Economic, Breeding and Modelling Perspectives. Crop Pasture Sci. 2016, 67, 1019–1053. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.-D.; Ma, S.-C.; Mei, F.-J.; Li, W.; Tongchao, W.; Guan, X.-K. Adjusting Nitrogen Application in Accordance with Soil Water Availability Enhances Yield and Water Use by Regulating Physiological Traits of Maize under Drip Fertigation. Phyton-Ann. Rei. Bot. A 2021, 90, 417. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Quemada, M. Water Management for Enhancing Crop Nutrient Use Efficiency and Reducing Losses. In Advances in Research on Fertilization Management of Vegetable Crops; Tei, F., Nicola, S., Benincasa, P., Eds.; Springer: Cham, Switzerland, 2017; pp. 247–265. ISBN 2367-4083. [Google Scholar]
- Rodrigues, M.Â.; Arrobas, M. Cover Cropping for Increasing Fruit Production and Farming Sustainability. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–295. ISBN 978-0-12-818732-6. [Google Scholar]
- Di prima, S.; Rodrigo-comino, J.; Novara, A.; Iovino, M.; Pirastru, M.; Keesstra, S.; Cerdà, A. Soil Physical Quality of Citrus Orchards Under Tillage, Herbicide, and Organic Managements. Pedosphere 2018, 28, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, A. Effects of Soil Management Techniques on Soil Water Erosion in Apricot Orchards. Sci. Total Environ. 2016, 551–552, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Moreno, S.; Castro, J.; Alonso-Prados, E.; Alonso-Prados, J.L.; García-Baudín, J.M.; Talavera, M.; Durán-Zuazo, V.H. Tillage and Herbicide Decrease Soil Biodiversity in Olive Orchards. Agron. Sustain. Dev. 2015, 35, 691–700. [Google Scholar] [CrossRef] [Green Version]
- Almagro, M.; de Vente, J.; Boix-Fayos, C.; Garcia-Franco, N.; Aguilar, J.; Gonzalez, D.; Solé-Benet, A.; Martínez-Mena, M. Sustainable Land Management Practices as Providers of Several Ecosystem Services under Rainfed Mediterranean Agroecosystems. Mitig. Adapt. Strat. Glob. Change 2016, 21, 1029–1043. [Google Scholar] [CrossRef]
- Almagro, M.; Garcia-Franco, N.; Martínez-Mena, M. The Potential of Reducing Tillage Frequency and Incorporating Plant Residues as a Strategy for Climate Change Mitigation in Semiarid Mediterranean Agroecosystems. Agric. Ecosyst. Environ. 2017, 246, 210–220. [Google Scholar] [CrossRef]
- De Leijster, V.; Verburg, R.W.; Santos, M.J.; Wassen, M.J.; Martínez-Mena, M.; de Vente, J.; Verweij, P.A. Almond Farm Profitability under Agroecological Management in South-Eastern Spain: Accounting for Externalities and Opportunity Costs. Agric. Syst. 2020, 183, 102878. [Google Scholar] [CrossRef]
- Repullo-Ruibérriz de Torres, M.A.; Moreno-García, M.; Ordóñez-Fernández, R.; Rodríguez-Lizana, A.; Cárceles Rodríguez, B.; García-Tejero, I.F.; Durán Zuazo, V.H.; Carbonell-Bojollo, R.M. Cover Crop Contributions to Improve the Soil Nitrogen and Carbon Sequestration in Almond Orchards (SW Spain). Agronomy 2021, 11, 387. [Google Scholar] [CrossRef]
- Ramos, M.E.; Benítez, E.; García, P.A.; Robles, A.B. Cover Crops under Different Managements vs. Frequent Tillage in Almond Orchards in Semiarid Conditions: Effects on Soil Quality. Appl. Soil Ecol. 2010, 44, 6–14. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, Á.; Zornoza, R. The Impact of Intercropping, Tillage and Fertilizer Type on Soil and Crop Yield in Fruit Orchards under Mediterranean Conditions: A Meta-Analysis of Field Studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Monteiro, A.; Lopes, C.M. Influence of Cover Crop on Water Use and Performance of Vineyard in Mediterranean Portugal. Agric. Ecosyst. Environ. 2007, 121, 336–342. [Google Scholar] [CrossRef]
