Modeling the Effects of Nitrogen Fertilizer and Multiple Weed Interference on Soybean Yield
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Model Development
2.3. Statistical Analyses
3. Results
3.1. Effect of Nitrogen on Soybean-Weed Competition under Single Weed Interference
3.2. Effect of Nitrogen on Soybean-Weed Competition under Multiple Weed Interference
3.3. Responses of Weed-Free Soybean Yield and Multiple-Weed Competitiveness to Nitrogen
3.4. Combined Model for Soybean Yield Affected by Multiple-Weed Competitiveness and Applied Nitrogen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Osborne, S.L.; Riedell, W.E. Starter nitrogen fertilizer impact on soybean yield and quality in the Northern Great Plains. Agron. J. 2006, 98, 1569–1574. [Google Scholar] [CrossRef]
- Li, J.R. The scientific knowledge of applying fertilizer technique for soybean. J. Jili Agric. Sci. Technol. Coll. 2005, 14, 32–35. (In Chinese) [Google Scholar]
- Liu, X.; Jin, J.; Wang, G.; Herbert, S.J. Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crops Res. 2008, 105, 157–171. [Google Scholar] [CrossRef]
- Development of Agriculture and Market Regulation of Agricultural Products, Raw Materials and Food: Improving Living Standards of Rural Population of Primorsky Krai. Available online: http://www.agrodv.ru/ (accessed on 18 May 2016).
- China June Crop Area and Production Report. Available online: http://www.informaecon.com/samplereports/ChinaSampleReport.pdf (accessed on 23 May 2016).
- Sinegovskii, M.; Yuan, S.; Sinegovskaya, V.; Han, T. Current status of the soybean industry and research in the Russian Federation. Soybean Sci. 2018, 37, 1–7. [Google Scholar]
- Song, J.S.; Kim, J.W.; Im, J.H.; Lee, K.J.; Lee, B.W.; Kim, D.S. The effects of single- and multiple-weed interference on soybean yield in the Far-Eastern region of Russia. Weed Sci. 2017, 65, 371–380. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Abugho, S.B. Effects of water regime, nitrogen fertilization, and rice plant density on growth and reproduction of lowland weed Echinochloa crus-galli. Crop. Prot. 2013, 54, 142–147. [Google Scholar] [CrossRef]
- Leskovsek, R.; Datta, A.; Simoncic, A.; Knezevic, S.Z. Influence of nitrogen and plant density on the growth and seed production of common ragweed (Ambrosia artemisiifolia L.). J. Pest Sci. 2012, 85, 527–539. [Google Scholar] [CrossRef]
- Ampong-Nyarko, K.; De Datta, S.K. Effects of nitrogen application on growth, nitrogen use efficiency and rice-weed interaction. Weed Res. 1993, 33, 269–276. [Google Scholar] [CrossRef]
- Buchanan, G.A.; McLaughlin, R.D. Influence of nitrogen on weed competition in cotton. Weed Sci. 1975, 23, 324–328. [Google Scholar] [CrossRef]
- Dhima, K.V.; Eleftherohorinos, I.G. Influence of nitrogen on competition between winter cereals and sterile oat. Weed Sci. 2001, 49, 77–82. [Google Scholar] [CrossRef]
