Precision Nutrient Rates and Placement in Conservation Maize-Wheat System: Effects on Crop Productivity, Profitability, Nutrient-Use Efficiency, and Environmental Footprints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Characteristics
2.2. Treatment Details and Experimental Design
2.3. Crop Management
2.3.1. Tillage, Crop Establishment, and Weed Management
2.3.2. Water Management
2.4. Data Recording
2.5. Economic Analysis
2.6. Global Warming Potential (GWP)
2.7. Total Carbon Input and Output
2.8. Carbon Sustainability Index (CSI)
2.9. Statistical Analysis
3. Results
3.1. Weather during the Study Period
3.2. Crop Productivity
3.2.1. Maize
3.2.2. Wheat
3.2.3. Maize-Wheat System
3.3. Economic Profitability
3.4. Nutrient-Use Efficiency (NUE)
3.5. Carbon Budgeting and Carbon Sustainability Index (CSI)
3.6. Global Warming Potential (GWP)
3.7. Correlation Coefficient (r) Matrix
4. Discussion
4.1. Crop Productivity and Profitability
4.2. Nutrient-Use Efficiency
4.3. Carbon Budgeting and Carbon Sustainability Index (CSI)
4.4. GHG Mitigation Potential
4.5. Correlation Matrix
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jat, R.K.; Sapkota, T.B.; Singh, R.G.; Jat, M.L.; Kumar, M.; Gupta, R.K. Seven years of conservation agriculture in a rice–wheat rotation of Eastern Gangetic Plains of South Asia: Yield trends and economic profitability. Field Crop Res. 2014, 164, 199–210. [Google Scholar] [CrossRef]
- Government of Bihar. State Action Plan on Climate Change: Building Resilience through Development; Government of Bihar: Bihar, India, 2012. [Google Scholar]
- Sapkota, T.B.; Majumdar, K.; Jat, M.L.; Kumar, A.; Bishnoi, D.K.; Mcdonald, A.J.; Pampolino, M. Precision nutrient management in conservation agriculture-based wheat production of North-west India: Profitability, nutrient use efficiency and environmental footprint. Field Crop. Res. 2014, 155, 233–244. [Google Scholar] [CrossRef]
- Singh, V.K.; Shukla, A.K.; Singh, M.P.; Majumdar, K.; Mishra, R.P.; Rani, M.; Singh, S.K. Effect of site-specific nutrient management on yield, profit and apparent nutrient balance under pre-dominant cropping systems of Upper Gangetic Plains. Indian J. Agric. Sci. 2015, 85, 335–343. [Google Scholar]
- Kakraliya, S.K.; Jat, H.S.; Singh, I.; Sapkota, T.B.; Singh, L.K.; Sutaliya, J.M.; Sharma, P.C.; Jat, R.K.; Lopez-Ridaura, S.; Jat, M.L. Performance of portfolios of climate smart agriculture practices in a rice-wheat system of western Indo-Gangetic plains. Agric. Water Manag. 2018, 202, 122–133. [Google Scholar] [CrossRef]
- Jat, H.S.; Jat, R.K.; Singh, Y.; Parihar, C.M.; Jat, S.L.; Tetarwal, J.P.; Sidhu, H.S.; Jat, M.L. Nitrogen Management under Conservation Agriculture in Cereal-based Systems. Indian J. Fertil. 2016, 12, 76–91. [Google Scholar]