- Merwin, I.A.; Stiles, W.C. Orchard Groundcover Management Impacts on Apple Tree Growth and Yield, and Nutrient Availability and Uptake. J. Am. Soc. Hortic. Sci. 1994, 119, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Gucci, R.; Caruso, G.; Bertolla, C.; Urbani, S.; Taticchi, A.; Esposto, S.; Servili, M.; Sifola, M.I.; Pellegrini, S.; Pagliai, M.; et al. Changes of Soil Properties and Tree Performance Induced by Soil Management in a High-Density Olive Orchard. Eur. J. Agron. 2012, 41, 18–27. [Google Scholar] [CrossRef]
- Pardini, A.; Faiello, C.; Longhi, F.; Mancuso, S.; Snowball, R. Cover Crop Species and Their Management in Vineyards and Olive Groves. Adv. Hortic. Sci. 2002, 16, 225–234. [Google Scholar]
- Tomaz, A.; Pacheco, C.A.; Coleto Martinez, J.M. Influence of Cover Cropping on Water Uptake Dynamics in an Irrigated Mediterranean Vineyard: Cover Cropping and Water Uptake Dynamics. Irrig. Drain. 2017, 66, 387–395. [Google Scholar] [CrossRef]
- Gatti, M.; Garavani, A.; Squeri, C.; Diti, I.; De Monte, A.; Scotti, C.; Poni, S. Effects of Intra-Vineyard Variability and Soil Heterogeneity on Vine Performance, Dry Matter and Nutrient Partitioning. Precis. Agric. 2022, 23, 150–177. [Google Scholar] [CrossRef]
- Palese, A.M.; Vignozzi, N.; Celano, G.; Agnelli, A.E.; Pagliai, M.; Xiloyannis, C. Influence of Soil Management on Soil Physical Characteristics and Water Storage in a Mature Rainfed Olive Orchard. Soil Tillage Res. 2014, 144, 96–109. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Lopes, J.I.; Pavão, F.M.; Cabanas, J.E.; Arrobas, M. Effect of Soil Management on Olive Yield and Nutritional Status of Trees in Rainfed Orchards. Commun. Soil Sci. Plan Anal. 2011, 42, 993–1007. [Google Scholar] [CrossRef]
- Sanguankeo, P.P.; Leon, R.G.; Malone, J. Impact of Weed Management Practices on Grapevine Growth and Yield Components. Weed Sci. 2009, 57, 103–107. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Dimande, P.; Pereira, E.L.; Ferreira, I.Q.; Freitas, S.; Correia, C.M.; Moutinho-Pereira, J.; Arrobas, M. Early-Maturing Annual Legumes: An Option for Cover Cropping in Rainfed Olive Orchards. Nutr. Cycl. Agroecosyst. 2015, 103, 153–166. [Google Scholar] [CrossRef]
- Montanaro, G.; Xiloyannis, C.; Nuzzo, V.; Dichio, B. Orchard Management, Soil Organic Carbon and Ecosystem Services in Mediterranean Fruit Tree Crops. Sci. Hortic. 2017, 217, 92–101. [Google Scholar] [CrossRef]
- Torres, R.; Lloreda, M.; Gonzalez, P.; Garcia-Gutierrez, J.; Trujillo, P. Effect of Soil Management Strategies on the Characteristics of the Grapevine Root System in Irrigated Vineyards under Semi-Arid Conditions. Aust. J. Grape Wine Res. 2018, 24, 439–449. [Google Scholar] [CrossRef]
- Lopes, C.M.; Santos, T.P.; Monteiro, A.; Rodrigues, M.L.; Costa, J.M.; Chaves, M.M. Combining Cover Cropping with Deficit Irrigation in a Mediterranean Low Vigor Vineyard. Sci. Hortic. 2011, 129, 603–612. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Agriculture. Soil Mechanics Level I-Module 3: USDA Textural Classification Study Guide; USDA Soil Conservation Service: Washington, DC, USA, 1987.
