Effects of Environmental Stresses (Heat, Salt, Waterlogging) on Grain Yield and Associated Traits of Wheat under Application of Sulfur-Coated Urea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Environmental Conditions:
2.2. Procedure/Protocols for Growth and Yield Parameters
2.3. Estimation of Plant NPK
2.4. Statistical Analysis
3. Results
3.1. Plant Growth Study under Abiotic Stress Amended with SCU
3.1.1. Waterlogging Stress and Wheat Growth during the Study
3.1.2. Salt Stress and Wheat Growth during the Study
3.1.3. Heat Stress and Wheat Growth during the Study
3.2. Plant Stress Response and Yield Aspects
3.2.1. Effect of Waterlogging Stress on Yield of the Wheat Plant
3.2.2. Effect of Salt Stress on Yield of the Wheat Plant
3.2.3. Effect of Heat Stress on Yield of the Wheat Plant
3.2.4. Effect of Combined Stress on Yield of the Wheat Plant
3.2.5. NPK in the Plant and Stress Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ding, J.; Huang, Z.; Zhu, M.; Li, C.; Zhu, X.; Guo, W. Does cyclic water stress damage wheat yield more than a single stress? PLoS ONE 2018, 13, e0195535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Xia, Y.; Liu, B.; Chang, C.; Xiao, L.; Shen, J.; Tang, L.; Cao, W.; Zhu, Y. Individual and combined effects of jointing and booting low-temperature stress on wheat yield. Eur. J. Agron. 2020, 113, 125989. [Google Scholar] [CrossRef]
- Anosheh, H.P.; Emam, Y.; Ashraf, M.; Foolad, M. Exogenous application of salicylic acid and chlormequat chloride alleviates negative effects of drought stress in wheat. Adv. Stud. Biol. 2012, 4, 501–520. [Google Scholar]
- Searchinger, T.; Hanson, C.; Ranganathan, J.; Lipinski, B.; Waite, R.; Winterbottom, R.; Dinshaw, A.; Heimlich, R.; Boval, M.; Chemineau, P. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050; Final Report; WRI: Washington, DC, USA, 2019. [Google Scholar]
- Altaf, A.; Gull, S.; Zhu, X.; Zhu, M.; Rasool, G.; Ibrahim, M.E.H.; Aleem, M.; Uddin, S.; Saeed, A.; Shah, A.Z. Study of the effect of peg-6000 imposed drought stress on wheat (Triticum aestivum L.) cultivars using relative water content (RWC) and proline content analysis. Pak. J. Agric. Sci. 2021, 58, 357–367. [Google Scholar]
- Prasad, P.V.; Pisipati, S.; Ristic, Z.; Bukovnik, U.; Fritz, A. Impact of nighttime temperature on physiology and growth of spring wheat. Crop. Sci. 2008, 48, 2372–2380. [Google Scholar] [CrossRef]
- Sattar, A.; Sher, A.; Ijaz, M.; Ul-Allah, S.; Rizwan, M.S.; Hussain, M.; Jabran, K.; Cheema, M.A. Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS ONE 2020, 15, e0232974. [Google Scholar]
- Cohen, I.; Zandalinas, S.I.; Fritschi, F.B.; Sengupta, S.; Fichman, Y.; Azad, R.K.; Mittler, R. The impact of water deficit and heat stress combination on the molecular response, physiology, and seed production of soybean. Physiol. Plant. 2021, 172, 41–52. [Google Scholar] [CrossRef]
- Zahra, N.; Shaukat, K.; Hafeez, M.B.; Raza, A.; Hussain, S.; Chaudhary, M.T.; Akram, M.Z.; Kakavand, S.N.; Saddiq, M.S.; Wahid, A. Physiological and Molecular Responses to High, Chilling, and Freezing Temperature in Plant Growth and Production: Consequences and Mitigation Possibilities. In Harsh Environment and Plant Resilience; Springer: Berlin, Germany, 2021; p. 235. [Google Scholar]
- Yu, G.; Zhang, X.; Ma, H. Changes in the physiological parameters of SbPIP1-transformed wheat plants under salt stress. Int. J. Genom. 2015, 2015, 384356. [Google Scholar]
- Docimo, T.; De Stefano, R.; Cappetta, E.; Piccinelli, A.L.; Celano, R.; De Palma, M.; Tucci, M. Physiological, biochemical, and metabolic responses to short and prolonged saline stress in two cultivated cardoon genotypes. Plants 2020, 9, 554. [Google Scholar] [CrossRef]
