Breeding Aspects of Selected Ornamental Bulbous Crops
Abstract
:1. Introduction
2. Origin, Natural Occurrence and Genetic Diversity of Selected Geophyte Genera
2.1. Hippeastrum
2.2. Lilium
2.3. Narcissus
2.4. Tulipa
2.5. Basic Chromosome Number and Ploidy Level of Species
3. Classical Breeding: Cross-Pollination
4. In Vitro Techniques for Breeding
5. Polyploidisation for Crop Improvement
5.1. Induction of 2n Gamete Formation
5.2. In Vitro Ploidy Manipulation
6. Modern Molecular Cytogenetic Techniques
7. Molecular Breeding
Genome Editing to Improve Ornamental Plants
8. Breeding Strategies and Trends and Cultivar News
8.1. Hippeastrum
8.2. Lilium
8.3. Narcissus
8.4. Tulipa
9. Concluding Remarks and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kamenetsky, R. Biodiversity of geophytes: Phytogeography, morphology, and survival strategies. In Ornamental Geophytes. From Basic Science to Sustainable Production, 1st ed.; Kamenetsky, R., Okubo, H., Eds.; CRS Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 57–76. [Google Scholar]
- Bryan, J.E. Manual of Bulbs, 1st ed.; Timber Press: Portland, OR, USA, 1995. [Google Scholar]
- Benschop, M.; Kamenetsky, R.; Le Nard, M.; Okubo, H.; De Hertogh, A.A. The global flower bulb industry: Production, utilization and research. Hortic. Rev. 2010, 36, 1–115. [Google Scholar]
- BKD. Bloembollenkultuurdienst. Voorlopige Statistiek Lilium. 2020. Available online: https://www.bkd.eu/wp-content/uploads/2020/08/voorlopige-statistiek-lilium-2020-versie-3-17-08-2020-website.pdf (accessed on 16 June 2021).
- BKD. Bloembollenkultuurdienst. Voorlopige Statistiek Lilium. 2020. Available online: https://www.bkd.eu/wp-content/uploads/2020/08/voorlopige-statistiek-gladiolus-2020-versie-2-17-08-2020-website.pdf (accessed on 16 June 2021).
- BKD. Bloembollenkultuurdienst. Voorlopige Statistiek Lilium. 2020. Available online: https://www.bkd.eu/wp-content/uploads/2020/10/voorlopige-statistiek-zantedeschia-2020-versie-3-30-09-2020-website.pdf (accessed on 16 June 2021).
- BKD. Bloembollenkultuurdienst. Voorlopige Statistiek Voorjaarsbloeiers. 2021. Available online: https://www.bkd.eu/wp-content/uploads/2021/03/voorlopige-statistiek-voorjaarsbloeiers-2020-2021-versie-3-04-03-2021-website.pdf (accessed on 16 June 2021).
- Royal Flora Holland. Facts and Figures. 2021. Available online: https://www.royalfloraholland.com/media/15219125/royal-floraholland-facts-and-figures-2020.pdf (accessed on 16 June 2021).
- Warwick Crop Centre. Narcissus (Daffodil). 2017. Available online: http://www2.warwick.ac.uk/fac/sci/lifesci/wcc/research/narcissus/ (accessed on 16 June 2021).
- CBI Market Intelligence. CBI Trade Statistics: Cut Flowers and Foliage; CBI Market Intelligence and Ministry of Foreign Affairs: The Hague, The Netherlands, 2016; pp. 1–9. [Google Scholar]
- De Hertogh, A.A.; Van Scheepen, J.; Le Nard, M.; Okubo, H.; Kamenetsky, R. Globalization of the flower bulb industry. In Ornamental Geophytes. From Basic Science to Sustainable Production, 1st ed.; Kamenetsky, R., Okubo, H., Eds.; CRS Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 1–16. [Google Scholar]
- Kamenetsky, R. Development and utilization of ornamental geophytes: Research challenges and sustainable production. Acta Hortic. 2017, 1171, 9–16. [Google Scholar] [CrossRef]
- Le Nard, M.; De Hertogh, A.A. Tulipa. In The Physiology of Flower Bulbs, 1st ed.; De Hertogh, A.A., Le Nard, M., Eds.; Elsevier: New York, NY, USA, 1993; pp. 617–682. [Google Scholar]
- Podwyszyńska, M.; Sochacki, D. Micropropagation of tulip: Production of virus-free stock plants. In Protocols for in Vitro Propagation of Ornamental Plants, Methods in Molecular Biology; Jain, S.M., Ochatt, S.J., Eds.; Humana Press: Totowa, NJ, USA; Springer: New York, NY, USA, 2010; pp. 243–256. [Google Scholar]
- Orlikowska, T.; Podwyszyńska, M.; Marasek-Ciołakowska, A.; Sochacki, D.; Szymański, R. Tulip. In Ornamental Crops; Van Huylenbroeck, J., Ed.; Springer: Cham, Germany, 2018; pp. 769–802. [Google Scholar]
- Hanks, G.R. Narcissus and daffodil—The genus Narcissus. In Medicinal and Aromatic Plants—Industrial Profiles 21, 1st ed.; Hanks, G.R., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Boca Raton, FL, USA, 2002; p. 428. [Google Scholar]
- Chan, T.T. The development of the Narcissus plant. In Daffodil Tulip Year Book; Royal Hoticultural Society: London, UK, 1952; Volume 17, pp. 72–100. [Google Scholar]
- Rees, A.R. The Growth of Bulbs, Applied Aspects of the Physiology of Ornamental Bulbous Crop Plants, 1st ed.; Academic Press: London, UK, 1972; p. 311. [Google Scholar]
- Erhardt, W. Narcissen, Osternglocken, Jonquillen, Tazzeten, 1st ed.; Ulmer: Stuttgart, Germany, 1993; pp. 36–41. [Google Scholar]
- Fortanier, E.J. Reviewing the length of the generation period and its shortening, particularly in tulips. Sci. Hortic. 1973, 1, 107–116. [Google Scholar] [CrossRef]
- Mynett, K. Obserwacje mieszańca Lilium × formolongi kwitnącego z nasion w roku wysiewu. Rocz. Akad. Rol. Pozn. 2000, 29, 139–140. [Google Scholar]
- Anderson, N.O.; Berghauer, E.; Harris, D.; Johnson, K.; Lönnroos, J.; Morey, M. Discovery of novel traits in seed-propagated Lilium: Non-vernalization-requiring, day-neutral, reflowering, frost-tolerant, winter-hardy L. × formolongi. I. Characterization. Flor. Orn. Biotech. 2013, 6, 63–72. [Google Scholar]
- Tombolato, A.; Matthes, L. Collection of Hippeastrum spp., Alstroemeria spp. and other Brazilian bulbous species. Acta Hortic. 1998, 454, 91–98. [Google Scholar] [CrossRef]
- Okubo, H. Hippeastrum (Amaryllis). In The Physiology of Flower Bulbs, 1st ed.; De Hertogh, A., Le Nard, M., Eds.; Elsevier: Amsterdam, The Netherlands, 1993; pp. 321–334. [Google Scholar]
- Marciniak, P.; (Warsaw University of Life Sciences, Warsaw, Poland); Sochacki, D.; (Warsaw University of Life Sciences, Warsaw, Poland). Personal communication, 2021.
- Khodorova, N.V.; Boitel-Conti, M. The role of temperature in the growth and flowering of geophytes. Plants 2013, 2, 699–711. [Google Scholar] [CrossRef] [Green Version]
- Anderson, N.O. Novel traits in the genus Lilium: Their discovery & breeding potential. N. Am. Lily Yearb. 2005, 58, 97–104. [Google Scholar]
- Anderson, N.O.; Younis, A.; Opitz, E. Development of colored, non-vernalization-requiring seed-propagated lilies. Acta Hortic. 2009, 836, 193–198. [Google Scholar] [CrossRef]
- Sochacki, D.; Orlikowska, T. Application of in vitro culture in breeding of new cultivars of narcissus. In Proceedings of the Abstracts of International Workshop “Application of Biotechnology in Breeding Cultivars Suitable for Sustainable Fruit Production”, Skierniewice, Poland, 12–14 May 2005; p. 55. [Google Scholar]
- Sisa, M.; Higuchi, H. Studies on the shortening the juvenile phase of tulip under the controlled environment. II. On the thermoperiodicity of juvenile tulip. J. Jpn. Soc. Hortic. Sci. 1967, 36, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Fortanier, E.J. Shortening the period from seed to a flowering bulb in tulip. Acta Hortic. 1971, 23, 413–420. [Google Scholar] [CrossRef]
- Van Eijk, J.P.; Toxopeus, S.J.; Eikelboom, W.; Sparnaaij, L.D. Early selection for forcing ability in tulip (Tulipa L.) breeding. Euphytica 1983, 32, 75–83. [Google Scholar] [CrossRef]
- Anderson, N.O. Selection tools for reducing generation time of geophytic herbaceous perennials. Acta Hortic. 2019, 1237, 53–66. [Google Scholar] [CrossRef]
- Shahin, A.; van Kaauwen, M.; Esselink, D.; Bargsten, J.; van Tuyl, J.; Visser, R.G.; Arens, P. Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa. BMC Genom. 2012, 13, 640. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, R.; Zaccai, M.; Flaishman, M.A. Florogenesis. In Ornamental Geophytes. From Basic Science to Sustainable Production, 1st ed.; Kamenetsky, R., Okubo, H., Eds.; CRS Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 197–232. [Google Scholar]
- Leeggangers, H.A.C.F.; Rosilio-Brami, T.; Bigas-Nadal, J.; Rubin, N.; van Dijk, A.D.J.; Nunez de Caceres Gonzalez, F.F.; Saadon-Shitrit, S.; Nijveen, H.; Hilhorst, H.W.M.; Immink, R.G.H.; et al. Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control. Plant. Cell Physiol. 2018, 59, 90–106. [Google Scholar] [CrossRef] [Green Version]
- Noy-Porat, T.R.; Kamenetsky, R.; Eshel, A.; Flaishman, M. Temporal and spatial expression patterns of the LEAFY homologue NLF during florogenesis in Narcissus tazetta. Plant. Sci. 2010, 178, 105–113. [Google Scholar] [CrossRef]
- Leeggangers, H.A.C.F.; Nijven, H.; Bigas, J.N.; Hilhorst, H.W.M.; Immink, R.G.H. Molecular regulation of temperature-dependent floral induction in Tulipa gesneriana. Plant. Physiol. 2017, 173, 1904–1919. [Google Scholar] [CrossRef] [Green Version]
- Bolano, M.A.; Proveniers, M. Life cycle shortening of tulip: Unravelling the molecular basis of vegetative phase change in T. gesneriana. In Proceedings of the Abstract Book of the XIII International Symposium on Flower Bulbs and Herbaceous Perennials, Seoul, Korea, 1–3 May 2019; p. 109. [Google Scholar]
- Bryan, J.E. Bulbs, 2nd ed.; Timber Press: Portland, OR, USA, 2002; pp. 281–283. [Google Scholar]
- Ockenga, S. Amaryllis, 1st ed.; Random House: New York, NY, USA, 2002; p. 96. [Google Scholar]
- Wang, Y.; Chen, D.; He, X.; Shen, J.; Xiong, M.; Wang, X.; Wei, Z. Revealing the complex genetic structure of cultivated amaryllis (Hippeastrum hybridum) using transcriptome-derived microsatellite markers. Sci. Rep. 2018, 8, 10645. [Google Scholar] [CrossRef] [Green Version]