- Espadafor, M.; Orgaz, F.; Testi, L.; Lorite, I.J.; Villalobos, F.J. Transpiration of Young Almond Trees in Relation to Intercepted Radiation. Irrig. Sci. 2015, 33, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Fereres, E.; Martinich, D.A.; Aldrich, T.M.; Castel, J.R.; Holzapfet, E.; Schulbach, H. Drip Irrigation Saves Money in Young Almond Orchards [California]. Calif. Agric. 1982, 36, 12–13. [Google Scholar]
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.A.; Hammel, H.T. Sap Pressure in Vascular Plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef]
- Myers, B.J. Water Stress Integral—A Link between Short-Term Stress and Long-Term Growth. Tree Physiol. 1988, 4, 315–323. [Google Scholar] [CrossRef]
- Egea, G.; Nortes, P.A.; Domingo, R.; Baille, A.; Pérez-Pastor, A.; González-Real, M.M. Almond Agronomic Response to Long-Term Deficit Irrigation Applied since Orchard Establishment. Irrig. Sci. 2013, 31, 445–454. [Google Scholar] [CrossRef]
- Demirbaş, A. Fuel Characteristics of Olive Husk and Walnut, Hazelnut, Sunflower, and Almond Shells. Energy Source 2002, 24, 215–221. [Google Scholar] [CrossRef]
- Queirós, C.S.G.P.; Cardoso, S.; Lourenço, A.; Ferreira, J.; Miranda, I.; Lourenço, M.J.V.; Pereira, H. Characterization of Walnut, Almond, and Pine Nut Shells Regarding Chemical Composition and Extract Composition. Biomass Conv. Bioref. 2020, 10, 175–188. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. In Irrigation and Drainage; FAO: Roma, Italy, 1998; Volume 56. [Google Scholar]
- Girona, J.; Mata, M.; Marsal, J. Regulated Deficit Irrigation during the Kernel-Filling Period and Optimal Irrigation Rates in Almond. Agric. Water Manag. 2005, 75, 152–167. [Google Scholar] [CrossRef]
- Abrisqueta, J.M.; Hernansaez, A.; Franco, J.A. Root Dynamics of Young Almond Trees under Different Drip-Irrigation Rates. J. Hortic. Sci. 1994, 69, 237–242. [Google Scholar] [CrossRef]
- Muhammad, S.; Sanden, B.; Lampinen, B.; Saa, S.; Siddiqui, M.; Smart, D.; Olivos-Del Rio, A.; Shackel, K.; Dejong, T.; Brown, P. Seasonal Changes in Nutrient Content and Concentrations in a Mature Deciduous Tree Species: Studies in Almond (Prunus dulcis (Mill.) D. A. Webb. Eur. J. Agron. 2015, 65, 52–68. [Google Scholar] [CrossRef]
- Egea, G.; Nortes, P.A.; González-Real, M.M.; Baille, A.; Domingo, R. Agronomic Response and Water Productivity of Almond Trees under Contrasted Deficit Irrigation Regimes. Agric. Water Manag. 2010, 97, 171–181. [Google Scholar] [CrossRef]
- Esparza, G.; DeJong, T.M.; Weinbaum, S.A. Effects of Irrigation Deprivation during the Harvest Period on Nonstructural Carbohydrate and Nitrogen Contents of Dormant, Mature Almond Trees. Tree Physiol. 2001, 21, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Lipan, L.; Martín-Palomo, M.J.; Sánchez-Rodríguez, L.; Cano-Lamadrid, M.; Sendra, E.; Hernández, F.; Burló, F.; Vázquez-Araújo, L.; Andreu, L.; Carbonell-Barrachina, Á.A. Almond Fruit Quality Can Be Improved by Means of Deficit Irrigation Strategies. Agric. Water Manag. 2019, 217, 236–242. [Google Scholar] [CrossRef]