- Pezo, C.; Valdebenito, S.; Flores, M.F.; Oyanedel, E.; Vidal, K.; Neaman, A.; Peñaloza, P. Impact of Mother Plant Saline Stress on the Agronomical Quality of Pepper Seeds. J. Soil Sci. Plant Nutr. 2020, 20, 2600–2605. [Google Scholar] [CrossRef]
- Benidire, L.; El Khalloufi, F.; Oufdou, K.; Barakat, M.; Tulumello, J.; Ortet, P.; Heulin, T.; Achouak, W. Phytobeneficial bacteria improve saline stress tolerance in Vicia faba and modulate microbial interaction network. Sci. Total Environ. 2020, 729, 139020. [Google Scholar] [CrossRef]
- Galicia-Campos, E.; Ramos-Solano, B.; Montero-Palmero, M.; Gutierrez-Mañero, F.J.; García-Villaraco, A. Management of Plant Physiology with Beneficial Bacteria to Improve Leaf Bioactive Profiles and Plant Adaptation under Saline Stress in Olea europea L. Foods 2020, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Bhusal, N.; Lee, M.; Han, A.R.; Han, A.; Kim, H.S. Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings using morphological and physiological parameters. For. Ecol. Manag. 2020, 465, 118099. [Google Scholar] [CrossRef]
- Wu, L.; Han, X.; Islam, S.; Zhai, S.; Zhao, H.; Zhang, G.; Cui, G.; Zhang, F.; Han, W.; You, X. Effects of sowing mode on lodging resistance and grain yield in winter wheat. Agronomy 2021, 11, 1378. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Zhang, C.; Tian, Y.-a.; Lei, X.; Li, D.; Bai, S.; Deng, X.; Lin, H. Physiological and transcriptional responses of Phalaris arundinacea under waterlogging conditions. J. Plant Physiol. 2021, 261, 153428. [Google Scholar] [CrossRef]
- Bhusal, N.; Kim, H.S.; Han, S.-G.; Yoon, T.-M. Photosynthetic traits and plant–water relations of two apple cultivars grown as bi-leader trees under long-term waterlogging conditions. Environ. Exp. Bot. 2020, 176, 104111. [Google Scholar] [CrossRef]
- Zörb, C.; Ludewig, U.; Hawkesford, M.J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci. 2018, 23, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Agami, R.A.; Alamri, S.A.; Abd El-Mageed, T.; Abousekken, M.; Hashem, M. Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agric. Water Manag. 2018, 210, 261–270. [Google Scholar] [CrossRef]
- Gooding, M.; Pinyosinwat, A.; Ellis, R. Responses of wheat grain yield and quality to seed rate. J. Agric. Sci. 2002, 138, 317–331. [Google Scholar] [CrossRef]
- Ghafoor, I.; Habib-ur-Rahman, M.; Ali, M.; Afzal, M.; Ahmed, W.; Gaiser, T.; Ghaffar, A. Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environ. Sci. Pollut. Res. 2021, 28, 43528–43543. [Google Scholar] [CrossRef]
- Eghbali Babadi, F.; Yunus, R.; Abbasi, A.; Masoudi Soltani, S. Response surface method in the optimization of a rotary pan-equipped process for increased efficiency of slow-release coated urea. Processes 2019, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Watson, M. Plant Analysis Handbook: A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Micro Macro International Inc.: Athens, GA, USA, 1992; Volume 1, p. 82. [Google Scholar]
- Chen, Z.; Zhou, M.; Newman, I.A.; Mendham, N.J.; Zhang, G.; Shabala, S. Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct. Plant Biol. 2007, 34, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-M.; Wei, A.-L.; Zheng, D.-M. Photosynthetic characteristics of non-leaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear. Photosynthetica 2001, 39, 239–244. [Google Scholar] [CrossRef]
- Lu, Y.; Yan, Z.; Li, L.; Gao, C.; Shao, L. Selecting traits to improve the yield and water use efficiency of winter wheat under limited water supply. Agric. Water Manag. 2020, 242, 106410. [Google Scholar] [CrossRef]
- Jixin, W.C.L. Spectraphotometry with Vanadium Phosphomolybdate-Nile Blue Multicomponent Complex and Determination of Vanadium in Monomineral Silicate. Chin. J. Anal. Chem. 1984, 10, 37–40. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954.