- Jat, M.L.; Gathala, M.K.; Saharawat, Y.S.; Ladha, J.K.; Yadvinder, S. Conservation Agriculture in Intensive Rice-Wheat Rotation of Western Indo-Gangetic Plains: Effect on Crop Physiology, Yield, Water Productivity and Economic Profitability. Int. J. Environ. Sci. Nat. Resour. 2019, 18, 555988. [Google Scholar] [CrossRef]
- Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Kumar, V.; Kumar, V.; Sharma, P.K. Effect of tillage and crop establishment methods on physical properties of a medium textured soil under a seven-year rice–wheat rotation. Soil Sci. Soc. Am. J. 2011, 75, 1851–1862. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Yadav, A.K.; Choudhary, V.; Sharma, P.C.; Gathala, M.K.; Jat, M.L.; McDonald, A. Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. Soil Tillage Res. 2019, 190, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, H.S.; Singh, M.; Singh, Y.; Blackwell, J.; Lohan, S.K.; Humphreys, E.; Jat, M.L.; Singh, V.; Singh, S. Development and evaluation of the Turbo Happy Seeder for sowing wheat into heavy rice residues in NW India. Field Crop. Res. 2015, 184, 201–212. [Google Scholar] [CrossRef]
- Kakraliya, S.K.; Jat, H.S.; Singh, I.; Jat, M.L. Effect of Climate Smart Agriculture Practices on Crop yields and Factor Productivity of Rice-Wheat Cropping System in Indo-Gangetic Plains of India. Indian J. Fertil. 2019, 15, 852–858. [Google Scholar]
- Sharma, R.K.; Jat, M.L.; Martin, K.L.; Chandna, P.; Choudhary, O.P.; Gupta, R.K.; Thind, H.S.; Uppal, H.S.; Khurana, H.S.; Uppal, R.K.; et al. Assessment of the nitrogen management strategy using an optical sensor for irrigated wheat. Agron. Sustain. Dev. 2011, 31, 589–603. [Google Scholar]
- Purba, J.; Sharma, R.K.; Jat, M.L.; Thind, H.S.; Gupta, R.K.; Chaudhary, O.P.; Chandna, P.; Khurana, H.S.; Kumar, A.; Uppal, H.S.; et al. Site specific fertilizer nitrogen management in irrigated transplanted rice (Oryza sativa) using an optical sensor. Precis. Agric. 2015, 1, 1–21. [Google Scholar]
- Majumdar, K.; Jat, M.L.; Shahi, V.B. Effect of spatial and temporal variability in cropping seasons and tillage practices on maize yield responses in eastern India. Better Crop.-South Asia 2012, 6, 4–6. [Google Scholar]
- Feliciano, D.; Nayak, D.; Vetter, S.; Hillier, J. CCAFS Mitigation Option Tool 2015. Available online: www.ccafs.cigar.org (accessed on 25 October 2018).
- IPCC. Climate Change 2013: The Physical Science Basis in Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2013; Stocker, T.F., Ed.; IPCC: Cambridge, UK; New York, NY, USA; pp. 710–716.
- Lal, R.; Kimble, J.M. Conservation tillage for carbon sequestration. Nutr. Cycl. Agroecosyst. 1997, 49, 243–253. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research 1984; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- SAS Institute. SAS/STAT User’s Guide; Version 8-1; SAS Inst.: Cary, NC, USA, 2001. [Google Scholar]