- Correa, D.; Martínez-García, P.J.; Sánchez-Blanco, M.J.; López-Alcolea, J.; Jiménez, C.; Martinez-Gomez, P. El Almendro Mediterráneo [Prunus webbii (Spach)]: Una Especie Olvidada Para La Botánica Ibérica Con Potencial Agronómico. Rev. Frutic. 2021, 82, 6–21. [Google Scholar]
- Madam, B.; Rahemi, M.; Mousavi, A.; Martinez-Gomez, P. Evaluation of the Behavior of Native Iranian Almond Species as Rootstocks. Int. J. Nuts Relat. Sci. 2011, 2, 29–34. [Google Scholar]
- Monticelli, S.; Puppi, G.; Damiano, C. Effects of in Vivo Mycorrhization on Micropropagated Fruit Tree Rootstocks. Appl. Soil Ecol. 2000, 15, 105–111. [Google Scholar] [CrossRef]
- Brunner, I.; Herzog, C.; Dawes, M.A.; Arend, M.; Sperisen, C. How Tree Roots Respond to Drought. Front. Plant Sci. 2015, 6, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koumanov, K.S.; Hopmans, J.W.; Schwankl, L.W. Spatial and Temporal Distribution of Root Water Uptake of an Almond Tree under Microsprinkler Irrigation. Irrig. Sci. 2006, 24, 267–278. [Google Scholar] [CrossRef]
- Muhammad, S.; Sanden, B.L.; Lampinen, B.D.; Smart, D.R.; Saa, S.; Shackel, K.A.; Brown, P.H. Nutrient Storage in the Perennial Organs of Deciduous Trees and Remobilization in Spring—A Study in Almond (Prunus dulcis) (Mill.) D. A. Webb. Front. Plant Sci. 2020, 11, 658. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Garcia-Franco, N.; Almagro, M.; Ruiz-Navarro, A.; Albaladejo, J.; de Aguilar, J.M.; Gonzalez, D.; Querejeta, J.I. Decreased Foliar Nitrogen and Crop Yield in Organic Rainfed Almond Trees during Transition from Reduced Tillage to No-Tillage in a Dryland Farming System. Eur. J. Agron. 2013, 49, 149–157. [Google Scholar] [CrossRef]
- Phogat, V.; Skewes, M.; Mahadevan, M.; Cox, J.W. Seasonal Simulation of Water and Salinity Dynamics under Different Irrigation Applications of Almond in Pulsed and Continuous Mode. In Proceedings of the 4th International Conference on HYDRUS Software Applications to Subsurface Flow and Contaminant Transport Problems, Prague, Czech Republic, 21–22 March 2013. [Google Scholar]
- Vanella, D.; Peddinti, S.R.; Kisekka, I. Unravelling Soil Water Dynamics in Almond Orchards Characterized by Soil-Heterogeneity Using Electrical Resistivity Tomography. Agric. Water Manag. 2022, 269, 107652. [Google Scholar] [CrossRef]
- Koumanov, K.S.; Hopmans, J.W.; Schwankl, L.J.; Andreu, L.; Tuli, A. Application Efficiency of Micro-Sprinkler Irrigation of Almond Trees. Agric. Water Manag. 1997, 34, 247–263. [Google Scholar] [CrossRef]
- Alonso, J.M.; Espada, J.L.; Company, R.S. i Short Communication. Major Macroelement Exports in Fruits of Diverse Almond Cultivars. Span. J. Agric. Res. 2012, 10, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Sperling, O.; Karunakaran, R.; Yermiyahu, U. Precise Fertilization by a Mass-Balance of the Seasonal Changes in Nutrient Uptake by Almond Trees. Agronomy 2020, 10, 1277. [Google Scholar] [CrossRef]