- WHEELER, O.H.; MATEOS, J.L. The Ultraviolet Absorption of Isolated Double Bonds1. J. Org. Chem. 1956, 21, 1110–1112. [Google Scholar] [CrossRef]
- d Steel, R.G.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach; McGraw-Hill: New York, NY, USA, 1986. [Google Scholar]
- Schirrmann, M.; Giebel, A.; Gleiniger, F.; Pflanz, M.; Lentschke, J.; Dammer, K.-H. Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery. Remote Sens. 2016, 8, 706. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.G.M.-D.; Zeng, Y.; Yang, X.; Anwaar, H.A.; Mansha, M.Z.; Hanif, C.M.S.; Ikram, K.; Ullah, A.; Alghanem, S.M.S. Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage. Saudi J. Biol. Sci. 2020, 27, 2116–2123. [Google Scholar] [CrossRef]
- Ahmed, H.G.M.-D.; Sajjad, M.; Li, M.; Azmat, M.A.; Rizwan, M.; Maqsood, R.H.; Khan, S.H. Selection criteria for drought-tolerant bread wheat genotypes at seedling stage. Sustainability 2019, 11, 2584. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.; Rafii, M.; Ismail, M.R.; Juraimi, A.S.; Rahim, H.; Asfaliza, R.; Latif, M.A. Waterlogging tolerance of crops: Breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed Res. Int. 2013, 2013, 963525. [Google Scholar] [CrossRef]
- Malik, A.I.; Colmer, T.D.; Lambers, H.; Schortemeyer, M. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Funct. Plant Biol. 2001, 28, 1121–1131. [Google Scholar] [CrossRef]
- Ahmed, S.; Nawata, E.; Sakuratani, T. Effects of waterlogging at vegetative and reproductive growth stages on photosynthesis, leaf water potential and yield in mungbean. Plant Prod. Sci. 2002, 5, 117–123. [Google Scholar] [CrossRef]
- Praharaj, C.; Singh, U.; Singh, S.; Singh, N.; Shivay, Y. Supplementary and life-saving irrigation for enhancing pulses production, productivity and water-use efficiency in India. Indian J. Agron. 2016, 61, 249–261. [Google Scholar]
- Joshi, R.; Sahoo, K.K.; Tripathi, A.K.; Kumar, R.; Gupta, B.K.; Pareek, A.; Singla-Pareek, S.L. Knockdown of an inflorescence meristem-specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ. 2018, 41, 936–946. [Google Scholar] [CrossRef]
- Sarkar, J.; Chakraborty, B.; Chakraborty, U. Plant growth promoting rhizobacteria protect wheat plants against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury. J. Plant Growth Regul. 2018, 37, 1396–1412. [Google Scholar] [CrossRef]
- Pospíšil, P. Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Front. Plant Sci. 2016, 7, 1950. [Google Scholar] [CrossRef] [PubMed]
- Brestic, M.; Zivcak, M. PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: Protocols and applications. In Molecular Stress Physiology of Plants; Springer: Berlin, Germany, 2013; pp. 87–131. [Google Scholar]
- Narayanan, S. Membrane Fluidity and Compositional Changes in Response to High Temperature Stress in Wheat. In Physiological, Molecular, and Genetic Perspectives of Wheat Improvement; Springer: Cham, Switzerland, 2021; pp. 115–123. [Google Scholar]