- García, N.; Meerow, A.W.; Arroyo-Leuenberger, S.; Oliveira, R.S.; Dutilh, J.H.; Soltis, P.S.; Judd, W.S. Generic classification of Amaryllidaceae tribe Hippeastreae. Taxon 2019, 68, 481–498. [Google Scholar] [CrossRef]
- Traub, H.P. The Amaryllis Manual, 1st ed.; Macmillan: New York, NY, USA, 1958; p. 338. [Google Scholar]
- Meerow, A.W.; Snijman, D.A. Amaryllidaceae. In Families and Genera of Vascular Plants; Kubitzki, K., Ed.; Springer: Berlin, Germany, 1998; pp. 83–110. [Google Scholar]
- Tombolato, A.F.C.; Uzzo, R.P.; Junqueira, A.H.; Peetz, M.S.; Stancato, G.C. Geophyte research and production in Brazil. In Ornamental Geophytes: From Basic Science to Sustainable Production, 1st ed.; Kamenetsky, R., Okubo, H., Eds.; CRC Press: New York, NY, USA, 2012; pp. 435–447. [Google Scholar]
- Van Dijk, H.; Kurpershoek, M. Geillustreerde Bloembollen Encyclopedie; Rebo International, B.V.: Lisse, The Netherlands, 2002; pp. 159–161. [Google Scholar]
- Wu, Z.; Raven, P. Flora of China, Flagellariaceae through Marantaceae, 1st ed.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2000; p. 431. [Google Scholar]
- Nishikawa, T.; Okazaki, K.; Arakawa, K.; Nagamine, T. Phylogenetic analysis of section sinomartagon in genus Lilium using sequences of the internal transcribed spacer region in nuclear ribosomal DNA. Breed. Sci. 2001, 51, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Okubo, H.; Sochacki, D. Botanical and horticultural aspects of major ornamental geophytes. In Ornamental Geophytes. From Basic Science to Sustainable Production, 1st ed.; Kamenetsky, R., Okubo, H., Eds.; CRS Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 77–121. [Google Scholar]
- Rees, A.R. Narcissus. In CRC Handbook of Flowering; Halevy, A.H., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 1985; Volume 1, pp. 268–271. [Google Scholar]
- Margaris, N.S. Flowers in Greek mythology. Acta Hortic. 2000, 541, 23–29. [Google Scholar] [CrossRef]
- Tompsett, A. Golden Harvest. In The Story of Daffodil Growing in Cornwall and the Isles of Scilly; Alison Hodge: Penzance, UK, 2006; p. 144. [Google Scholar]
- Webb, D.A. Narcissus. In Flora Europaea, 1st ed.; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Chater, A.O., Richardson, I.B.K., Eds.; Cambridge University Press: Cambridge, UK, 1980; pp. 78–84. [Google Scholar]
- Fernandes, A. Contribution to the knowledge of the biosystematics of some species of genus Narcissus L. In Trabajos y Comunicaciones; 5 Simposio de Flora Europaea: Sevilla, Spain, 1969; pp. 245–284. [Google Scholar]
- Van Raamsdonk, L.W.D.; De Vries, T. Biosystematic studies in Tulipa sect. Eriostemones (Liliaceae). Plant. Syst. Evol. 1992, 179, 27–41. [Google Scholar] [CrossRef]
- Van Raamsdonk, L.W.D.; De Vries, T. Species relationships and taxonomy in Tulipa subg. Tulipa (Liliaceae). Plant. Syst. Evol. 1995, 195, 13–44. [Google Scholar] [CrossRef]
- Christenhusz, M.J.M.; Govaerts, R.; David, J.C.; Hall, T.; Borland, K.; Roberts, P.S.; Tuomisto, A.; Buerki, S.; Chase, M.W.; Fay, M.F. Tiptoe through the tulips—Cultural history, molecular phylogenetics and classification of Tulipa (Liliaceae). Bot. J. Linn. Soc. 2013, 172, 280–328. [Google Scholar] [CrossRef] [Green Version]
- Zonneveld, B.J.M. The systematic value of nuclear genome size for ’all’ species of Tulipa L. Plant. Syst. Evol. 2009, 281, 217–245. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.D. The Genus Tulipa, 1st ed.; The Royal Horticultural Society: London, UK, 1940; p. 171. [Google Scholar]
- WCSP. World Checklist of Selected Plant Families 2021. Facilitated by the Royal Botanic Gardens, Kew. Available online: http://wcsp.science.kew.org/ (accessed on 12 July 2021).
- Pavord, A. The Tulip, 1st ed.; Bloomsbury Publishing: London, UK, 1999; p. 439. [Google Scholar]
- Stork, A.L. Tulipes Sauvages et Cultivees, 1st ed.; Conservatoire et Jardin Botaniques de la Ville de Geneve: Geneve, Switzerland, 1984; p. 185. [Google Scholar]
- Poggio, L.; González, G.; Naranjo, C.A. Chromosome studies in Hippeastrum (Amaryllidaceae): Variation in genome size. Bot. J. Lin. Soc. 2007, 155, 171–178. [Google Scholar] [CrossRef]
- Poggio, L.; Realini, M.F.; Fourastié, M.F.; García, A.M.; González, G.E. Genome downsizing and karyotype constancy in diploid and polyploid congeners: A model of genome size variation. AoB Plants 2014, 6, plu029. [Google Scholar] [CrossRef] [Green Version]
- Ramanna, M.S.; Marasek-Ciolakowska, A.; Xie, S.; Khan, N.; van Tuyl, J.M. The Significance of Polyploidy for Bulbous Ornamentals: A Molecular Cytogenetic Assessment. In Floriculture and Ornamental Biotechnology. Special Issue: Bulbous Ornamentals; Van Tuyl, J., Arens, P., Eds.; Global Science Books Ltd.: London, UK, 2012; Volume 1, pp. 116–121. [Google Scholar]
- Marasek-Ciolakowska, A.; Arens, P.; Van Tuyl, J.M. The Role of Polyploidization and Interspecific Hybridization in the Breeding of Ornamental Crops. In The Breeding of Ornamentals, 1st ed.; Mason, A., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 159–181. [Google Scholar]
- Diaz Lifante, Z.; Camacho, C.A.; Viruel, J.; Caballero, A.C. The allopolyploid origin of Narcissus obsoletus (Amaryllidaceae): Identification of parental genomes by karyotype characterization and genomic in situ hybridization. Bot. J. Linn. Soc. 2009, 159, 477–498. [Google Scholar] [CrossRef]
- Brandham, P.E. Evolution of polyploidy in cultivated Narcissus subgenus Narcissus. Genetica 1986, 68, 161–167. [Google Scholar] [CrossRef]
- Brandham, P.E.; Kirton, P.R. The Chromosomes of species, hybrids and cultivars of Narcissus L. (Amaryllidaceae). Kew Bull. 1987, 42, 65–102. [Google Scholar] [CrossRef]
- Moore, D.M. Flora Europaea Check-List and Chromosome Index; Cambridge University Press: Cambridge, UK, 1982; p. 436. [Google Scholar]
- Zonneveld, B.J.M. The systematic value of nuclear DNA content for all species of Narcissus L. (Amaryllidaceae). Plant. Syst. Evol. 2008, 275, 109–132. [Google Scholar] [CrossRef] [Green Version]
- Marques, I.; Loureiro, J.; Draper, D.; Castro, M.; Castro, S. How much do we know about the frequency of hybridization and polyploidy in the Mediterranean region? Plant. Biol. 2018, 20, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Kroon, G.H.; Jongerius, M.C. Chromosome numbers of Tulipa species and the occurrence of hexaploidy. Euphytica 1986, 35, 73–76. [Google Scholar] [CrossRef]
- Arroyo, S. The chromosomes of Hippeastrum, Amaryllis and Phycella (Amaryllidaceae). Kew Bull. 1982, 372, 211–216. [Google Scholar] [CrossRef]
- Naranjo, C.A.; Poggio, L.A. Comparison of Karyotype, Ag–NOR Bands and DNA Content in Amaryllis and Hippeastrum (Amaryllidaceae). Kew Bull. 1988, 43, 317–325. [Google Scholar] [CrossRef]
- Williams, M.; Dudley, T.R. Chromosome Count for Hippeastrum iguazuanum. Taxon 1984, 33, 271–275. [Google Scholar] [CrossRef]
- García, N.; Folk, R.A.; Meerow, A.W.; Chamala, S.; Gitzendanner, M.A.; Oliveira, R.S.; Soltis, D.E.; Soltis, P.S. Deep reticulation and incomplete lineage sorting obscure the diploid phylogeny of rain-lilies and allies (Amaryllidaceae tribe Hippeastreae). Molec. Phylogen. Evol. 2017, 11, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Marasek, A.; Mizuochi, H.; Okazaki, K. The origin of Darwin hybrid tulips analyzed by flow cytometry, karyotype analyses and genomic in situ hybridization. Euphytica 2006, 151, 279–290. [Google Scholar] [CrossRef]
- Van Tuyl, J.M.; Arens, P.; Marasek-Ciolakowska, A. Breeding and Genetics of Ornamental Geophytes. In Ornamental Geophytes: From Basic Science to Sustainable Horticultural Production, 1st ed.; Kamenetsky, R., Okubo, H., Eds.; CRC: Boca Raton, FL, USA, 2012; pp. 131–158. [Google Scholar]
- Takayama, S.; Isogai, A. Self-incompatibility in plants. Annu. Rev. Plant. Biol. 2005, 5, 467–489. [Google Scholar] [CrossRef] [Green Version]
- Meerow, A.W. Tilting at windmills: 20 years of Hippeastrum breeding. Isr. J. Plant. Sci. 2009, 57, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Karihaloo, J.L. Chromosome number and pollen viability in some Hippeastrum cultivars. Indian J. Hort. 1989, 46, 100–102. [Google Scholar]
- Almeida, N.V.D.; Saziki, C.Y.N.; Cardoso, J.C. Characterization of cultivars and low-temperature pollen grain storage in amaryllis (Hippeastrum sp.). Rev. Ceres 2019, 66, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Shi, Y.M. Research on pollen germination and pollen preservation characteristic of Hippeastrum. J. Shanghai Jiaotong Univ. 2008, 1, 3. [Google Scholar]
- Wóycicki, S. Zarys Hodowli Roślin Ozdobnych, 2nd ed.; Państwowe Wydawnictwo Rolnicze i Leśne: Warsaw, Poland, 1966. [Google Scholar]
- Marciniak, P.; Jędrzejuk, A.; Sochacki, D. Evaluation of the possibility of obtaining viable seeds from the cross-breeding Hippeastrum × chmielii Chm. with selected cultivars of Hippeastrum hybridum Hort. Folia Hort. 2021, 33, 1–10. [Google Scholar]
- Chwil, M. Ecology of flowers and morphology of pollen grains of selected Narcissus cultivars (Narcissus pseudonarcissus L. × Narcissus poeticus L.). Acta Agrobot. 2006, 59, 107–122. [Google Scholar] [CrossRef] [Green Version]
- Sanders, T. Pollen Volume and Chromosome Content of Daffodils. Possibilities for Hybridizing. 2014. Available online: https://www.theo-sanders-daffodils.de/ (accessed on 5 March 2021).