- Cucci, G.; Lacolla, G.; Crecchio, C.; Pascazio, S.; Giorgio, D.D. Impact of Long Term Soil Management Practices on the Fertility and Weed Flora of an Almond Orchard. Turk. J. Agric. For. 2015, 9, 194–202. [Google Scholar]
- Novara, A.; Catania, V.; Tolone, M.; Gristina, L.; Laudicina, V.A.; Quatrini, P. Cover Crop Impact on Soil Organic Carbon, Nitrogen Dynamics and Microbial Diversity in a Mediterranean Semiarid Vineyard. Sustainability 2020, 12, 3256. [Google Scholar] [CrossRef] [Green Version]
- García-Díaz, A.; Allas, R.B.; Gristina, L.; Cerdà, A.; Pereira, P.; Novara, A. Carbon Input Threshold for Soil Carbon Budget Optimization in Eroding Vineyards. Geoderma 2016, 271, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Garba, I.; Fay, D.; Apriani, R.; Yusof, D.; Chu, D.; Williams, A. Fallow Replacement Cover Crops Impact Soil Water and Nitrogen Dynamics in a Semi-Arid Sub-Tropical Environment. Agric. Ecosyst. Environ. 2022, 338, 108052. [Google Scholar] [CrossRef]
- Wersebeckmann, V.; Entling, M.H.; Leyer, I. Revegetation of Vineyard Terrace Embankments: A Matter of Seed Mixture and Seeding Technique. J. Environ. Manag. 2022, 317, 115409. [Google Scholar] [CrossRef]
- Nouri, A.; Lukas, S.; Singh, S.; Singh, S.; Machado, S. When Do Cover Crops Reduce Nitrate Leaching? A Global Meta-Analysis. Glob. Change Biol. 2022, 28, 4736–4749. [Google Scholar] [CrossRef] [PubMed]
- Dahan, O.; Babad, A.; Lazarovitch, N.; Russak, E.E.; Kurtzman, D. Nitrate Leaching from Intensive Organic Farms to Groundwater. Hydrol. Earth Syst. Sci. 2014, 18, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Mazzoncini, M.; Sapkota, T.B.; Bàrberi, P.; Antichi, D.; Risaliti, R. Long-Term Effect of Tillage, Nitrogen Fertilization and Cover Crops on Soil Organic Carbon and Total Nitrogen Content. Soil Tillage Res. 2011, 114, 165–174. [Google Scholar] [CrossRef]
- Garba, I.I.; Bell, L.W.; Williams, A. Cover Crop Legacy Impacts on Soil Water and Nitrogen Dynamics, and on Subsequent Crop Yields in Drylands: A Meta-Analysis. Agron. Sustain. Dev. 2022, 42, 34. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Nolot, J.-M.; Raffaillac, D.; Justes, E. Innovative Cropping Systems to Reduce N Inputs and Maintain Wheat Yields by Inserting Grain Legumes and Cover Crops in Southwestern France. Eur. J. Agron. 2017, 82, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Thapa, R.; Mirsky, S.B.; Tully, K.L. Cover Crops Reduce Nitrate Leaching in Agroecosystems: A Global Meta-Analysis. J. Environ. Qual. 2018, 47, 1400–1411. [Google Scholar] [CrossRef]
Year | Treatments | Trunk Perimeter (cm) | Canopy Diameter (m) | Yield (t/ha) | Nº (Fruits/Tree) | Mean Fruit Weight (g) | Yield (g Kernel/100 g Kernel + Shell) | WUE (kg/m3) |