- Kim, D.S.; Marshall, E.J.P.; Brain, P.; Caseley, J.C. Modelling the effects of sub-lethal doses of herbicide and nitrogen fertilizer on crop-weed competition. Weed Res. 2006, 46, 492–502. [Google Scholar] [CrossRef]
- Naderi, R.; Ghadiri, H. Competition of wild mustard (Sinapis arvense L.) densities with rapeseed (Brassica napus L.) under different levels of nitrogen fertilizer. J. Agric. Sci. Tech. 2011, 13, 45–51. [Google Scholar]
- Wells, G.J. Annual weed competition in wheat crops: The effect of weed density and applied nitrogen. Weed Res. 1979, 19, 185–191. [Google Scholar] [CrossRef]
- Shafagh-Kolvanagh, J.; Zehtab-Salmasi, S.; Javanshir, A.; Moghaddam, M.; Nasab, A.D.M. Effects of nitrogen and duration of weed interference on grain yield and SPAD (chlorophyll) value of soybean (Glycine max (L.) Merrill.). J. Food Agric. Environ. 2008, 6, 368–373. [Google Scholar]
- Berti, A.; Zanin, G. Density equivalent: A method for forecasting yield loss caused by mixed weed populations. Weed Res. 1994, 34, 327–332. [Google Scholar] [CrossRef]
- Cousens, R. A simple model relating yield loss to weed density. Ann. Appl. Biol. 1985, 107, 239–252. [Google Scholar] [CrossRef]
- Kim, D.S.; Marshall, E.J.P.; Caseley, J.C.; Brain, P. Modelling interactions between herbicide dose and multiple weed species interference in crop-weed competition. Weed Res. 2006, 46, 175–184. [Google Scholar] [CrossRef]
- Lindquist, J.L.; Dieleman, J.A.; Mortensen, D.A.; Johnson, G.A.; Wyse-Pester, D.Y. Economic importance of managing spatially heterogeneous weed population. Weed Technol. 1998, 12, 7–13. [Google Scholar] [CrossRef]
- Song, J.S.; Chung, J.H.; Lee, K.J.; Kwon, J.; Kim, J.W.; Im, J.H.; Kim, D.S. Herbicide-based weed management for soybean production in the Far Eastern region of Russia. Agronomy 2020, 10, 1823. [Google Scholar] [CrossRef]
- Goyal, S.S.; Huffaker, R.C. Nitrogen toxicity in plants. In Nitrogen in Crop Production; Hauck, R.D., Ed.; ASA-CSSA-SSSA Inc.: Madison, WI, USA, 1984; pp. 97–118. [Google Scholar]
- Chism, W.J.; Birch, J.B.; Bingham, S.W. Nonlinear regressions for analyzing growth stage and quinclorac interactions. Weed Technol. 1992, 6, 898–903. [Google Scholar] [CrossRef]
- Genstat Committee. Reference Manual (Genstat Release 6.1); VSN International: Oxford, UK, 2002. [Google Scholar]
- Afza, R.; Hardason, G.; Zapata, F.; Danso, S.K.A. Effects of delayed soil and foliar N fertilization on yield and N2 fixation of soybean. Plant Soil 1987, 97, 361–368. [Google Scholar] [CrossRef]
- Caliskan, S.; Ozkaya, I.; Caliskan, M.E.; Arslan, M. The effects of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean-type soil. Field Crops Res. 2008, 108, 126–132. [Google Scholar] [CrossRef]