- Khaleel, T.F.; Haven, S.; Gilg, T. Karyomorphology of Amaryllis hybrids. Cytologia 1991, 56, 31–41. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Hu, F.; Ming, J.; Liu, C.; Yuan, S. Pollen viability and stigma receptivity in Lilium during anthesis. Euphytica 2017, 213, 231. [Google Scholar] [CrossRef]
- Van Tuyl, J.M.; De Jeu, M.J. Methods for overcoming interspecific crossing barriers. In Pollen Biotechnology for Crop Production and Improvement; Sawhney, V.K., Shivanna, K.R., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 273–293. [Google Scholar]
- Lim, K.B.; Van Tuyl, J.M. Lilium hybrids. In Flower Breeding and Genetics: Issues, Challenges and Opportunities for the 21st Century, 1st ed.; Anderson, N.O., Ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 517–537. [Google Scholar]
- Bakhshaie, M.; Khosravi, S.; Azadi, P.; Bagheri, H.; van Tuyl, J.M. Biotechnological advances in Lilium. Plant. Cell Rep. 2016, 35, 1799–1826. [Google Scholar] [CrossRef]
- Zhou, S.; Yuan, G.; Xu, P.; Gong, H. Study on lily introgression breeding using allotriploids as maternal parents in interploid hybridizations. Breed. Sci. 2014, 64, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Chung, M.Y.; Chung, J.D.; Ramanna, M.; Van Tuyl, J.M.; Lim, K.B. Production of polyploids and unreduced gametes in Lilium auratum × L. henryi hybrids. Int. J. Biol. Sci. 2013, 9, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Xiao, K.; Cui, L.; Wan, L.; Zhong, J.; Liu, Y.; Sun, Y.; Zhou, S. A new way to produce odd-allotetraploid lily (Lilium) trough 2n gametes. Plant. Breed. 2021, 140, 711–718. [Google Scholar] [CrossRef]
- Okazaki, K. New aspects of tulip breeding: Embryo culture and polyploid. Acta Hortic. 2005, 673, 127–140. [Google Scholar] [CrossRef]
- Podwyszyńska, M.; Marasek, A. Effect of thidiazuron and paclobutrazol on regeneration potential of flower stalk explants in vitro and subsequent shoot multiplication. Acta Soc. Bot. Pol. 2003, 72, 181–190. [Google Scholar] [CrossRef]
- Podwyszyńska, M. Improvement of bulb formation in micropropagated tulips by treatment with NAA and paclobutrazol or ancymidol. Acta Hortic. 2006, 725, 679–684. [Google Scholar] [CrossRef]
- Podwyszyńska, M.; Novák, O.; Doležal, K.; Strnad, M. Endogenous cytokinin dynamics in micropropagated tulips during bulb formation process influenced by TDZ and iP pre-treatment. Plant. Cell Tiss. Organ. Cult. 2014, 119, 331–346. [Google Scholar] [CrossRef] [Green Version]
- Maślanka, M.; Bach, A. Tulip propagation in vitro from vegetative bud explants. Ann. Wars. Univ. Life Sci. SGGW Horticult. Landsc. Architect. 2013, 34, 21–26. [Google Scholar]
- Maślanka, M.; Bach, A. Induction of bulb organogenesis in in vitro cultures of tarda tulip (Tulipa tarda Stapf.) from seed-derived explants. Vitr. Cell. Dev. Biol. Plant 2014, 50, 712–721. [Google Scholar] [CrossRef] [Green Version]
- Sochacki, D.; (Warsaw University of Life Sciences, Warsaw, Poland); Marciniak, P.; (Warsaw University of Life Sciences, Warsaw, Poland); Goszcz, A.; (Warsaw University of Life Sciences, Warsaw, Poland); Ciesielska, M.; (Warsaw University of Life Sciences, Warsaw, Poland). Unpublished data. 2021.
- Maślanka, M.; Bach, A. Effect of abscisic acid, ethylene and inhibitors of their biosynthesis (fluridone and salicylic acid) on somatic embryos conversion in tulips. Ecol. Chem. Eng. 2010, 17, 1135–1140. [Google Scholar]
- Bach, A.; Ptak, A. Somatic embryogenesis and plant regeneration from ovaries of Tulipa gesneriana L. in vitro cultures. Acta Hortic. 2001, 560, 391–394. [Google Scholar] [CrossRef]
- Ptak, A.; Bach, A. Somatic embryogenesis in tulip (Tulipa gesneriana L.) flower stem cultures. Vitr. Cell. Dev. Biol. Plant. 2007, 43, 35–39. [Google Scholar] [CrossRef]
- Maślanka, M.; Bach, A.; Janowiak, F. Endogenous ABA content in relation to maturation of somatic embryos in Tulipa (L.) ‘Apeldoorn’ cultures. Acta Physiol. Plant. 2016, 38, 270. [Google Scholar] [CrossRef] [Green Version]
- Podwyszyńska, M.; Marasek-Ciolakowska, A. Micropropagation of tulip via somatic embryogenesis. Agronomy 2020, 10, 1857. [Google Scholar] [CrossRef]
- Seabrook, J.E.A.; Cumming, B.G. The in vitro propagation of amaryllis (Hippeastrum spp. hybrids). Vitro 1977, 13, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Lee, S.H.; Bang, J.W.; Choi, H.W. Physical mapping of rRNA gene loci and inter-specific relationships in wild Lilium distributed in Korea. J. Plant. Biol. 2010, 53, 433–443. [Google Scholar] [CrossRef]
- Zayed, R.; El-Shamy, H.; Berkov, S.; Batista, J.; Codina, C. In vitro micropropagation and alkaloids of Hippeastrum vittatum. Vitr. Cell. Dev. Biol. Plant 2011, 47, 695–701. [Google Scholar] [CrossRef]
- Zakizadeh, S.; Kavani, B.; Onsinejad, R. In vitro rooting of amaryllis (Hippeastrum johnsonii), a bulbous plant, via NAA and 2-iP. Ann. Biol. Res. 2013, 4, 69–71. [Google Scholar]
- Witomska, M.; Ilczuk, A. Formation of adventitious bulblets in vitro on scale explants in Hippeastrum × chmielii Chm. Biotechnologia 2004, 2, 199–205. [Google Scholar]
- Ilczuk, A.; Winkelmann, T.; Richartz, S.; Witomska, M.; Serek, M. In vitro propagation of Hippeastrum × chmielii Chm—Influence of flurprimidol and the culture in solid or liquid medium and in temporary immersion systems. Plant Cell Tissue Organ Cult. 2005, 83, 339–346. [Google Scholar] [CrossRef]
- Witomska, M.; Łukaszewska, A.; Wojtowicz, M. Micropropagation of Hippeastrum × chmieli Chm. from scale and scape explants. Propag. Ornam. Plants 2008, 8, 158–160. [Google Scholar]
- Sochacki, D.; Woźniak, E.; Marciniak, P. The effect of selected factors on micropropagation efficacy and on the first bulb yield in Hippeastrum × chmielii Chm. and H. hybridum ‘Double Roma’. Propag. Ornam. Plants 2018, 18, 87–96. [Google Scholar]
- Thorpe, T.A. The current status of plant tissue culture. In Plant Tissue Culture: Applications and Limitations; Bhojwani, S.S., Ed.; Elsevier Science Publisher: Amsterdam, The Netherlands, 1990; pp. 1–33. [Google Scholar]
- Bell, W.D. The role of triploids in Amaryllis hybridization. Plant. Life 1973, 29, 59–61. [Google Scholar]
- Kim, K.W.; De Hertogh, A.A. Tissue culture of ornamental flowering bulbs (geophytes). Hort. Rev. 1997, 18, 87–169. [Google Scholar]
- Langens-Gerrits, M.M. Phase Change, Bulb Growth and Dormancy Development in Lily. Manipulation of the Propagation Cycle by in Vitro Culture. Ph.D. Thesis, Katholieke Universiteit, Nijmegen, The Netherlands, July 2003. [Google Scholar]
- Qi, Y.; Du, L.; Quan, Y.; Tian, F.; Liu, Y.; Wang, Y. Agrobacterium-mediated transformation of embryogenic cell suspension cultures and plant regeneration in Lilium tenuifolium Oriental × trumpet ‘Robina’. Acta Physiol. Plant. 2014, 36, 2047–2057. [Google Scholar] [CrossRef]
- Chinestra, S.C.; Curvetto, N.R.; Marinangeli, P.A. Production of virus-free plants of Lilium spp. from bulbs obtained in vitro and ex vitro. Sci. Hortic. 2015, 194, 304–312. [Google Scholar] [CrossRef]
- Gabryszewska, E.; Sochacki, D. Effect of various levels of sucrose and nitrogen salts on the growth and development of lily bulblets in vitro. Acta Hortic. 2013, 1002, 139–145. [Google Scholar] [CrossRef]
- Bakhshaie, M.; Babalar, M.; Mirmasoumi, M.; Khalighi, A. Effects of light, sucrose, and cytokinins on somatic embryogenesis in Lilium ledebourii (Baker) Bioss. via transverse thin celllayer cultures of bulblet microscales. J. Hortic. Sci. Biotechnol. 2010, 85, 491–496. [Google Scholar] [CrossRef]
- Mirmasoumi, M.; Bakhshaie, M. Effects of liquid, temporary immersion bioreactor and solid culture systems on micropropagation of Lilium ledebourii via bulblet microscales—An endangered valuable plant with ornamental potential. Prog. Biol. Sci. 2015, 5, 169–180. [Google Scholar]
- Tang, Y.P.; Liu, X.Q.; Wahiti Gituru, R.; Chen, L.Q. Callus induction and plant regeneration from in vitro cultured leaves, petioles and scales of Lilium leucanthum (Baker) Baker. Biotechnol. Biotechnol. Equip. 2010, 24, 2071–2076. [Google Scholar] [CrossRef]