- Morsy, M.R.; Jouve, L.; Hausman, J.-F.; Hoffmann, L.; Stewart, J.M. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J. Plant Physiol. 2007, 164, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Demirel, U.; Morris, W.L.; Ducreux, L.J.; Yavuz, C.; Asim, A.; Tindas, I.; Campbell, R.; Morris, J.A.; Verrall, S.R.; Hedley, P.E. Physiological, biochemical, and transcriptional responses to single and combined abiotic stress in stress-tolerant and stress-sensitive potato genotypes. Front. Plant Sci. 2020, 11, 169. [Google Scholar] [CrossRef]
- Shivay, Y.; Pooniya, V.; Prasad, R.; Pal, M.; Bansal, R. Sulphur-coated urea as a source of sulphur and an enhanced efficiency of nitrogen fertilizer for spring wheat. Cereal Res. Commun. 2016, 44, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Ali, K.; Munsif, F.; Zubair, M.; Hussain, Z.; Shahid, M.; Din, I.U.; Khan, N. Management of organic and inorganic nitrogen for different maize varieties. Sarhad J. Agric. 2011, 27, 525–529. [Google Scholar]
Treatments/ Parameters | 1000 Grain Weight (g) | Harvest Index (%) | Yield (Mann/Acre) | Yield (kg ha−1) |
---|---|---|---|---|
Control | 56.75 a ± 2.30 | 44.09 d ± 1.31 | 103.90 a ± 2.65 | 10270.10 a ± 14 |
Waterlogging | 46.95 c ± 2.12 | 54.41 b ± 1.46 | 61.05 b ± 1.31 | 6034.50 b ± 08 |
Salt stress | 48.50 b ± 2.10 | 56.96 a ± 1.23 | 55.37 c ± 1.11 | 5473.16 c ± 08 |
Heat stress | 21.95 d ± 1.10 | 36.54 e ± 0.98 | 36.66 d ± 1.09 | 3623.47 d ± 09 |
Combined stress | 22.80 d ± 0.98 | 34.82 f ± 1.08 | 23.36 f ± 0.78 | 2309.10 f ± 11 |
Correlation | PH | T | LA | SPAD | S.P | SL | SW | S.S | GW.S | G.S | IGW | TGW | GY.P | B.P | HI | Ymann.ac | Ykg.ha | Pearson | Color |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | 0.357 | 0.148 | 0.89 | 0.293 | −0.075 | 0.531 | −0.051 | 0.481 | 0.064 | 0.782 | 0.789 | 0.649 | 0.634 | 0.24 | 0.649 | 0.649 | −1 | ||
T | 0.185 | 0.816 | 0.513 | 0.891 | 0.521 | 0.396 | 0.519 | 0.307 | 0.233 | 0.292 | 0.276 | 0.591 | 0.652 | −0.002 | 0.591 | 0.591 | −0.5 | ||
LA | 0.086 | 0.802 | 0.344 | 0.605 | 0.858 | 0.685 | 0.845 | 0.609 | 0.72 | 0.248 | 0.206 | 0.719 | 0.746 | 0.054 | 0.719 | 0.719 | 0 | ||
SPAD | 0.943 | 0.463 | 0.257 | 0.321 | −0.049 | 0.663 | −0.05 | 0.67 | 0.108 | 0.939 | 0.934 | 0.736 | 0.623 | 0.585 | 0.737 | 0.737 | 0.5 | ||
S.P | 0.12 | 0.904 | 0.598 | 0.359 | 0.439 | 0.175 | 0.435 | 0.049 | 0.083 | 0.098 | 0.113 | 0.469 | 0.601 | −0.274 | 0.469 | 0.469 | 1 | ||
SL | 0.029 | 0.679 | 0.943 | 0.143 | 0.478 | 0.554 | 0.997 | 0.435 | 0.866 | −0.108 | −0.145 | 0.556 | 0.67 | −0.326 | 0.555 | 0.555 | |||
SW | 0.371 | 0.494 | 0.829 | 0.429 | 0.239 | 0.714 | 0.534 | 0.981 | 0.799 | 0.737 | 0.708 | 0.94 | 0.844 | 0.45 | 0.94 | 0.94 | |||
S.S | −0.029 | 0.626 | 0.899 | 0.058 | 0.485 | 0.986 | 0.638 | 0.408 | 0.854 | −0.127 | −0.165 | 0.538 | 0.666 | −0.368 | 0.538 | 0.538 | |||
GW.S | 0.429 | 0.216 | 0.657 | 0.371 | 0 | 0.6 | 0.943 | 0.551 | 0.735 | 0.788 | 0.758 | 0.88 | 0.732 | 0.607 | 0.88 | 0.88 | |||
G.S | 0.429 | 0.216 | 0.657 | 0.371 | 0 | 0.6 | 0.943 | 0.551 | 1 | 0.188 | 0.148 | 0.688 | 0.697 | 0 | 0.687 | 0.687 | |||
IGW | 0.883 | 0.334 | 0.412 | 0.883 | 0.123 | 0.294 | 0.736 | 0.194 | 0.736 | 0.736 | 0.997 | 0.738 | 0.557 | 0.763 | 0.739 | 0.739 | |||