- Taylor, R.S.; Weaver, D.B.; Wood, C.W.; van Santen, E. Nitrogen application increases yield and early dry matter accumulation in late-planted soybean. Crop Sci. 2005, 45, 854–858. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Brandt, R.N. Nitrogen fertilizer rate effects on weed competitiveness is species dependent. Weed Sci. 2008, 56, 743–747. [Google Scholar] [CrossRef]
- Kazemeini, S.A.; Naderi, R.; Aliabadi, H.K. Effects of different densities of wild oat (Avena fatua L.) and nitrogen rates on oilseed rape (Brassica napus L.) yield. J. Ecol. Environ. 2013, 36, 167–172. [Google Scholar] [CrossRef]
- Cousens, R. Theory and reality of weed control thresholds. Plant Prot. Q. 1987, 2, 13–20. [Google Scholar]
- Zanin, G.; Berti, A.; Toniolo, L. Estimation of economic thresholds for weed control in winter wheat. Weed Res. 1993, 33, 459–467. [Google Scholar] [CrossRef]
Nitrogen (kg N ha−1) | Weed Species | Parameter Estimates | Pseudo R2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Y0 | β | |||||||||
2013 | 2014 | Pooled | 2013 | 2014 | Pooled | 2013 | 2014 | Pooled | ||
0 | A | 1.62 | 1.44 | 1.61 | 0.052 | 0.085 | 0.093 | 0.86 | 0.91 | 0.81 |
(0.095) | (0.086) | (0.096) | (0.0104) | (0.0132) | (0.0159) | |||||
B | 1.52 | 1.39 | 1.55 | 0.066 | 0.086 | 0.086 | 0.84 | 0.97 | 0.89 | |
(0.169) | (0.058) | (0.085) | (0.0259) | (0.0114) | (0.0177) | |||||
C | 1.64 | 1.40 | 1.56 | 0.047 | 0.063 | 0.046 | 0.80 | 0.92 | 0.65 | |
(0.101) | (0.079) | (0.131) | (0.0122) | (0.0089) | (0.0130) | |||||
12 | A | 1.73 | 1.81 | 1.77 | 0.130 | 0.118 | 0.127 | 0.86 | 0.84 | 0.84 |
(0.122) | (0.138) | (0.090) | (0.0324) | (0.0249) | (0.0206) | |||||
B | 1.74 | 1.82 | 1.78 | 0.135 | 0.148 | 0.142 | 0.96 | 0.86 | 0.90 | |
(0.085) | (0.163) | (0.093) | (0.0353) | (0.0582) | (0.0354) | |||||
C | 1.72 | 1.82 | 1.75 | 0.040 | 0.089 | 0.063 | 0.89 | 0.81 | 0.80 | |
(0.107) | (0.157) | (0.102) | (0.0079) | (0.0251) | (0.0125) | |||||
24 | A | 2.10 | 1.96 | 2.04 | 0.232 | 0.220 | 0.203 | 0.95 | 0.98 | 0.94 |
(0.104) | (0.048) | (0.070) | (0.0396) | (0.0175) | (0.0236) | |||||
B | 2.07 | 1.96 | 2.02 | 0.413 | 0.307 | 0.384 | 0.86 | 0.99 | 0.94 | |
(0.170) | (0.041) | (0.080) | (0.1170) | (0.0477) | (0.0664) | |||||
C | 2.18 | 1.96 | 2.08 | 0.082 | 0.093 | 0.090 | 0.88 | 0.95 | 0.92 | |
(0.141) | (0.073) | (0.077) | (0.0205) | (0.0106) | (0.0112) | |||||
36 | A | 2.39 | 2.16 | 2.26 | 0.545 | 0.594 | 0.529 | 0.98 | 0.98 | 0.98 |
(0.097) | (0.058) | (0.056) | (0.0839) | (0.1040) | (0.0603) | |||||
B | 2.40 | 2.16 | 2.25 | 0.438 | 0.291 | 0.369 | 0.91 | 0.94 | 0.92 | |
(0.184) | (0.105) | (0.096) | (0.1010) | (0.0568) | (0.0557) | |||||
C | 2.41 | 2.17 | 2.27 | 0.113 | 0.093 | 0.100 | 0.93 | 0.96 | 0.94 | |
(0.157) | (0.074) | (0.075) | (0.0218) | (0.0095) | (0.0100) |
Year | Parameter β | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ambrosia artemisiifolia (β1i) | Echinochloa crus-galli (β2i) | Beckmannia syzigachne (β3i) | |||||||
l1 | m1 | R2 | l2 | m2 | R2 | l3 | m3 | R2 | |