- Ogaki, M.; Furuichi, Y.; Kuroda, K.; Chin, D.P.; Ogawa, Y.; Mii, M. Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium × formolongi. Plant. Cell Rep. 2008, 27, 699–705. [Google Scholar] [CrossRef]
- Azadi, P.; Chin, D.P.; Kuroda, K.; Khan, R.S.; Mii, M. Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium. Plant Cell Tissue Organ Cult. 2010, 101, 201–209. [Google Scholar] [CrossRef]
- Azadi, P.; Otang, N.V.; Chin, D.P.; Nakamura, I.; Fujisawa, M.; Harada, H.; Misawa, N.; Mii, M. Metabolic engineering of Lilium × formolongi using multiple genes of the carotenoid biosynthesis pathway. Plant. Biotechnol. Rep. 2010, 4, 269–280. [Google Scholar] [CrossRef]
- Azadi, P.; Otang, N.V.; Supaporn, H.; Khan, R.S.; Chin, D.P.; Nakamura, I.; Mii, M. Increased resistance to Cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene. Biotechnol. Lett. 2011, 33, 1249–1255. [Google Scholar] [CrossRef]
- Chow, Y.N.; Selby, C.; Harvey, B.M.R. A simple method for maintaining high multiplication of Narcissus shoot cultures in vitro. Plant. Cell. Tiss. Org. Cult. 1992, 30, 227–230. [Google Scholar] [CrossRef]
- Langens-Gerrits, M.M.; Nashimoto, S. Improved protocol for the propagation of Narcissus in vitro. Acta Hortic. 1997, 430, 311–313. [Google Scholar] [CrossRef]
- Sochacki, D.; Orlikowska, T. Factors influencing micropropagation of Narcissus. Acta Hortic. 2005, 673, 669–673. [Google Scholar] [CrossRef]
- Langens-Gerrits, M.M.; De Klerk, G.J.M. Micropropagation of flower bulbs. Lily and narcissus. In Plant Cell Culture Protocols, 1st ed.; Hall, R.D., Ed.; Humana Press: New York, NY, USA, 2008; pp. 141–147. [Google Scholar]
- Sochacki, D. The use of ELISA in the micropropagation of virus-free Narcissus. Acta Hortic. 2011, 886, 253–258. [Google Scholar] [CrossRef]
- Chen, J.; Ziv, M. Carbohydrate, metabolic, and osmotic changes in scaled-up liquid cultures of Narcissus leaves. Vitr. Cell. Dev. Biol. Plant 2003, 39, 645–650. [Google Scholar] [CrossRef]
- Sage, D.O. Propagation and protection of flower bulbs: Current approaches and future prospects, with special reference to Narcissus. Acta Hortic. 2005, 673, 107–115. [Google Scholar] [CrossRef]
- Malik, M. Comparison of different liquid/solid culture systems in the production of somatic embryos from Narcissus L. ovary explants. Plant Cell Tissue Organ Cult. 2008, 94, 337–345. [Google Scholar] [CrossRef]
- Malik, M.; Molenda, A. Formowanie zarodków somatycznych narcyza (Narcissus L.) z tkanki kalusowej w systemie okresowego zalewania pożywką RITA oraz na pożywce stałej. Zesz. Probl. Postępów Nauk. Rol. 2008, 525, 237–243. [Google Scholar]
- Bach, A.; Sochacki, D. Propagation of ornamental geophytes: Physiology and management systems. In Ornamental Geophytes: From Basic Science to Sustainable Production, 1st ed.; Kamenetsky, R., Okubo, H., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Boca Raton, FL, USA, 2012; pp. 261–286. [Google Scholar]
- Anbari, S.; Tohidfar, M.; Hosseini, R.; Haddad, R. Somatic embryogenesis induction in Narcissus papyraceus cv. Shirazi. Plant. Tissue Cult. Biotech. 2007, 17, 37–46. [Google Scholar] [CrossRef]
- Sage, D.O.; Lynn, J.; Hammatt, N. Somatic embryogenesis in Narcissus pseudonarcissus cvs. Golden Harvest and St. Keverne. Plant. Sci. 2000, 150, 209–216. [Google Scholar] [CrossRef]
- Sage, D.O.; Hammatt, N. Somatic embryogenesis and transformation in Narcissus pseudonarcissus cultivars. Acta Hortic. 2002, 570, 247–249. [Google Scholar] [CrossRef]
- Malik, M.; Bach, A. Somatic embryogenesis induction and morphogenesis direction in narcissus culture (Narcissus L.) of ‘Carlton’ depending on the initial explants type. Post. Nauk Rol. 2010, 551, 175–181. [Google Scholar]
- Malik, M.; Bach, A. High-yielding repetitive somatic embryogenesis in cultures of Narcissus L. ‘Carlton’. Acta Sci. Pol. Hortorum Cultus 2017, 16, 107–112. [Google Scholar]
- Okazaki, K.; Nukui, S.; Ootuka, H. Application of nitrous oxide gas a polyploidizing agent in tulip and lily breeding. Floric. Ornam. Biotechnol. 2012, 6, 39–43. [Google Scholar]
- Podwyszyńska, M.; Trzewik, A.; Marasek-Ciolakowska, A. In vitro polyploidization of tulips (Tulipa gesneriana L.)—Phenotype assessment of tetraploids. Sci. Hortic. 2018, 242, 155–163. [Google Scholar] [CrossRef]
- Marasek-Ciolakowska, A.; Xie, S.; Ramanna, M.S.; Arens, P.; Van Tuyl, J.M. Meiotic Polyploidization in Darwin Hybrid Tulips. Acta Hortic. 2012, 953, 187–192. [Google Scholar] [CrossRef]
- Zhou, S.; Ramanna, M.S.; Visser, G.F.; Van Tuyl, J.M. Analysis of the meiosis in the F1 hybrids of Longiflorum × Asiatic (LA) of lilies (Lilium) using genomic in situ hybridization. J. Genet. Genom. 2008, 35, 687–695. [Google Scholar] [CrossRef]
- Van Tuyl, J.M.; Arens, P. Lilium: Breeding history of the modern cultivar assortment. Acta Hortic. 2011, 900, 223–230. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, G.; Li, K.; Zhou, G.; Zhou, S. Genomic variation of new cultivars selected from distant hybridization in Lilium. Plant. Breed. 2012, 131, 227–230. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Jiang, H.; Sun, Y.; Li, Q.; Yang, L. Karyotype analysis and ploidy identification of Hippeastrum. Acta Agric. Shanghai 2018, 34, 1–6. [Google Scholar]
- Marasek-Ciolakowska, A.; Nishikawa, T.; Sheaand, D.J.; Okazaki, K. Breeding of lilies and tulips—Interspecific hybridization and genetic background. Breed. Sci. 2018, 68, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Van Scheepen, J. Classified List and International Register of Tulip Names, 1st ed.; Royal General Bulbgrowers’ Association KAVB: Hillegom, The Netherlands, 1996. [Google Scholar]
- Marasek, A.; Okazaki, K. GISH analysis of hybrids produced by interspecific hybridization between Tulipa gesneriana and T. Fosteriana. Acta Hortic. 2007, 743, 133–137. [Google Scholar] [CrossRef]
- Marasek, A.; Okazaki, K. Analysis of introgression of the Tulipa fosteriana genome into Tulipa gesneriana using GISH and FISH. Euphytica 2008, 160, 217–230. [Google Scholar] [CrossRef]
- Marasek-Ciolakowska, A.; Ramanna, M.S.; van Tuyl, J.M. Introgression of chromosome segments of Tulipa forsteriana into T. gesneriana detected through GISH and its implications for breeding virus resistant tulips. Acta Hortic. 2011, 886, 175–182. [Google Scholar] [CrossRef]
- Marasek-Ciolakowska, A.; Xie, S.; Arens, P.; Van Tuyl, J.M. Ploidy manipulation and introgression breeding in Darwin hybrid tulips. Euphytica 2014, 189, 389–400. [Google Scholar] [CrossRef]
- Lim, K.B.; Wennekes, J.; de Jong, J.H.; Jacobsen, E.; van Tuyl, J.M. Karyotype analysis of Lilium longiflorum and Lilium rubellum by chromosome banding and fluorescence in situ hybridization. Genome 2001, 44, 911–918. [Google Scholar] [CrossRef]
- Lim, K.B.; van Tuyl, J.M. A pink Longiflorum lily cultivar, ’Elegant Lady’ suitable for cut flower forcing. Korean J. Breed. 2004, 36, 123–124. [Google Scholar]
- Barba-Gonzalez, R.; Lim, K.B.; Ramanna, M.S.; Van Tuyl, J.M. Use of 2n gametes for inducing intergenomic recombination in lily hybrids. Acta Hortic. 2004, 673, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Barba-Gonzalez, R.; Lokker, A.C.; Lim, K.B.; Ramanna, M.S.; Van Tuyl, J.M. Use of 2n gametes for the production of sexual polyploids from sterile Oriental × Asiatic hybrids of lilies (Lilium). Theor. Appl. Genet. 2004, 109, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Barba-Gonzalez, R.; Lim, K.B.; Ramanna, M.S.; Visser, R.G.V.; Van Tuyl, J.M. Occurrence of 2n gametes in F1 hybrids of Oriental × Asiatic lilies (Lilium). Relevance to intergenomic recombination and backcrossing. Euphytica 2005, 143, 67–73. [Google Scholar] [CrossRef]