- Parihar, C.M.; Jat, S.L.; Singh, A.K.; Ghosh, A.; Rathore, N.S.; Kumar, B.; Pradhan, S.; Majumdar, K.; Satyanarayana, T.; Jat, M.L.; et al. Effects of precision conservation agriculture in a maize-wheat-mungbean rotation on crop yield, water-use and radiation conversion under a semiarid agro-ecosystem. Agric. Water Manag. 2017, 192, 306–319. [Google Scholar] [CrossRef]
- Jat, M.L. Climate smart agriculture in intensive cereal-based systems: Scalable evidence from Indo-Gangatic Plains. In Agriculture under Climate Change: Threats, Strategies and Policies; Belavadi, V.V., Nataraja Karaba, N., Gangadharappa, N.R., Eds.; Allied Publishers Pvt Ltd.: New Delhi, India, 2017; pp. 147–154. ISBN 978-93-85926-27-2d. [Google Scholar]
- Jat, M.L.; Gathala, M.K.; Saharawat, Y.S.; Tetarwal, J.P.; Gupta, R.; Yadvinder, S. Double no-till and permanent raised beds in maize–wheat rotation of northwestern Indo-genetic plains of India: Effects on crop yields water productivity, profitability and soil physical properties. Field Crop. Res. 2013, 149, 291–299. [Google Scholar] [CrossRef]
- Jat, M.L.; Dagar, J.C.; Sapkota, T.B.; Singh, Y.; Govaerts, B.; Ridaura, S.L.; Saharawat, Y.S.; Sharma, R.K.; Tetarwal, J.P.; Jat, R.K.; et al. Climate change and agriculture: Adaptation strategies and mitigation opportunities for food security in South Asia and Latin America. Adv. Agron. 2016, 137, 127–236. [Google Scholar]
- Singh, Y.; Singh, M.; Sidhu, H.S.; Humphreys, E.; Thind, H.S.; Jat, M.L.; Blackwell, J.; Singh, V. Nitrogen management for zero till wheat with surface retention of rice residues in north-west India. Field Crop. Res. 2015, 184, 183–191. [Google Scholar]
- Satyanarayana, T.; Majumdar, K.; Pampolino, M.; Johnston, A.M.; Jat, M.L.; Kuchanur, P.; Sreelatha, D.; Sekhar, J.C.; Kumar, Y.; Maheswaran, R. Nutrient Expert: A tool to optimise nutrient use and improve productivity of maize. Better Crop-South Asia 2012, 6, 18–21. [Google Scholar]
- Kumar, M.; Sheoran, P.; Yadav, A. Productivity potential of wheat (Triticum aestivum) in relation to different planting methods and nitrogen management strategies. Indian J. Agric. Sci. 2010, 80, 427–429. [Google Scholar]
- Scharf, P.C.; Shannon, D.K.; Palm, H.L.; Sudduth, K.A.; Drummond, S.T.; Kitchen, N.R.; Mueller, L.J.; Hubbard, V.C.; Oliveira, L.F. Sensor-Based Nitrogen Applications Out-Performed Producer-Chosen Rates for Corn in On-Farm Demonstrations. Agron. J. 2011, 103, 1683–1691. [Google Scholar]
- Ma, B.; Wu, T.; Shang, J. On-farm comparison of variable rates of nitrogen with uniform application to maize on canopy reflectance, soil nitrate, and grain yield. J. Plant Nutr. 2014, 177, 216–226. [Google Scholar] [CrossRef]