---|---|---|---|---|---|---|---|---|
2018 | F/BS | 18.3 ± 0.57 | 2.6 ± 0.16 | 0.03 ± 0.010 | 16.0 ± 5.40 | 5.3 ± 0.85 | 31.9 ± 1.00 | |
F/CC | 17.1 ± 0.46 | 2.3 ± 0.15 | 0.04 ± 0.011 | 18.0 ± 5.97 | 5.5 ± 0.82 | 32.7 ± 0.19 | ||
HF/BS | 15.7 ± 0.68 | 2.2 ± 0.29 | 0.04 ± 0.010 | 18.2 ± 4.91 | 5.3 ± 0.19 | 29.9 ± 1.03 | ||
HF/CC | 15.1 ± 0.40 | 2.1 ± 0.04 | 0.03 ± 0.009 | 11.8 ± 5.00 | 4.8 ± 0.19 | 31.9 ± 0.31 | ||
2019 | F/BS | 27.3 ± 0.65 | 3.3 ± 0.18 | 0.03 ± 0.024 | 26.3 ± 19.4 | 4.9 ± 0.37 | 27.0 ± 0.41 | |
F/CC | 25.3 ± 0.47 | 3.0 ± 0.19 | 0.01 ± 0.006 | 9.1 ± 4.66 | 6.2 ± 1.50 | 27.8 ± 0.17 | ||
HF/BS | 23.9 ± 0.58 | 3.0 ± 0.14 | 0.01 ± 0.003 | 4.9 ± 2.30 | 6.0 ± 1.09 | 26.4 ± 0.03 | ||
HF/CC | 22.6 ± 0.54 | 2.6 ± 0.08 | 0.02 ± 0.010 | 15.6 ± 7.66 | 5.3 ± 0.85 | 27.8 ± 0.83 | ||
2020 | F/BS | 32.0 ± 0.64 | 3.7 ± 0.09 | 2.83 ± 0.140 | 2606 ± 112 | 3.8 ± 0.05 | 32.6 ± 0.39 | 0.87 ± 0.04 |
F/CC | 29.5 ± 0.53 | 3.4 ± 0.14 | 2.25 ± 0.155 | 2241 ± 157 | 3.5 ± 0.16 | 33.0 ± 0.46 | 0.69 ± 0.05 | |
HF/BS | 28.0 ± 0.58 | 3.5 ± 0.16 | 2.27 ± 0.128 | 2141 ± 158 | 3.7 ± 0.10 | 32.1 ± 0.37 | 1.42 ± 0.08 | |
HF/CC | 26.0 ± 0.53 | 3.1 ± 0.09 | 1.85 ± 0.079 | 1788 ± 85.2 | 3.6 ± 0.10 | 31.7 ± 0.61 | 1.16 ± 0.05 | |
Year | *** | *** | *** | *** | *** | ** | ||
Do | *** | *** | ** | * | n.s. | * | ** | |
SM | *** | *** | ** | * | n.s. | * | ** | |
Y × Do | n.s. | n.s. | *** | *** | n.s. | n.s. | ||
Y × SM | n.s. | n.s. | *** | ** | n.s. | n.s. | ||
Do × SM | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | |
Y × Do × SM | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Year | Treatment | SΨ (MPa Day) | |||
---|---|---|---|---|---|
Stage II–III | Stage IV | Stage V | Total | ||
2018 | F/BS | 67.9 ± 3.9 | 107.4 ± 2.5 | 64.5 ± 1.7 | 239.8 ± 5.7 |
F/CC | 69.0 ± 2.2 | 109.5 ± 3.1 | 64.7 ± 0.8 | 243.3 ± 1.1 | |
HF/BS | 77.7 ± 3.7 | 128.7 ± 2.1 | 97.5 ± 3.4 | 303.9 ± 5.7 | |
HF/CC | 72.0 ± 2.3 | 126.6 ± 4.6 | 99.0 ± 1.2 | 296.2 ± 9.5 | |
2019 | F/BS | 78.8 ± 0.8 | 149.5 ± 0.8 | 36.1 ± 1.0 | 264.4 ± 1.9 |
F/CC | 78.7 ± 3.0 | 153.8 ± 1.5 | 32.0 ± 2.6 | 264.5 ± 3.2 | |
HF/BS | 80.4 ± 3.4 | 167.1 ± 1.6 | 33.0 ± 1.0 | 280.5 ± 4.6 | |
HF/CC | 74.2 ± 4.4 | 165.7 ± 2.0 | 31.0 ± 1.9 | 270.8 ± 8.0 | |
2020 | F/BS | 75.8 ± 2.4 | 124.8 ± 3.2 | 61.3 ± 1.9 | 261.8 ± 5.7 |
F/CC | 78.4 ± 3.2 | 120.1 ± 5.1 | 56.4 ± 2.1 | 254.9 ± 7.8 | |
HF/BS | 69.3 ± 2.0 | 160.2 ± 3.2 | 101.2 ± 6.8 | 330.6 ± 11.9 | |
HF/CC | 77.6 ± 4.9 | 150.8 ± 8.9 | 74.4 ± 2.4 | 302.7 ± 12.3 | |
Year | n.s. | *** | *** | n.s. | |
Do | n.s. | *** | *** | *** | |
SM | n.s. | n.s. | * | n.s. | |
Y × Do | n.s. | n.s. | *** | * | |
Y × SM | n.s. | n.s. | * | n.s. | |
Do × SM | n.s. | n.s. | n.s. | n.s. | |
Y × Do × SM | n.s. | n.s. | n.s. | n.s. |
Treat. | Biomass (gdw/m2) | N total | P Total | K | Ca | Mg | S | Fe | Mn | Zn | B |
---|---|---|---|---|---|---|---|---|---|---|---|
mg/gdw | mg/kgdw | ||||||||||