- Barba-Gonzalez, R.; Ramanna, M.S.; Visser, R.G.F.; Van Tuyl, J.M. Intergenomic recombination in F1 lily hybrids (Lilium) and its significance for genetic variation in the BC1 progenies as revealed by GISH and FISH. Genome 2005, 48, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Barba-Gonzalez, R.; Ramanna, M.S.; Arens, P.; Visser, R.G.F.; van Tuyl, J.M. Relevance of unilateral and bilateral sexual polyploidization in relation to intergenomic recombination and introgression in Lilium species hybrids. Euphytica 2010, 171, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Marasek-Ciolakowska, A.; He, H.; Bijman, P.; Ramanna, M.S.; Arens., P.; van Tuyl, J.M. Assessment of intergenomic recombination through GISH analysis of F1, BC1 and BC2 progenies of Tulipa gesneriana and T. fosteriana. Plant. Syst. Evol. 2012, 298, 887–899. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.B.; Barba-Gonzalez, R.; Zhou, S.; Ramanna, M.S.; van Tuyl, J.M. Meiotic polyploidization with homoeologous recombination induced by caffeine treatment in interspecific lily hybrids. Korean J. Genet. 2005, 27, 219–226. [Google Scholar]
- Khan, N.; Barba-Gonzalez, R.; Ramanna, M.S.; Visser, R.G.; van Tuyl, J.M. Construction of chromosomal recombination maps of three genomes of lilies (Lilium) based on GISH analysis. Genome 2009, 52, 238–351. [Google Scholar] [CrossRef]
- Khan, N.; Zhou, S.; Ramanna, M.S.; Arens, P.; Herrera, J.; Visser, R.G.F.; van Tuyl, J.M. Potential for analytic breeding in allopolyploids: An illustration from Longiflorum × Asiatic hybrid lilies (Lilium). Euphytica 2009, 166, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Khan, N.; Ramanna, M.S.; Niu, L.; Marasek-Ciolakowska, A.; Arens, P.; van Tuyl, J.M. An assessment of chromosomal rearrangements in neopolyploids of Lilium hybrids. Genome 2010, 53, 439–446. [Google Scholar] [CrossRef]
- Xie, S.; Ramanna, M.S.; Visser, R.G.F.; Arens, P.; van Tuyl, J.M. Elucidation of intergenomic recombination and chromosome translocation: Meiotic evidence from interspecific hybrids of Lilium through GISH analysis. Euphytica 2013, 194, 361–370. [Google Scholar] [CrossRef]
- Ramanna, M.S.; Jacobsen, E. Relevance of sexual polyplidization for crop improvement: A review. Euphytica 2003, 133, 3–18. [Google Scholar] [CrossRef]
- Okazaki, K.; Nishimura, M. Ploidy of progenies crossed between diploids, triploids and tetraploids in tulip. Acta Hortic. 2000, 522, 127–134. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, G.; Li, K. Euploid endosperm of triploid diploid/tetraploid crosses results in aneuploid embryo survival in Lilium. HortScience 2011, 46, 558–562. [Google Scholar] [CrossRef]
- Xi, M.; van Tuyl, J.; Arens, P. GISH analyzed progenies generated from allotriploid lilies as female parent. Sci. Hortic. 2015, 183, 130–135. [Google Scholar] [CrossRef]
- Barba-Gonzalez, R.; Van Silfhout, A.; Visser, R.G.F.; Ramanna, M.S.; van Tuyl, J.M. Progenies of allotriploids of Oriental × Asiatic lilies (Lilium) examined by GISH analysis. Euphytica 2006, 151, 243–250. [Google Scholar] [CrossRef]
- Lim, K.B.; Ramanna, M.S.; Jacobsen, E.; van Tuyl, J.M. Evaluation of BC2 progenies derived from 3x–2x and 3x–4x crosses of Lilium hybrids: A GISH analysis. Appl. Genet. 2003, 106, 568–574. [Google Scholar] [CrossRef]
- Lokker, A.C.; Barba-Gonzalez, R.; Lim, K.B.; Ramanna, M.S.; van Tuyl, J.M. Genotypic and environmental variation in production of 2n-gametes of Oriental × Asiatic lily hybrids. Acta Hortic. 2004, 673, 453–456. [Google Scholar] [CrossRef]
- Wu, H.; Zheng, S.; He, Y.; Yang, G.; Bi, Y.; Zhu, Y. Diploid female gametes induced by colchicines in oriental lilies. Sci. Hortic. 2007, 114, 50–53. [Google Scholar] [CrossRef]
- Okazaki, K.; Kurimoto, K.; Miyajima, I.; Enami, A.; Mizuochi, H.; Matsumoto, Y.; Ohya, H. Induction of 2n pollen in tulips by arresting the meiotic process with nitrous oxide gas. Euphytica 2005, 143, 101–114. [Google Scholar] [CrossRef]
- Qu, L.W.; Zhang, Y.Q.; Xing, G.M.; Cui, Y.H.; Xue, L.; Zhao, J.; Zhang, W.; Qu, L.; Lei, J.J. Inducing 2n pollen to obtain polyploids in tulip. Acta Hortic. 2019, 1237, 93–100. [Google Scholar] [CrossRef]
- Barba-Gonzalez, R.; Mille, C.T.; Ramanna, M.S.; van Tuyl, J.M. Induction of 2n gametes for overcoming F1-sterility in lily and tulip. Acta Hortic. 2006, 714, 99–106. [Google Scholar] [CrossRef]
- Barba-Gonzalez, R.; Miller, C.T.; Ramanna, M.S.; van Tuyl, J.M. Nitrous oxide (N2O) induces 2n gametes in sterile F1 hybrids between Oriental × Asiatic lily (Lilium) hybrids and leads to intergenomic recombination. Euphytica 2006, 148, 303–309. [Google Scholar] [CrossRef]
- Akutsu, M.; Kitamura, S.; Toda, R.; Miyajima, I.; Okazaki, K. Production of 2n pollen of Asiatic hybrid lilies by nitrous oxide treatment. Euphytica 2007, 155, 143–152. [Google Scholar] [CrossRef]
- Sato, T.; Miyoshi, K.; Okazaki, K. Induction of 2n gametes and 4n embryo in Lilium (Lilium × formolongi Hort.) by nitrous oxide gas treatmet. Acta Hortic. 2010, 855, 243–248. [Google Scholar] [CrossRef]
- Luo, J.R.; Ares, P.; Niu, X.; van Tuyl, J.M. Induction of viable 2n pollen in sterile Oriental × Trumpet Lilium hybrids. J. Hortic. Sci. Biotech. 2016, 91, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, S.; Akutsu, M.; Okazaki, K. Mechanism of action off nitrous oxide gas applied as a polyploidizing agent during meiosis in lilies. Sex. Plant. Reprod. 2009, 22, 9–14. [Google Scholar] [CrossRef]
- Nukui, S.; Kitmura, S.; Hioki, T.; Ootsuka, H.; Miyoshi, K.; Satou, T.; Takatori, Y.; Oomiya, T.; Okazaki, K. N2O induces mitotic polyploidization in anther somatic cells and restores fertility in sterile interspecific hybrid lilies. Breed. Sci. 2011, 61, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.B.; Chung, J.D.; van Krononburg, B.C.E.; Ramanna, M.S.; De Jong, J.H.; van Tuyl, J.M. Introgression of Lilium rubellum Baker chromosomes into L. longiflorum Thunb.: A genome painting study of the F1 hybrid, BC1 and BC2 progenies. Chromosome Res. 2000, 8, 119–125. [Google Scholar] [CrossRef]
- Luo, J.R.; Ramanna, M.S.; Arens, P.; Niu, X.; van Tuyl, J.M. GISH analyses of backcross progenies of two Lilium species hybrids and their relevance to breeding. J. Hortic. Sci. Biotech. 2012, 87, 654–660. [Google Scholar] [CrossRef]
- Xiao, K.; Zeng, W.; Zeng, J.; Wu, L.; Cui, L.; Liu, Y.; Yng, Y.; Zhou, S. Analysis of abnormal meiosis and progenies of an odd-allotetraploid Lilium ‘Honesty’. Sci. Hortic. 2019, 235, 316–321. [Google Scholar] [CrossRef]
- Jara, G.; Seemann, P.; Muñoz, M.; Riegel, R.; Schiappacasse, F.; Peñailillo, P.; Vico, V. Respuesta in vitro de microbulbillos de Rhodophiala montana sometidos a inducción de poliploidía en presencia de colchicina. Agro. Sur. 2006, 34, 67–68. [Google Scholar] [CrossRef]
- Balode, A. Applying colchicine and oryzaline in Lilium L. polyploidization L. J. Agron. 2008, 11, 22–28. [Google Scholar]
- Zhang, X.; Cao, Q.; Jia, G. A protocol for fertility restoration of F1 hybrid derived from Lilium × formolongi ‘Raizan 3′ × oriental hybrid ‘Sorbonne’. Plant Cell Tissue Organ Cult. 2017, 129, 375–386. [Google Scholar] [CrossRef]
- Wang, L.J.; Zhang, Q.; Cao, Q.Z.; Gao, X.; Jia, G.X. An efficient method or inducing multiple genotypes of tetraploids Lilium rosthornii Diels. Plant Cell Tissue Organ Cult. 2020, 141, 499–510. [Google Scholar] [CrossRef]
- Van Tuyl, J.M.; Meijer, B.; van Diën, M.P. The use of oryzalin as an alternative for colchicine in in-vitro chromosome doubling of Lilium and Nerine. Acta Hortic. 1992, 352, 625–630. [Google Scholar] [CrossRef]
- Chauvin, J.E.; Label, A.; Kermarrec, M.P. In vitro chromosome-doubling in tulip (Tulipa gesneriana L.). J. Hort. Sci. Biotech. 2006, 80, 693–698. [Google Scholar] [CrossRef]
- Chandanie, M.A.; Singh, S.K.; Sindhu, S.S.; Singh, A.; Tomar, S.M.S.; Prasad, K.V. Efficacy of oryzalin as a potent chemical for in vitro induction of polyploids in Asiatic lily (Lilium hybrida L.) var. Polyanna. India. J. Genet. Plant Breed. 2011, 71, 262–268. [Google Scholar]
- Podwyszyńska, M. In vitro tetraploid induction in tulip (Tulipa gesneriana L.). Acta Hortic. 2012, 961, 391–396. [Google Scholar] [CrossRef]
- Takamura, T.; Lim, K.B.; van Tuyl, J.M. Effect of a new compound on the mitotic polyploidization of Lilium longiflorum and Oriental hybrid lilies. Acta Hortic. 2002, 572, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Eeckhaut, T.; Van der Veken, J.; Dhooghe, E.; Leus, L.; Van Laere, K.; Van Huylenbroeck, J. Plant Ploidy Breeding in Ornamentals, 1st ed.; Van Huylenbroeck, J., Ed.; Springer: Cham, Germany, 2018; pp. 145–173. [Google Scholar]