- Jat, R.D.; Jat, H.S.; Nanwal, R.K.; Yadav, A.K.; Bana, A.; Choudhary, K.M.; Kakraliya, S.K.; Sutaliya, J.M.; Sapkota, T.B.; Jat, M.L. Conservation agriculture and precision nutrient management practices in maize-wheat system: Effects on crop and water productivity and economic profitability. Field Crop. Res. 2018, 222, 111–120. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Gupta, R. Problems and challenges of no-till farming for the rice-wheat systems of the Indo-Gangetic plains in South Asia. In Sustainable Agriculture and the International Rice-Wheat System; Lal, R., Hobbs, P., Uphoff, N., Hansen, D.O., Eds.; Ohio State University: Columbus, OH, USA; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Dubey, A. Carbon Footprints of Agriculture in Ohio, USA and Punjab, India. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2008; p. 128. [Google Scholar]
- Dubey, A.; Lal, R. Carbon footprint and sustainability of Agricultural Production Systems in Punjab, India, and Ohio, USA. J. Crop Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- Mazzoncini, M.; Sapkota, T.B.; Barberi, P.; Antichi, D.; Risaliti, R. Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil Tillage Res. 2011, 114, 165–174. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Jat, R.K.; Singh, R.G.; Jat, M.L.; Stirling, C.M.; Jat, M.K.; Bijarniya, D.; Kumar, M.; Singh, Y.; Saharawat, Y.S.; et al. Soil organic carbon changes after seven years of conservation agriculture in a rice–Wheat system of the eastern Indo-Gangetic Plains. Soil Use Manag. 2017, 33, 81–89. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Sharma, P.C.; Kumar, V.; Yadav, A.K.; Choudhary, M.; Choudhary, V.; Gathala, M.K.; Sharma, D.K.; Jat, M.L.; et al. Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Arch. Agron. Soil Sci. 2017, 64, 531–545. [Google Scholar] [CrossRef]
Soil Properties | Value |
---|---|
Soil texture | Clay loam |
pH (1:2 :: soil:water) | 8.2 |
EC (dS m−1 ) (1:2 :: soil:water) | 128.9 |
Bulk Density; BD (g cm−3 ) | 1.6 |
Organic carbon; OC (%) | 0.62 |
Available N (kg ha−1) | 114 |
Available P (kg ha−1) | 15 |
Exchangeable K (kg ha−1) | 61 |
Treatments | Nutrient Ratio | Application Method | Residue Management | NPK Rates * | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Maize | Wheat | Maize | Wheat | |||||||
N | P2O5 | K2O | N | P2O5 | K2O | |||||
FFP-broadcast (CT) | 30% N Total P and K Basal + Remaining N in 2 equal split | Broadcast | Removed | Removed | 138.0 | 46.0 | 30.0 | 130.0 | 50.0 | 30.0 |
SR-broadcast (PB) | 30% N Total P and K Basal+ Remaining in 3 equal split | Broadcast | 100% Retained | Anchored | 160.0 | 60.0 | 40.0 | 150.0 | 60.0 | 40.0 |
SR-drilling (PB) | 30% N Total P and K Basal+ Remaining in 3 equal split | Drilling | 100% Retained | Anchored | 160.0 | 60.0 | 40.0 | 150.0 | 60.0 | 40.0 |
SR+GS-drilling (PB) | 30% N Total P and K Basal remaining N in 2 splits, based on GreenSeeker (GS) | Drilling | 100% Retained | Anchored | 157.7 | 60.0 | 40.0 | 149.9 | 60.0 | 40.0 |
NE-broadcast (PB) | 30% N Total P and K Basal+ Remaining in 3 equal split | Broadcast | 100% Retained | Anchored | 143.0 | 50.0 | 53.5 | 136.0 | 45.0 | 63.0 |