F/CC | 283.8 ± 29.2 | 8.01 ± 0.19 | 0.99 ± 0.04 | 3.08 ± 0.16 | 6.55 ± 0.50 | 1.67 ± 0.04 | 0.66 ± 0.01 | 112.8 ± 13.8 | 52.4 ± 10.5 | 34.2 ± 7.02 | 16.9 ± 2.16 |
HF/CC | 308.4 ± 6.56 | 7.58 ± 0.41 | 1.14 ± 0.16 | 3.10 ± 0.24 | 6.37 ± 0.35 | 1.59 ± 0.09 | 0.70 ± 0.04 | 101.0 ± 18.9 | 35.8 ± 4.66 | 24.6 ± 1.58 | 11.9 ± 4.60 |
n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | *** | *** | n.s. | |
Almond leaves (May–June) | 29.3 ± 0.93 | 1.52 ± 0.11 | 22.9 ± 0.62 | 30.6 ± 1.14 | 7.61 ± 0.48 | 1.57 ± 0.03 | 37.1 ± 1.26 | 66.7 ± 2.29 | 36.0 ± 1.68 | 21.0 ± 0.3 |
C and Macronutrients | Hull | Shell | kernel | Total Almond | CC | |
---|---|---|---|---|---|---|
C total | Kg/ha | 498.4 ± 43.0 | 1146.2 ± 72.7 | 400.2 ± 23.8 | 2044.9 | 979.2 ± 50.8 |
N total | 8.63 ± 0.46 | 23.6 ± 1.49 | 39.0 ± 2.47 | 71.2 | 16.5 ± 1.04 | |
P total | 1.99 ± 0.41 | 0.82 ± 0.05 | 5.06 ± 0.28 | 7.87 | 2.27 ± 0.24 | |
K | 48.9 ± 2.08 | 14.4 ± 0.91 | 8.00 ± 0.37 | 71.2 | 6.53 ± 0.46 | |
Ca | 3.49 ± 0.08 | 3.36 ± 0.21 | 1.56 ± 0.10 | 8.42 | 13.4 ± 0.64 | |
Mg | 1.61 ± 0.08 | 1.07 ± 0.07 | 2.31 ± 0.08 | 5.00 | 3.43 ± 0.20 | |
S | 0.42 ± 0.02 | 0.62 ± 0.04 | 1.14 ± 0.03 | 2.17 | 1.44 ± 0.08 | |
Micronutrients | ||||||
Fe | g/ha | 93.2 ± 4.47 | 3516.9 ± 223 | 29.7 ± 1.61 | 3639.8 | 222.5 ± 26.7 |
Mn | 24.0 ± 0.35 | 63.2 ± 4.01 | 30.8 ± 1.10 | 118.0 | 88.9 ± 10.0 | |
Zn | 14.8 ± 1.98 | 21.0 ± 1.33 | 37.5 ± 0.72 | 73.2 | 59.6 ± 6.08 | |
B | 62.1 ± 3.21 | 23.6 ± 1.49 | 51.3 ± 8.01 | 137.0 | 29.6 ± 5.26 | |
Cu | 7.14 ± 0.62 | 6.86 ± 0.43 | 5.82 ± 0.74 | 19.8 | 18.9 ± 2.58 |
Effect | Total C | Total org C | Total N | N-NO3− |
---|---|---|---|---|
Dose (Do) | n.s. | n.s. | n.s. | n.s. |
Soil Manag. (SM) | ** | n.s. | n.s. | * |
Depth (De) | n.s. | *** | ** | *** |
Do × SM | n.s. | n.s. | n.s. | n.s. |
Do × De | n.s. | n.s. | n.s. | n.s. |
SM × De | n.s. | n.s. | n.s. | n.s. |
Do × SM × De | n.s. | n.s. | n.s. | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio-Asensio, J.S.; Abbatantuono, F.; Ramírez-Cuesta, J.M.; Hortelano, D.; Ruíz, J.L.; Parra, M.; Martínez-Meroño, R.M.; Intrigliolo, D.S.; Buesa, I. Effects of Cover Crops and Drip Fertigation Regime in a Young Almond Agroecosystem. Agronomy 2022, 12, 2606. https://doi.org/10.3390/agronomy12112606
Rubio-Asensio JS, Abbatantuono F, Ramírez-Cuesta JM, Hortelano D, Ruíz JL, Parra M, Martínez-Meroño RM, Intrigliolo DS, Buesa I. Effects of Cover Crops and Drip Fertigation Regime in a Young Almond Agroecosystem. Agronomy. 2022; 12(11):2606. https://doi.org/10.3390/agronomy12112606
Chicago/Turabian StyleRubio-Asensio, José Salvador, Francesco Abbatantuono, Juan Miguel Ramírez-Cuesta, David Hortelano, José Luis Ruíz, Margarita Parra, Rosa María Martínez-Meroño, Diego S. Intrigliolo, and Ignacio Buesa. 2022. "Effects of Cover Crops and Drip Fertigation Regime in a Young Almond Agroecosystem" Agronomy 12, no. 11: 2606. https://doi.org/10.3390/agronomy12112606