Multioutlet Hydrants in Mediterranean Pressurized Irrigation Networks: Operation Problems and Hydraulic Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multioutlet Hydrants in Irrigation Networks
2.2. Multioutlet Hydrant in Laboratory
- Pumping station with three 33 kW variable-speed pumps;
- Closed circuit with double tank (2000 L and 15,000 L);
- Reference electromagnetic flowmeters DN25, DN50, DN100, and DN200, with an accuracy of 0.5%, calibrated by weighing;
- Data acquisition system developed in LabView (2015) for the control of time, temperature, flow, and pressure variables;
- Control bench with 16 variable-range pressure transducers and 4 differential pressure transducers.
2.2.1. Head Loss of the Multioutlet Hydrant
2.2.2. Global Metrology of the Multioutlet Hydrant
2.2.3. Water Meter Blocking Analysis
2.2.4. Analysis of Transients in the Opening and Closing of Irrigation Intakes
3. Results and Discussion
3.1. Main Problems Detected in Multioutlet Hydrant
3.2. Behavior in the Laboratory
3.2.1. Multioutlet Hydrant Head Loss
- Hydrant 1 had a poor choice of hydrant elements, and general elements were of smaller dimensions than recommended.
- Hydrant 2 did not have solenoid valves in the intakes; therefore, the results showed fewer head losses than the maximum recommended.
- Hydrant 3 introduced high head loss due to inadequate selection of the solenoid valves of each intake.
- Hydrants 5 and 10 slightly exceeded the head losses established by the standard, but no configuration problems were observed.
- Hydrants 4, 6, and 12 complied with the standard.
- Hydrant 7 had flow limiters incorrectly selected, causing excessive head loss.
- In Hydrant 8, it was observed that the meters of that manufacturer in the DNP 30 mm intakes generated very high head losses.
- All the elements in Hydrant 11 were undersized for the number of intakes and their DNP, which produced higher head losses.
3.2.2. Global Hydrant Metrology
3.2.3. Blocking Effect Analysis
3.2.4. Analysis of Transients in the Opening and Closing of Irrigation Intakes
3.3. Configuration and Design Proposal
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abadia, R.; Rocamora Osorio, C.; Ruiz, A.; Puerto, H. Energy Efficiency in Irrigation Distribution Networks I: Theory. Biosyst. Eng. 2008, 101, 21–27. [Google Scholar] [CrossRef]
- Lecina, S.; Isidoro, D.; Playán, E.; Aragüés, R. Irrigation Modernization and Water Conservation in Spain: The Case of Riegos Del Alto Aragón. Agric. Water Manag. 2010, 97, 1663–1675. [Google Scholar] [CrossRef] [Green Version]
- Tarjuelo, J.M.; Rodriguez-Diaz, J.A.; Abadía, R.; Camacho, E.; Rocamora, C.; Moreno, M.A. Efficient Water and Energy Use in Irrigation Modernization: Lessons from Spanish Case Studies. Agric. Water Manag. 2015, 162, 67–77. [Google Scholar] [CrossRef]
- Ortega-Reig, M.; Sanchis-Ibor, C.; Palau-Salvador, G.; García-Mollá, M.; Avellá-Reus, L. Institutional and Management Implications of Drip Irrigation Introduction in Collective Irrigation Systems in Spain. Agric. Water Manag. 2017, 187, 164–172. [Google Scholar] [CrossRef]
- García-Molla, M.; Ortega-Reig, M.V.; Sanchis-Ibor, C.; Avellá-Reus, L. The effects of irrigation modernization on the cost recovery of water in the Valencia Region (Spain). Water Sci. Technol-W Sup. 2014, 14, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Playán, E.; Mateos, L. Modernization and Optimization of Irrigation Systems to Increase Water Productivity. Agric. Water Manag. 2006, 80, 100–116. [Google Scholar] [CrossRef] [Green Version]
- Lamaddalena, N.; Sagardoy, J.A. Performance Analysis of On-Demand Pressurized Irrigation Systems; FAO: Rome, Italy, 2000. [Google Scholar]
- GVA. Informe Del Sector Agrari Valencià 2019: València: Generalitat Valenciana. Available online: http://www.agroambient.gva.es/va/informes-del-sector-agrario-valenciano (accessed on 25 October 2021).
- INE. Encuesta de Superficies y Rendimientos de Cultivos de España; Instituto Nacional de Estadística: Madrid, Spain, 2020; Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce (accessed on 10 May 2021).
- Sanchis-Ibor, C.; Ortega-Reig, M.; Guillem-García, A.; Carricondo, J.M.; Manzano-Juárez, J.; García-Mollá, M.; Royuela, Á. Irrigation Post-Modernization. Farmers Envisioning Irrigation Policy in the Region of Valencia (Spain). Agriculture 2021, 11, 317. [Google Scholar] [CrossRef]
- INE. Censo Agrario 2009; Instituto Nacional de Estadística (Statistics National Institute): Madrid, Spain, 2011; Available online: http://www.pegv.gva.es/es/temas/agriculturaganaderiaselviculturacazapescayacuicultura/censoagrario/censoagrario2009 (accessed on 25 October 2021).