NE-drilling (PB) | 30% N Total P and K Basal+ Remaining in 3 equal split | Drilling | 100% Retained | Anchored | 143.0 | 50.0 | 53.5 | 136.0 | 45.0 | 63.0 |
NE+GS-drilling (PB) | 30% N Total P and K Basal− remaining N in 2 splits, split based on (GS) | Drilling | 100% Retained | Anchored | 155.5 | 50.0 | 53.5 | 142.1 | 45.0 | 63.0 |
Item/Commodity | Values (INR) | |
---|---|---|
2014–2015 | 2015–2016 | |
Maize grain (kg−1) | 12.5 | 13.0 |
Maize residue (ha−1) | 1.05 | 1.05 |
Maize seed (kg−1) | 200 | 200 |
Wheat grain (kg−1) | 14.0 | 15.0 |
Wheat residue (kg−1) | 2.3 | 2.3 |
Wheat seed (kg−1) | 25 | 25 |
Urea (kg−1) | 5.8 | 5.8 |
Di-ammonium-phosphate (kg−1) | 23 | 23 |
Muriate of potash (kg−1) | 16.2 | 16.2 |
Zinc sulphate; (kg−1) | 40 | 40 |
Harrowing (ha−1) | 1500 | 1500 |
Cultivator (ha−1) | 1000 | 1000 |
Planking (ha−1) | 450 | 450 |
Bed planter (ha−1) | 850 | 850 |
Seed drill (ha−1) | 1000 | 1000 |
Minimum support price (MSP) for maize (kg−1) | 13.25 | 13.65 |
Minimum support price (MSP) for wheat (kg−1) | 14.5 | 15.25 |
Wages Rate (person−1 day−1) | 193 | 204 |
USD ($) to INR Conversation rate | 62 | 66 |
Treatments a | Grain Yield (t/ha) | Net Return (USD/ha) | B:C Ratio | ||||||
---|---|---|---|---|---|---|---|---|---|
Maize | Wheat | System | Maize | Wheat | System | Maize | Wheat | System | |
2014–2015 | |||||||||
FFP-broadcast (CT) | 4.36 Db | 4.43 C | 8.68 E | 441 D | 715 D | 1156 E | 0.88 E | 1.27 D | 1.09 D |
SR-broadcast (PB) | 5.06 C | 4.89 B | 9.81 D | 578 C | 855 C | 1433 D | 1.12 D | 1.58 C | 1.35 C |
SR-drilling (PB) | 5.54 AB | 5.18 AB | 10.58 BC | 662 AB | 910 ABC | 1572 C | 1.23 BC | 1.61 C | 1.43 BC |
SR+GS-drilling (PB) | 5.59 AB | 5.19 AB | 10.64 BC | 670 AB | 914 ABC | 1585 BC | 1.25 ABC | 1.61 BC | 1.43 B |
NE-broadcast (PB) | 5.37 BC | 4.96 B | 10.20 CD | 639 BC | 888 BC | 1528 CD | 1.22 CD | 1.65 ABC | 1.44 B |
NE-drilling (PB) | 5.91 A | 5.39 A | 11.14 AB | 731 A | 963 AB | 1695 AB | 1.34 A | 1.70 AB | 1.52 A |
NE+GS-drilling (PB) | 5.96 A | 5.47 A | 11.28 A | 736 A | 981 A | 1717 A | 1.33 AB | 1.71 A | 1.52 A |
2015–2016 | |||||||||
FFP-broadcast (CT) | 4.09 E | 4.60 C | 8.56 E | 388 D | 737 D | 1125 D | 0.83 D | 1.29 C | 1.08 D |
SR-broadcast (PB) | 5.03 D | 4.89 C | 9.76 D | 562 C | 833 C | 1396 C | 1.14 C | 1.54 B | 1.35 C |
SR-drilling (PB) | 5.53 BC | 5.36 AB | 10.72 BC | 645 B | 932 AB | 1578 AB | 1.26 B | 1.63 AB | 1.45 B |
SR+GS-drilling (PB) | 5.54 BC | 5.46 A | 10.83 AB | 648 B | 950 A | 1599 A | 1.27 B | 1.65 A | 1.47 AB |
NE-broadcast (PB) | 5.34 CD | 4.96 BC | 10.14 CD | 625 BC | 851 BC | 1477 BC | 1.26 B | 1.58 AB | 1.43 BC |
NE-drilling (PB) | 5.93 AB | 5.50 A | 11.24 AB | 724 A | 951 A | 1675 A | 1.40 A | 1.66 A | 1.54 A |
NE+GS-drilling (PB) | 6.02 A | 5.56 A | 11.39 A | 733 A | 966 A | 1699 A | 1.39 A | 1.67 A | 1.54 A |