- Chung, M.Y.; Chung, J.D.; van Tuyl, J.M.; Lim, K.B. Overcoming F1 sterility of intersectional OA lily hybrids by somatic chromosome doubling. Korean J. Chem. Eng. 2004, 31, 1–6. [Google Scholar]
- Beers, C.M.; Barba-Gonzalez, R.; van Silfhout, A.A.; Ramanna, M.S.; van Tuyl, J.M. Mitotic and meiotic polyploidization in lily hybrids for transferring Botrytis resistance. Acta Hortic. 2005, 673, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, A.; Ahmad, T.; Bashir, M.A.; Hafiz, I.A.; Silvestri, C. Studies on colchicine induced chromosome doubling or enhancement of quality traits in ornamental plants. Plants 2019, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Miri, S.M. Artificial polyploidy in the improvement of horticultural crops. J. Plant. Breed. Physiol. 2020, 10, 1–28. [Google Scholar]
- Jian, J.; Fang, L.; Tan, X.; Yuan, G.; Xu, P.; Zhou, S. Hybridization and chromosome doubling for potted Asiatic lilies (Lilium). J. Agri. Biotech. 2013, 21, 627–630. [Google Scholar]
- Xie, S.; Ramanna, M.S.; van Tuyl, J.M. Simultaneous identification of three different genomes in Lilium hybrids through multicolour GISH. Acta Hortic. 2010, 855, 299–304. [Google Scholar]
- Fu, L.; Zhu, Y.; Li, M.; Wang, C.; Sun, H. Autopoliploid induction via somatic embryogenesis in Lilium distichum Nakai and Lilium cernuum Komar. Plant Cell Tissue Organ Cult. 2019, 139, 237–248. [Google Scholar] [CrossRef]
- Ming, S.; Xiao-fan, L.; Ying, K.; Jin-fang, S.; Qi-xing, Z. Polyploidy induction of three Lilium species endemic to China (Lilium pumilum, L. sargentiae, L. tsingtauense). Acta Hortic. 2012, 935, 83–90. [Google Scholar] [CrossRef]
- Van Tuyl, J.M.; van Holsteijn, H.C.M. Lily breeding research in the Netherlands. Acta Hortic. 1996, 414, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Xu, L.; Yang, P.; Xu, H.; Cao, Y.; Tang, Y.; Yuan, S.; Ming, J. Production and identification of a tetraploid germplasm of edible Lilium davidii var. unicolor Salish via chromosome doubling. HortScience 2017, 52, 946–951. [Google Scholar] [CrossRef] [Green Version]
- Touchell, D.H.; Palmer, I.E.; Ranney, T.G. In vitro ploidy manipulation for crop improvement. Front. Plant Breed. 2020, 11, 722. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, X.; Gao, X.; Wang, L.; Ji, G. Effect of ploidy level on the cellular, photochemical and photosynthetic characteristics in Lilium FO hybrids. Plan. Physiol. Biotech. 2018, 133, 50–56. [Google Scholar] [CrossRef]
- Gabryszewska, E.; Podwyszyńska, M.; Sochacki, D. In vitro polyploidization of Lilium martagon. Plant Sci. 2014, 6, 48–51. [Google Scholar]
- Jeloudar, N.I.; Chamani, E.; Shokouhian, A.A.; Zakaria, R.A. Induction and identification of polyploidy by colchicine treatment in Lilium regale. Cytologia 2019, 84, 2712–2776. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Lin, Y.; Pei, H.; Zhang, J.; Zhang, J.; Luo, J. Variations in colchicine-induced autotetraploid plants of Lilium davidii var. unicolor. Plant Cell Tissue Organ Cult. 2020, 141, 479–488. [Google Scholar] [CrossRef]
- North, C. Artificial chromosome doubling in Narcissus and its implication for breeding N. tazetta hybrids. Acta Hortic. 1976, 63, 161–163. [Google Scholar] [CrossRef]
- Younis, A.; Ramzan, F.; Hwan, Y.J.; Lim, K.B. FISH and GISH: Molecular cytogenetic tools and their applications in ornamental plants. Plan. Cell Rep. 2015, 34, 1477–1488. [Google Scholar] [CrossRef]
- Ramzan, F.; Younis, A.; Lim, K.B. Application of Genomic in situ hybridization in horticultural science. Int. J. Genom. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ramzan, F.; Younis, A.; Lim, K.B.; Bae, S.H.; Kwon, M.J.; Ahn, S.M.; Ge, G.; Co, V.T. Analysis of Oriental × Trumpet (OT) Lilium hybrids by genomic in situ hybridization based on ploidy level. Acta Hortic. 2017, 1171, 253–258. [Google Scholar] [CrossRef]
- Wu, H.; Ramanna, M.S.; Arens, P.; van Tuyl, J.M. Genome constitution of Narcissus variety, ‘Tête-à-Tête’, analysed through GISH and NBS profiling. Euphytica 2011, 181, 292. [Google Scholar] [CrossRef]
- Mizuochi, H.; Marasek, A.; Okazaki, K. Molecular cloning of Tulipa fosteriana rDNA and subsequent FISH analysis yields cytogenetic organization of 5S rDNA and 45S rDNA in T. gesneriana and T. fosteriana. Euphytica 2007, 155, 235–248. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Kim, H.H.; Kim, J.B.; Lim, K.B. Karyotype analysis of Lilium tigrinum by FISH. Hort. Environ. Biotech. 2011, 52, 292–297. [Google Scholar] [CrossRef]
- Zeng, J.; Sun, Y.; Wan, L.; Zhong, J.; Yu, S.; Zou, N.; Cai, J.; Zhou, S. Analyzing Narcissus genome compositions based on rDNA loci on chromosomes and crossing-compatibility of 16 cultivars. Sci. Hortic. 2020, 267, 109359. [Google Scholar] [CrossRef]
- Marasek, A.; Hasterok, R.; Wiejacha, K.; Orlikowska, T. Determination by GISH and FISH of hybrid status in Lilium. Hereditas 2004, 140, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, J.; Zhang, Y.; Zhang, Y.; Xu, S.; Lu, Y. The application of fluorescence in situ hybridization in different ploidy levels cross-breeding of lily. PLoS ONE 2015, 10, e0126899. [Google Scholar] [CrossRef] [Green Version]
- Siljak-Yakovlev, S.; Peccenini, S.; Muratović, E.; Zoldoš, V.; Robin, O.; Vallès, J. Chromosomal differentiation and genome size in three European mountain Lilium species. Plant. Syst. Evol. 2003, 236, 165–173. [Google Scholar] [CrossRef]
- Ahn, Y.J.; Hwang, Y.J.; Younis, A.; Sung, M.S.; Ramzan, F.; Kwon, M.J.; Kang, Y.I.; Kim, C.K.; Lim, K.B. Investigation of karyotypic composition and evolution in Lilium species belonging to the section martagon. Plant. Biotechnol. Rep. 2017, 11, 407–416. [Google Scholar] [CrossRef]
- Cao, Q.; Lian, Y.; Wang, L.; Zhang, Q.; Zhao, Y.; Jia, G.; He, H. Physical mapping of 45S rDNA loci in Lilium OT hybrids and interspecific hybrids with Lilium regale. Sci. Hortic. 2019, 253, 48–54. [Google Scholar] [CrossRef]
- Zhou, Y.P.; Wang, Z.X.; Du, Y.P.; Li, J.W.; He, H.B.; Jia, G.X. Fluorescence in situ hybridization of 35S rDNA sites and karyotype of wild Lilium (Liliaceae) species from China: Taxonomic and phylogenetic implications. Genet. Resour. Crop. Evol. 2020, 67, 1601–1617. [Google Scholar] [CrossRef]
- Choi, Y.H.; Ramzan, R.; Hwang, Y.J.; Younis, A.; Kim, C.H.; Lim, K.B. Using cytogenetic analysis to identify the genetic diversity in Lilium hansonii (Liliaceae), an endemic species of Ulleung Island, Korea. Hortic. Environ. Biotechnol. 2021. [Google Scholar] [CrossRef]
- Marasek-Ciolakowska, A.; Podwyszynska, M. Somaclonal variation in long-term micropropagated tulips (Tulipa gesneriana L.) determined by FISH analysis. Floric. Ornam. Biotech. 2008, 2, 65–72. [Google Scholar]
- Wang, J.; Huang, L.; Bao, M.-Z.; Liu, G.-f. Production of interspecific hybrids between Lilium longiflorum and L. lophophorum var. linearifolium via ovule culture at early stage. Euphytica 2009, 167, 45–55. [Google Scholar] [CrossRef]
- Li, X.; Tang, D.; Shi, Y. Morphological and Molecular Analyses of Reciprocal Hybrids between ‘Slim Whitman’ and ‘Pinza’, two Narcissus pseudonarcissus cultivars. HortScience 2017, 52, 1668–1675. [Google Scholar] [CrossRef]
- Podwyszyńska, M.; Niedoba, K.; Korbin, M.; Marasek, A. Somaclonal variation in micropropagated tulips determined by phenotype and DNA markers. Acta Hortic. 2006, 714, 211–220. [Google Scholar] [CrossRef]
- Yin, Z.F.; Zhao, B.; Bi, W.L.; Chen, L.; Wang, Q.C. Direct shoot regeneration from basal leaf segments of Lilium and assessment of genetic stability in regenerants by ISSR and AFLP markers. Vitr. Cell. Dev. Biol. Plant 2013, 49, 333–342. [Google Scholar] [CrossRef]
- Lu, G.; Zhang, X.; Zou, Y.; Zou, Q.; Xiang, X.; Cao, J. Effect of radiation on regeneration of Chinese narcissus and analysis of genetic variation with AFLP and RAPD markers. Plant Cell Tissue Organ Cult. 2007, 88, 319–327. [Google Scholar] [CrossRef]