2013 | 0.052 | 1.067 | 0.99 | 0.114 | 1.041 | 0.72 | 0.037 | 1.032 | 0.87 |
(0.0071) | (0.0044) | (0.0606) | (0.0178) | (0.0082) | (0.0077) | ||||
2014 | 0.046 | 1.073 | 0.98 | 0.119 | 1.028 | 0.65 | 0.072 | 1.009 | 0.49 |
(0.0144) | (0.0099) | (0.0438) | (0.0130) | (0.0082) | (0.0043) | ||||
Pooled | 0.053 | 1.065 | 0.97 | 0.124 | 1.034 | 0.76 | 0.050 | 1.021 | 0.94 |
(0.0185) | (0.0111) | (0.0598) | (0.0165) | (0.0053) | (0.0039) |
Nitrogen (kg N ha−1) | Parameters | Pseudo R2 | |||||||
---|---|---|---|---|---|---|---|---|---|
Y0 | β | ||||||||
2013 | 2014 | Pooled | 2013 | 2014 | Pooled | 2013 | 2014 | Pooled | |
0 | 1.65 | 1.38 | 1.63 | 0.066 | 0.076 | 0.079 | 0.75 | 0.73 | 0.81 |
(0.105) | (0.093) | (0.071) | (0.0129) | (0.0097) | (0.0084) | ||||
12 | 1.71 | 1.79 | 1.75 | 0.094 | 0.141 | 0.121 | 0.87 | 0.80 | 0.82 |
(0.092) | (0.106) | (0.073) | (0.0129) | (0.0182) | (0.0117) | ||||
24 | 2.11 | 1.99 | 2.07 | 0.254 | 0.313 | 0.295 | 0.88 | 0.89 | 0.89 |
(0.110) | (0.080) | (0.066) | (0.0348) | (0.0256) | (0.0213) | ||||
36 | 2.40 | 2.14 | 2.25 | 0.472 | 0.454 | 0.463 | 0.85 | 0.87 | 0.86 |
(0.153) | (0.093) | (0.082) | (0.0630) | (0.0391) | (0.0341) |
Parameters | Pseudo R2 | |||||
---|---|---|---|---|---|---|
Y0i | βi | |||||
a | b | c | d | l | m | |
1.65 | 0.016 | 2.96 × 10−18 | 1.05 × 10−20 | 0.081 | 1.05 | 0.86 |
(0.064) | (0.357) | (0.207) | (0.0013) | (0.0062) | (0.003) |
Nitrogen (kg N ha−1) | Parameters and ETs a | |||||||
---|---|---|---|---|---|---|---|---|
Cn ($ ha−1) | Ch ($ ha−1) | Ca ($ ha−1) | Yo (Mg ha−1) | P ($ Mg−1) | L | H | ET b | |
0 | 0 | 87.2 | 17.7 | 1.65 | 650 | 0.075 | 0.90 | 1.46 |
12 | 16.2 | 87.2 | 17.7 | 1.84 | 650 | 0.125 | 0.90 | 0.90 |
24 | 32.3 | 87.2 | 17.7 | 2.03 | 650 | 0.202 | 0.90 | 0.57 |
36 | 48.5 | 87.2 | 17.7 | 2.22 | 650 | 0.311 | 0.90 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.-S.; Im, J.-H.; Kim, J.-W.; Kim, D.-G.; Lim, Y.; Yook, M.-J.; Lim, S.-H.; Kim, D.-S. Modeling the Effects of Nitrogen Fertilizer and Multiple Weed Interference on Soybean Yield. Agronomy 2021, 11, 515. https://doi.org/10.3390/agronomy11030515
Song J-S, Im J-H, Kim J-W, Kim D-G, Lim Y, Yook M-J, Lim S-H, Kim D-S. Modeling the Effects of Nitrogen Fertilizer and Multiple Weed Interference on Soybean Yield. Agronomy. 2021; 11(3):515. https://doi.org/10.3390/agronomy11030515
Chicago/Turabian StyleSong, Jong-Seok, Ji-Hoon Im, Jin-Won Kim, Dong-Gil Kim, Yeonhwa Lim, Min-Jung Yook, Soo-Hyun Lim, and Do-Soon Kim. 2021. "Modeling the Effects of Nitrogen Fertilizer and Multiple Weed Interference on Soybean Yield" Agronomy 11, no. 3: 515. https://doi.org/10.3390/agronomy11030515
APA StyleSong, J.-S., Im, J.-H., Kim, J.-W., Kim, D.-G., Lim, Y., Yook, M.-J., Lim, S.-H., & Kim, D.-S. (2021). Modeling the Effects of Nitrogen Fertilizer and Multiple Weed Interference on Soybean Yield. Agronomy, 11(3), 515. https://doi.org/10.3390/agronomy11030515