Treatments a | Total C Input(MJ ha−1) | Total C Output(MJ ha−1) | Sustainability Index | ||||||
---|---|---|---|---|---|---|---|---|---|
Maize | Wheat | System | Maize | Wheat | System | Maize | Wheat | System | |
2014–2015 | |||||||||
FFP-broadcast (CT) | 284 Gb | 366 D | 651 F | 5427 D | 5132 C | 10559 E | 18.07 C | 12.99 D | 31.05 C |
SR-broadcast (PB) | 322 D | 367 D | 689 C | 6139 C | 5516 BC | 11655 D | 18.07 C | 14.02 CD | 32.09 BC |
SR-drilling (PB) | 338 A | 383 B | 722 A | 6587 B | 5786 AB | 12374 BC | 18.46 C | 14.07 C | 32.53 BC |
SR+GS-drilling (PB) | 336 B | 386 A | 722 A | 6671 AB | 5836 AB | 12507 ABC | 18.83 BC | 14.12 BC | 32.94 B |
NE-broadcast (PB) | 303 F | 349 F | 652 E | 6516 BC | 5719 AB | 12236 CD | 20.45 A | 15.39 A | 35.84 A |
NE-drilling (PB) | 320 E | 366 E | 686 D | 7003 A | 5952 A | 12956 AB | 20.88 A | 15.26 A | 36.14 A |
NE+GS-drilling (PB) | 335 C | 374 C | 710 B | 7052 A | 6059 A | 13112 A | 20.03 AB | 15.17 AB | 35.20 A |
2015–2016 | |||||||||
FFP-broadcast (CT) | 284 G | 367 D | 652 F | 5315 D | 5472 C | 10788 C | 17.67 B | 13.89 | 31.56 C |
SR-broadcast (PB) | 321 D | 367 E | 688 D | 6143 C | 5599 BC | 11742 B | 18.12 B | 14.25 | 32.37 BC |
SR-drilling (PB) | 338 A | 384 A | 722 A | 6626 B | 6132 A | 12758 A | 18.59 B | 14.96 | 33.55 B |
SR+GS-drilling (PB) | 334 B | 381 B | 715 B | 6675 AB | 6167 A | 12843 A | 18.97 B | 15.16 | 34.13 B |
NE-broadcast (PB) | 293 F | 348 G | 642 G | 6509 BC | 5615 BC | 12125 B | 21.14 A | 15.12 | 36.26 A |
NE-drilling (PB) | 310 E | 365 F | 676 E | 7085 A | 6016 AB | 13101 A | 21.80 A | 15.47 | 37.27 A |
NE+GS-drilling (PB) | 329 C | 372 C | 701 C | 7114 A | 6119 A | 13234 A | 20.62 A | 15.41 | 36.03 A |
Parameters | Grain Yield (t/ha) | Net Return (USD/ha) | Partial N Factor Productivity | Global Warming Potential | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maize | Wheat | System | Maize | Wheat | System | Maize | Wheat | System | Maize | Wheat | System | ||
2014–2015 | |||||||||||||
Grain yield (t/ha) | Maize | 1 *** | |||||||||||
Wheat | 0.9917 *** | 1 *** | |||||||||||
System | 0.9987 *** | 0.997 *** | 1 *** | ||||||||||
Net Return (USD/ha) | Maize | 0.9991 *** | 0.987 *** | 0.9963 *** | 1 *** | ||||||||
Wheat | 0.994 *** | 0.9872 *** | 0.9933 *** | 0.9958 *** | 1 *** | ||||||||
System | 0.9978 *** | 0.9881 *** | 0.9959 *** | 0.9991 *** | 0.9988 *** | 1 *** | |||||||
Partial N factor productivity | Maize | 0.8429 * | 0.7998 * | 0.8276 * | 0.8433 * | 0.8033 * | 0.8256 * | 1 *** | |||||
Wheat | 0.6882 NS | 0.6617 NS | 0.679 NS | 0.6816 NS | 0.6425 NS | 0.6642 NS | 0.9384 ** | 1 *** | |||||
System | 0.789 * | 0.7524 NS | 0.7761 * | 0.7863 * | 0.7461 NS | 0.7685 * | 0.9887 *** | 0.9795 *** | 1 *** | ||||
Global warming potential | Maize | −0.8671 * | −0.8378 * | −0.8572 * | −0.8847 ** | −0.9053 ** | −0.8952 ** | −0.6066 NS | −0.3629 NS | −0.5105 NS | 1 *** | ||