- Simón, V.I.; Picó, F.X.; Arroyo, J. New microsatellite loci for Narcissus papyraceus (Amarillydaceae) and cross-amplification in other congeneric species. Am. J. Bot. 2010, 97, e10–e13. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.I.; Sheikh, M.Q.; Bhat, Z.A.; Khan, M.H. Genetic diversity analysis based on SSR markers in daffodils (Narcissus). Int. J. Curr. Microbiol. App. Sci. 2017, 8, 2418–2427. [Google Scholar] [CrossRef]
- Tang, N.; Shahin, A.; Bijman, P.; Liu, J.; van Tuyl, J.M.; Arens, P. Genetic diversity and structure in a collection of tulip cultivars assessed by SNP markers. Sci. Hortic. 2013, 161, 286–292. [Google Scholar] [CrossRef]
- Rešetnik, I.; Liber, Z.; Satovic, Z.; Cigić, P.; Nikolić, T. Molecular phylogeny and systematics of the Lilium carniolicum group (Liliaceae) based on nuclear ITS sequences. Plant. Syst. Evol. 2007, 265, 45–58. [Google Scholar] [CrossRef]
- Muratović, E.; Hidalgo, O.; Garnatje, T.; Siljak-Yakovlev, S. Molecular phylogeny and genome size in European lilies (Genus Lilium, Liliaceae). Adv. Sci. Lett. 2010, 3, 180–189. [Google Scholar] [CrossRef]
- Yanagisawa, R.; Kuhara, T.; Nishikawa, T.; Sochacki, D.; Marasek-Ciolakowska, A.; Okazaki, K. Phylogenetic Analysis of Wild and Garden Tulips Using Sequences of Chloroplast DNA. Acta Hortic. 2012, 953, 103–110. [Google Scholar] [CrossRef]
- Pourkhaloee, A.; Khosh-Khui, M.; Arens, P.; Salehi, H.; Razi, H.; Niazi, A.; Afsharifar, A.; van Tuyl, J.M. Molecular analysis of genetic diversity, population structure, and phylogeny of wild and cultivated tulips (Tulipa L.) by genic microsatellites. Hortic. Environ. Biotechnol. 2018, 59, 875–888. [Google Scholar] [CrossRef]
- Li, J.; Price, M.; Su, M.D.; Zhang, Z.; Yu, Y.; Xie, D.F.; Zhou, S.D.; He, X.J.; Gao, X.F. Phylogeny and comparative analysis for the plastid genomes of five Tulipa (Liliaceae). BioMed. Res. Int. 2021, 2021, 6648429. [Google Scholar]
- Van Heusden, A.W.; Jongerius, M.C.; van Tuyl, J.M.; Straathof, T.H.P.; Mes, J.J. Molecular assisted breeding for disease resistance in lily. Acta Hortic. 2002, 572, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Shahin, A.; Arens, P.; van Heusden, S.; van Tuyl, J.M. Conversion of molecular markers linked to Fusarium and virus resistance in Asiatic lily hybrids. Acta Hortic. 2009, 836, 131–136. [Google Scholar] [CrossRef]
- Shahin, A.; Arens, P.; van Heusden, A.W.; van der Linden, G.; van Kaauwen, M.; Khan, N.; Schouten, H.J.; van de Weg, W.E.; Visser, R.G.V.; van Tuyl, J.M. Genetic mapping in Lilium: Mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances. Plant. Breed. 2011, 130, 372–382. [Google Scholar] [CrossRef]
- Smulders, M.J.M.; Vukosavljev, M.; Shahin, A.; van de Weg, W.; Arens, P. High throughput marker development and application in horticultural crops. Acta Hortic. 2012, 961, 457–551. [Google Scholar] [CrossRef] [Green Version]
- Tang, N.; van der Lee, T.; Shahin, A.; Holdinga, M.; Bijman, P.; Caser, M.; Viesser, R.G.F.; van Tuyl, J.M.; Arens, P. Genetic mapping of resistance to Fusarium oxysporum f. sp. tulipae in tulip. Mol. Breed. 2015, 35, 122. [Google Scholar] [CrossRef] [Green Version]
- Kishi-Kaboshi, M.; Aida, R.; Sasaki, K. Genome engineering in ornamental plants: Current status and future prospects. Plant. Physiol. Biochem. 2018, 131, 47–52. [Google Scholar] [CrossRef]
- Ahn, C.H.; Ramya, M.; An, H.R.; Park, P.M.; Kim, Y.-J.; Lee, S.Y.; Jang, S. Progress and challenges in the improvement of ornamental plants by genome editing. Plants 2020, 9, 687. [Google Scholar] [CrossRef]
- Giovannini, A.; Laura, M.; Nesi, B.; Savona, M.; Cardi, T. Genes and genome editing tools for breeding desirable phenotypes in ornamentals. Plant. Cell Rep. 2021, 40, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Yan, R.; Wang, C.; Wang, J.; Sun, H. Improvement of a genetic transformation system and preliminary study on the function of LpABCB21 and LpPILS7 based on somatic embryogenesis in Lilium pumilum DC. Fisch. Int. J. Mol. Sci. 2020, 21, 6784. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Li, C.; Gao, C. Application of CRISPS-Cas in agriculture and plant biotechnology. Mol. Cell Biol. 2020, 21, 661–677. [Google Scholar]
- Yan, R.; Wang, Z.; Ren, J.; Li, H.; Liu, N.; Sun, H. Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven. Int. J. Mol. Sci. 2019, 20, 2920. [Google Scholar] [CrossRef] [Green Version]
- Van Scheepen, J.; Moerman, A.; Bodegom, S. Hippeastrum cultivars zoals die in teelt en handel zijn. Bloembollenvisie 2007, 125, 29–30. [Google Scholar]
- Read, V.M. Hippeastrum, the Gardener’s Amaryllis, 1st ed.; Timber Press: Portland, OR, USA, 2004. [Google Scholar]
- Bodegom, S.; van Scheepen, J. KAVB Registraties 2015. In Bijlage Bloembollenvisie; Koninklijke Algemeene Vereeniging voor Bloembollencultuur: Hillegom, The Netherlands, 2016. [Google Scholar]
- Bodegom, S.; van Scheepen, J. KAVB Registraties 2016. In Bijlage Bloembollenvisie; Koninklijke Algemeene Vereeniging voor Bloembollencultuur: Hillegom, The Netherlands, 2017. [Google Scholar]
- Bodegom, S.; van Scheepen, J. KAVB Registraties 2017. In Bijlage Bloembollenvisie; Koninklijke Algemeene Vereeniging voor Bloembollencultuur: Hillegom, The Netherlands, 2018. [Google Scholar]
- Bodegom, S.; van Scheepen, J. KAVB Registraties 2018. In Bijlage Bloembollenvisie; Koninklijke Algemeene Vereeniging voor Bloembollencultuur: Hillegom, The Netherlands, 2019. [Google Scholar]
- Bodegom, S.R.; Bouman, R.; van Scheepen, J. KAVB Registraties 2019. In Bijlage Bloembollenvisie; Koninklijke Algemeene Vereeniging voor Bloembollencultuur: Hillegom, The Netherlands, 2020. [Google Scholar]
- Matthews, V. The International Lily Register and Checklist 2007; The Royal Horticultural Society: London, UK, 2007. [Google Scholar]
- Donald, D. The International Lily Register and Checklist 2007, 6th ed.; The Royal Horticultural Society: London, UK, 2019. [Google Scholar]
- Donald, D. The International Lily Register and Checklist 2007, 7th ed.; The Royal Horticultural Society: London, UK, 2019. [Google Scholar]
- Kington, S. The International Daffodil Register Classified List, 1st ed.; Royal Horticultural Society: London, UK, 2008; p. 1414. [Google Scholar]
- Underwood, M. The International Daffodil Register and Classified List (2008), 9th ed.; The Royal Horticultural Society: London, UK, 2016. [Google Scholar]
- Underwood, M. The International Daffodil Register and Classified List (2008), 10th ed.; The Royal Horticultural Society: London, UK, 2017. [Google Scholar]
- Underwood, M. The International Daffodil Register and Classified List (2008), 11th ed.; The Royal Horticultural Society: London, UK, 2018. [Google Scholar]
- Underwood, M. The International Daffodil Register and Classified List (2008), 12th ed.; The Royal Horticultural Society: London, UK, 2019. [Google Scholar]
- Underwood, M. The International Daffodil Register and Classified List (2008), 13th ed.; The Royal Horticultural Society: London, UK, 2020. [Google Scholar]
- Underwood, M. Cumulative List of Daffodils Cultivars Names Registered between 1 July 2017 and 30 June 2019; The Royal Horticultural Society: London, UK, 2019. [Google Scholar]
- Bowes, S.A. Breeding for basal rot resistance in Narcissus. Acta Hortic. 1992, 325, 597–604. [Google Scholar] [CrossRef]
- Bowes, S.A.; Langton, F.A.; Hanks, G.R.; Linfield, C.A. An end in sight for basal rot. Grower 1996, 125, 34–35. [Google Scholar]
- Carder, J.H.; Grant, C.L. Breeding for resistance to basal rot in Narcissus. Acta Hortic. 2002, 570, 255–262. [Google Scholar] [CrossRef]
- DaffSeek. Daffodil Database with Photos. 2021. Available online: https://daffseek.org/ (accessed on 29 June 2021).
- Van Scheepen, J.; Bodegom, S. Nieuwe groep bij tulpen: Coronet Groep. Greenity 2018, 13, 40–41. [Google Scholar]
- Van Scheepen, J.; Bodegom, S. New group for tulips: Coronet Group. Fauna & Flora International. 2019. Available online: https://aiph.org/floraculture/news/bulbs-new-group-for-tulips-coronet-group/ (accessed on 29 June 2021).