TGW | 0.943 | 0.185 | 0.257 | 0.886 | 0 | 0.2 | 0.6 | 0.116 | 0.657 | 0.657 | 0.971 | 0.726 | 0.547 | 0.751 | 0.726 | 0.726 | |||
GY.P | 0.486 | 0.617 | 0.714 | 0.6 | 0.478 | 0.486 | 0.886 | 0.406 | 0.771 | 0.771 | 0.765 | 0.6 | 0.957 | 0.315 | 1 | 1 | |||
B.P | 0.143 | 0.648 | 0.829 | 0.257 | 0.598 | 0.657 | 0.829 | 0.638 | 0.714 | 0.714 | 0.441 | 0.257 | 0.886 | 0.03 | 0.957 | 0.957 | |||
HI | 0.429 | 0 | −0.029 | 0.486 | −0.239 | −0.257 | 0.371 | −0.406 | 0.314 | 0.314 | 0.618 | 0.543 | 0.486 | 0.086 | 0.315 | 0.315 | |||
Ymann.ac | 0.486 | 0.617 | 0.714 | 0.6 | 0.478 | 0.486 | 0.886 | 0.406 | 0.771 | 0.771 | 0.765 | 0.6 | 1 | 0.886 | 0.486 | 1 | |||
Ykg.ha | 0.486 | 0.617 | 0.714 | 0.6 | 0.478 | 0.486 | 0.886 | 0.406 | 0.771 | 0.771 | 0.765 | 0.6 | 1 | 0.886 | 0.486 | 1 | |||
Spearman Values | −1 | −0.5 | 0 | 0.5 | 1 | ||||||||||||||
Color |
Pattern Matrix | Component 1 | Component 2 |
---|---|---|
SL | 1.091 | −0.424 |
S.S | 1.091 | −0.441 |
LA | 0.942 | |
G.S | 0.865 | |
B.P | 0.749 | 0.361 |
T | 0.662 | |
S.P | 0.628 | |
GY.P | 0.587 | 0.584 |
Ymann.ac | 0.587 | 0.584 |
Ykg.ha | 0.587 | 0.584 |
TGW | 1.07 | |
IGW | 1.062 | |
SPAD | 0.973 | |
HI | −0.463 | 0.882 |
PH | 0.834 | |
GW.S | 0.371 | 0.685 |
SW | 0.523 | 0.595 |
Treatments | P in Plant | K in Plant | N in Soil | N in Plant |
---|---|---|---|---|
(mg/kg) | (%) | (%) | (%) | |
Control | 0.31 d ± 0.01 | 1.2 d ± 0.12 | 0.08 a ± 0.001 | 2.8 d ± 0.2 |
Waterlogging | 0.26 c ± 0.02 | 1.13 c ± 0.11 | 0.09 b ± 0.002 | 2.01 c ± 0.2 |
Salt stress | 0.25 b ± 0.02 | 1.11 b ± 0.13 | 0.08 a ± 0.002 | 1.99 c ± 0.1 |
Heat stress | 0.24 b ± 0.01 | 1.09 b ± 0.09 | 0.07 a ± 0.003 | 1.89 b ± 0.12 |
Combined Stress | 0.21 a ± 0.01 | 0.98 a ± 0.01 | 0.09 a ± 0.001 | 1.33 a ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altaf, A.; Zhu, X.; Zhu, M.; Quan, M.; Irshad, S.; Xu, D.; Aleem, M.; Zhang, X.; Gull, S.; Li, F.; et al. Effects of Environmental Stresses (Heat, Salt, Waterlogging) on Grain Yield and Associated Traits of Wheat under Application of Sulfur-Coated Urea. Agronomy 2021, 11, 2340. https://doi.org/10.3390/agronomy11112340
Altaf A, Zhu X, Zhu M, Quan M, Irshad S, Xu D, Aleem M, Zhang X, Gull S, Li F, et al. Effects of Environmental Stresses (Heat, Salt, Waterlogging) on Grain Yield and Associated Traits of Wheat under Application of Sulfur-Coated Urea. Agronomy. 2021; 11(11):2340. https://doi.org/10.3390/agronomy11112340
Chicago/Turabian StyleAltaf, Adil, Xinkai Zhu, Min Zhu, Ma Quan, Sana Irshad, Dongyi Xu, Muhammad Aleem, Xinbo Zhang, Sadia Gull, Fujian Li, and et al. 2021. "Effects of Environmental Stresses (Heat, Salt, Waterlogging) on Grain Yield and Associated Traits of Wheat under Application of Sulfur-Coated Urea" Agronomy 11, no. 11: 2340. https://doi.org/10.3390/agronomy11112340
APA StyleAltaf, A., Zhu, X., Zhu, M., Quan, M., Irshad, S., Xu, D., Aleem, M., Zhang, X., Gull, S., Li, F., Shah, A. Z., & Zada, A. (2021). Effects of Environmental Stresses (Heat, Salt, Waterlogging) on Grain Yield and Associated Traits of Wheat under Application of Sulfur-Coated Urea. Agronomy, 11(11), 2340. https://doi.org/10.3390/agronomy11112340