Wheat | −0.8437 * | −0.8121 * | −0.8328 * | −0.863 * | −0.8862 ** | −0.8747 ** | −0.585 NS | −0.3429 NS | −0.4893 NS | 0.9985 *** | 1 *** | ||
System | −0.8598 * | −0.8297 * | −0.8496 * | −0.8779 ** | −0.8994 ** | −0.8888 ** | −0.5998 NS | −0.3566 NS | −0.5038 NS | 0.9998 *** | 0.9993 *** | 1 *** | |
2015–2016 | |||||||||||||
Grain yield (t/ha) | Maize | 1 *** | |||||||||||
Wheat | 0.9313 ** | 1 *** | |||||||||||
System | 0.9906 *** | 0.9724 *** | 1 *** | ||||||||||
Net Return (USD/ha) | Maize | 0.9991 *** | 0.9168 ** | 0.9845 *** | 1 *** | ||||||||
Wheat | 0.957 *** | 0.9899 *** | 0.9851 *** | 0.9461 ** | 1 *** | ||||||||
System | 0.9945 *** | 0.9603 *** | 0.998 *** | 0.9904 *** | 0.9818 *** | 1 *** | |||||||
Partial N factor productivity | Maize | 0.8573 * | 0.7396 NS | 0.827 * | 0.8687 * | 0.7396 NS | 0.8252 * | 1 *** | |||||
Wheat | 0.6682 NS | 0.6933 NS | 0.6886 NS | 0.6659 NS | 0.6264 NS | 0.658 NS | 0.876 ** | 1 *** | |||||
System | 0.8099 * | 0.7441 NS | 0.7985 * | 0.8163 * | 0.7182 NS | 0.7854 * | 0.9823 *** | 0.9509 *** | 1 *** | ||||
Global warming potential | Maize | −0.9 ** | −0.7365 NS | −0.853 * | −0.9106 ** | −0.8193 * | −0.8838 ** | −0.7059 NS | −0.3408 NS | −0.5855 NS | 1 *** | ||
Wheat | −0.8752 ** | −0.7025 NS | −0.824 * | −0.887 ** | −0.7914 * | −0.858 * | −0.6742 NS | −0.2927 NS | −0.5465 NS | 0.9985 *** | 1 *** | ||
System | −0.8923 ** | −0.7258 NS | −0.844 * | −0.9033 ** | −0.8107 * | −0.8759 ** | −0.6959 NS | −0.3255 NS | −0.5732 NS | 0.9998 *** | 0.9993 *** | 1 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jat, R.K.; Bijarniya, D.; Kakraliya, S.K.; Sapkota, T.B.; Kakraliya, M.; Jat, M.L. Precision Nutrient Rates and Placement in Conservation Maize-Wheat System: Effects on Crop Productivity, Profitability, Nutrient-Use Efficiency, and Environmental Footprints. Agronomy 2021, 11, 2320. https://doi.org/10.3390/agronomy11112320
Jat RK, Bijarniya D, Kakraliya SK, Sapkota TB, Kakraliya M, Jat ML. Precision Nutrient Rates and Placement in Conservation Maize-Wheat System: Effects on Crop Productivity, Profitability, Nutrient-Use Efficiency, and Environmental Footprints. Agronomy. 2021; 11(11):2320. https://doi.org/10.3390/agronomy11112320
Chicago/Turabian StyleJat, Raj K., Deepak Bijarniya, Suresh K. Kakraliya, Tek B. Sapkota, Manish Kakraliya, and Mangi L. Jat. 2021. "Precision Nutrient Rates and Placement in Conservation Maize-Wheat System: Effects on Crop Productivity, Profitability, Nutrient-Use Efficiency, and Environmental Footprints" Agronomy 11, no. 11: 2320. https://doi.org/10.3390/agronomy11112320
APA StyleJat, R. K., Bijarniya, D., Kakraliya, S. K., Sapkota, T. B., Kakraliya, M., & Jat, M. L. (2021). Precision Nutrient Rates and Placement in Conservation Maize-Wheat System: Effects on Crop Productivity, Profitability, Nutrient-Use Efficiency, and Environmental Footprints. Agronomy, 11(11), 2320. https://doi.org/10.3390/agronomy11112320