- Arens, P.; Tang, N.; Marasek-Ciolakowska, A.; Fu, Y.; van Tuyl, J.M. Resistance breeding in ornamentals. In Proceedings of the XII International Symposium on Flower Bulbs and Herbaceous Perennials, Kunming, China, 28 June–2 July 2016. [Google Scholar]
Method of 2n Gamete Induction | Crop | Species/Cultivars | Explant/Treatment/Hybridisation | Ploidy Level of Progeny Plants | References |
---|---|---|---|---|---|
Nitrous oxide (N2O) gas | Lilium | Oriental × Asiatic (OA) hybrids | Flower buds 5–10 mm in length; 6 bars (6 × 105 Pa) *, for 24 and 48 h; Formation of 2n pollen and 2n egg cells | Crosses both as male and female: AA × OA and OA × AA; triploids, tetraploids plants | [183,184] |
Asiatic hybrids | Flower buds at different meiotic stages; 6 atm (6.08 × 105 Pa); 24 h | Tetraploid cultivars were pollinated with the N2O-treated pollen; tetraploid offspring | [185] | ||
Asiatic hybrid ‘Regata’ and Lilium longiflorum ‘Hinomoto’ | Flower buds (17–22 mm); 6 atm (6.08 ×105 Pa); 24 h | - | [188] | ||
Lilium × formolongi | Induction of 2n pollen: flower buds (19–23 mm); 6 atm (6.08 × 105 Pa); 24 h Induction of 4n embryo: plants treated with N2O 13 days after the pollination; 72 h; 6 atm (6.08 × 105 Pa) | Tetraploid seedlings developed from zygotic embryo treated with N2O gas | [186] | ||
Asiatic and Oriental hybrids; Longiflorum × Asiatic (LA) hybrids | Flower buds (1–10 mm); 6 atm (6.08 × 105 Pa); 48 h; | Backcrossing the N2O-treated pollen to Lilium × formolongi; triploid BC1 plants | [189] | ||
Oriental × Trumpet (OT) ‘Nymph’, ‘Gluhwein’, ‘Yelloween’ and ‘Shocking’ | Flower buds; prophase I–metaphase I stage of meiosis; 600 kPa (6 × 105 Pa); 48 h | - | [187] | ||
Tulipa | Tulipa gesneriana, and Tulipa fosteriana cultivars | Bulbs 6 atm (6.08 × 105 Pa); 24 or 48 h; treated plants produced a mixture of n, 2n and aneuploid pollen | Low triploid formation in crosses with the N2O-treated pollen | [181] | |
Colchicine | Lilium | Oriental cultivars ‘Acapulco’ and ‘Con Amore’ | Flower buds/0.02–0.2% colchicine injection for 72 h | Crosses of mutated cultivars (2n eggs) with n pollen of ‘Acapulco’, ‘Con Amore’; diploid, triploid and aneuploid progenies | [187] |
Caffeine | Lilium | OA hybrids | Flower buds of 20–23 mm and 34–37 mm in length; 0.3% caffeine injection | F1 OA hybrid backcrossed with Asiatic (A × OA; OA × A); triploid progenies | [168] |
Interspecific hybridisation | Lilium | Longiflorum-Rubellum (LR) hybrids | BC1 progeny plants were obtained from back-crossing amphidiploid LLRR with L. longiflorum; BC1 plants were pollinated with tetraploid (LLLL) L. longiflorum | Triploid BC1 LLR hybrids; aneuploid BC2 LLLR hybrids | [190] |
OA hybrids | Selection of 2n gametes producing genotypes and backcrossing with Asiatic cultivar | 3x and 4x AOA hybrids | [162,163] | ||
LA and OA hybrids | BC1 progeny plants were obtained from LA × AA, AA × LA and AA × OA crosses; F2 LA hybrids were obtained from LA × LA crosses | Allotriploid BC1 LA and OA hybrids (unilateral sexual polyploidisation); allotetraploid F2 LA progenies, (bilateral sexual polyploidisation) | [166] | ||
LA and OA hybrids | BC1 progeny plants were obtained from LA × AA and AA × OA crosses. | Allotriploid BC1 LA and OA hybrids with numerous recombinant chromosomes | [171] | ||
Martagon × Asiatic (MA); OT hybrids | BC1 progenies were obtained from MA × AA and OT × OO crosses; BC2 progenies of triploid OOT × OO hybrids | Diploid, triploid and aneuploid BC1 progenies of the OT hybrids: aneuploid BC2 progenies of triploid OOT hybrids; triploid and aneuploid BC1 progenies of the MA hybrids | [191] | ||
Lilium auratum × Lilum henryi (AuH) | Selection of 2n gametes producing genotypes and backcrossing with Oriental hybrids | 3x Oriental–Auratum–Henryi (OAuH) hybrids | [96] | ||
LA hybrids | Interploidy cross LA × AAAA; in which LA hybrid produced 2n eggs | Odd-allotetraploids LAAA hybrid | [97,192] | ||
Tulipa | T. gesneriana × T. fosteriana (Darwin hybrids) | F1, BC1 and BC2 progenies of Darwin hybrids obtained by backcrossing to T. gesneriana | Diploid and tetraploid BC1; diploid and aneuploid BC2 hybrids | [167] | |
Darwin hybrids | 2n gamete producing F1 Darwin hybrids were crossed with diploid and triploid T. gesneriana cultivars | Diploids and triploids from 2x × 2x (2n); tetraploid and pentaploids from 3x × 2x (2n) crosses; triploids and aneuploids from 2x × 3x crosses | [149,159] |
Genus | Species/Cultivars | Explant | Method (Agent, Concentration, Time of Treatment) | New Characteristics | References |
---|---|---|---|---|---|
Lilium | Asiatic lily (Lilium hybrida L. ‘Pollyanna’ | Bulb scales segments | Oryzalin: 30–200 µM for 2–6 h (0.001%, 0.003%, 0.005%, 0.007% or 0.01%) for 2, 4 or 6 h | Delayed rooting, shorter roots, shorter leaves | [199] |
Lilium pumilum, Lilium sargentiae, Lilium tsingtauense | Colchicine, 0.02% or 0.04%, and oryzalin, 0.006% or 0.01%, for 24 or 48 h | Thicker and shorter leaves, fewer stomata per leaf area unit | [210] | ||
Lilium martagon var. album | Bulb scales segments | Colchicine: 0.5 (0.05%) * or 1.0 (0.1%) g L−1 for 4 h Oryzalin: 10 and 100 mg L−1 (0.001% and 0.01%, respectively) for 4 h Oryzalin: 0.5 and 5.0 mg L−1 (0.00005% and 0.0005%, respectively) exposure on medium for 16 weeks Trifluralin: 0.5 or 5.0 mg L−1 (0.00005% and 0.0005%, respectively) exposure on medium for 16 weeks | - | [215] | |
Lilium davidii var. unicolor Salisb | Tissue culture bulb | Colchicine: 0.03%, 0.05% or 0.08% for 32, 40, or 48 h Oryzalin: 0.002%, 0.005%, 0.008% or 0.01% for 3, 6, 9, 12 or 24 h | Larger flower, thicker leaves, lower stomatal density, larger guard cells | [212] | |
Lilium × formolongi × Oriental hybrid | Basal scale segments | Colchicine: 1.25 (0.004%) or 2.50 (0.008%) mM for 18, 24 or 36 h | Thicker epidermal and spongy tissue, more and thicker thylakoid lamellae, higher chlorophyll and carotenoid contents, Higher net photosynthetic rate (Pn) and maximum net photosynthetic rate (Pmax) | [195] (polyploidy induction) [214] (polyploid analysis) | |
Lilium distichum Nakai, Lilium cernuum Komar | Somatic embryos | Colchicine: 0.01%, 0.05% or 0.1%; v/v for 24, 48 or 72 h | More leaves, broader leaves, larger stomata, higher chlorophyll content | [209] | |
Lilium regale | Bulb scales | Colchicine: 0.01%, 0.05% or 0.1%; v/v for 6, 12 or 24 h | Increased length of stomata and chloroplast number of guard cell, lower stomata number per mm2 | [216] | |
Asiatic lily (‘Petit Brigitte’, ‘Orange Pixie’, ‘Black Bird’, ‘Pollyanna’) | Bulb scales | Oryzalin: 0.001%, 0.002%, 0.003% or 0.005% for 4 h | - | [207] | |
Lilium rosthorinii ‘Diels’ | Germinated seeds | Colchicine: 0.025–01% for 12–36 h Oryzalin: 0.005–0.02% for 12–36 h | Larger leaves, higher germination rate of bulblets | [196] | |
Lilium davidii var. unicolor | Bulb scales | Colchicine: 0.025%, 0.05% or 0.1% (w/v) for 24 h | Fewer leaves, greater leaf width, lower stomata density and longer guard cell length | [217] | |
Narcissus | 12 cultivars of N. × poetaz | Twin scales | Colchicine: 0.1% for 8 h | - | [218] |
Tulipa | ‘Fringed Black’, breeding clones | Flower stems | Oryzalin; amiprophos methyl (AMP): 5 (0.0005%) or 10 (0.001%) mg L−1 7 or 14 days | - | [200] |
‘Victor’, ‘Fringed Black’ and breeding clone Pol-D 32 | In vitro adventitious shoot cultures | Colchicine, 200 mg L−1 (0.02%); oryzalin; 5 mg L−1 (0.0005%); amiprophos methyl, 15 mg L−1 (0.0015%); or trifluralin, 100 mg L−1 (0.01%) | Smaller flower, shorter flower scapes, reduced leaf width, longer stomata, larger pollen grain diameter, lower pollen fertility | [148] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marasek-Ciolakowska, A.; Sochacki, D.; Marciniak, P. Breeding Aspects of Selected Ornamental Bulbous Crops. Agronomy 2021, 11, 1709. https://doi.org/10.3390/agronomy11091709
Marasek-Ciolakowska A, Sochacki D, Marciniak P. Breeding Aspects of Selected Ornamental Bulbous Crops. Agronomy. 2021; 11(9):1709. https://doi.org/10.3390/agronomy11091709
Chicago/Turabian StyleMarasek-Ciolakowska, Agnieszka, Dariusz Sochacki, and Przemysław Marciniak. 2021. "Breeding Aspects of Selected Ornamental Bulbous Crops" Agronomy 11, no. 9: 1709. https://doi.org/10.3390/agronomy11091709