- Jiménez-Bello, M.Á.; Alzamora, F.M.; Castel, J.R.; Intrigliolo, D.S. Validation of a Methodology for Grouping Intakes of Pressurized Irrigation Networks into Sectors to Minimize Energy Consumption. Agric. Water Manag. 2011, 102, 46–53. [Google Scholar] [CrossRef]
- Moreno, M.A.; Córcoles, J.I.; Tarjuelo, J.M.; Ortega, J.F. Energy Efficiency of Pressurised Irrigation Networks Managed On-Demand and under a Rotation Schedule. Biosyst. Eng. 2010, 107, 349–363. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.A.R.; Pérez-Urrestarazu, L.P.; Camacho-Poyato, E.C.; López-Luque, R.L. IGRA. A Tool for Applying the Benchmarking Initiative to Irrigated Areas. Irrig. Drain. 2005, 54, 307–319. [Google Scholar] [CrossRef]
- González-Villa, F.; García-Prats, A. Using Location-Allocation Algorithms to Distribute Multioutlet Hydrants in Irrigation Networks Design. J. Irrig. Drain. Eng. 2012, 138, 304–309. [Google Scholar] [CrossRef]
- Carrillo-Cobo, M.T.; Rodríguez-Díaz, J.A.; Montesinos, P.; López-Luque, R.; Camacho Poyato, E. Low Energy Consumption Seasonal Calendar for Sectoring Operation in Pressurized Irrigation Networks. Irrig. Sci. 2011, 29, 157–169. [Google Scholar] [CrossRef]
- European Committee for Standardization. European Committee for Standardization. European Standards EN 14267. In Irrigation Techniques-Irrigation Hydrants; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- Balbastre-Peralta, I.; Arviza, J.; Manzano, J.; Palau, C.V. Multioutlet Hydrants Typology for Collective Irrigation Networks. In Proceedings of the 19th CIGR World Congress (CIGR 2018), Antalya, Turkey, 22–26 April 2018; pp. 17–27. [Google Scholar]
- Palau, C.V.; Balbastre, I.; Manzano, J.; Azevedo, B.M.d.; Bomfim, G.V.d. Metrological behaviour of bulk water meters under diverse installation configurations. Eng. Agríc. 2018, 38, 893–900. [Google Scholar] [CrossRef]
- Varatharajalu, K.; Ramprabu, J. Wireless Irrigation System via Phone Call & SMS. Int. J. Eng. Adv. Technol. 2018, 8, 397–401. [Google Scholar]
- Wu, W.-Y.; Huang, Y.; Liu, H.-L.; Yin, S.-Y.; Niu, Y. Reclaimed Water Filtration Efficiency and Drip Irrigation Emitter Performance with Different Combinations of Sand and Disc Filters. Irrig. Drain. 2015, 64, 362–369. [Google Scholar] [CrossRef]
- Coates, R.W.; Delwiche, M.J.; Broad, A.; Holler, M. Wireless Sensor Network with Irrigation Valve Control. Comput. Electron. Agric. 2013, 96, 13–22. [Google Scholar] [CrossRef]
- Kim, Y.; Evans, R.G.; Iversen, W.M. Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor Network. IEEE Trans. Instrum. Meas. 2008, 57, 1379–1387. [Google Scholar] [CrossRef]
- Creaco, E.; Campisano, A.; Modica, C. Testing behavior and effects of PRVs and RTC valves during hydrant activation scenarios. Urban Water J. 2018, 15, 218–226. [Google Scholar] [CrossRef]
- González-Pavón, C.; Arviza, J.; Balbastre, I.; Carot-Sierra, J.M.; Palau-Salvador, G. Are Water User Associations Prepared for a Second-Generation Modernization? The Case of the Valencian Community (Spain). Water 2020, 12, 2136. [Google Scholar] [CrossRef]
- Perry, C.J.; Steduto, P.; Allen, R.; Burt, C. Increasing Productivity in Irrigated Agriculture: Agronomic Constraints and Hydrological Realities. Agric. Water Manag. 2009, 96, 1517–1524. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Pacheco, D.G.; Ferrández-Villena, M.; Molina-Martínez, J.M.; Ruiz-Canales, A. Performance Indicators to Assess the Implementation of Automation in Water User Associations: A Case Study in Southeast Spain. Agric. Water Manag. 2015, 151, 87–92. [Google Scholar] [CrossRef]
- Stambouli, T.; Faci, J.M.; Zapata, N. Water and Energy Management in an Automated Irrigation District. Agric. Water Manag. 2014, 142, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Blanco, M.; Lorite, I.J.; Santos, C. An Innovative Remote Sensing Based Reference Evapotranspiration Method to Support Irrigation Water Management under Semi-Arid Conditions. Agric. Water Manag. 2014, 131, 135–145. [Google Scholar] [CrossRef]
- Jiménez-Bello, M.A.; Martínez Alzamora, F.; Bou Soler, V.; Ayala, H.J.B. Methodology for Grouping Intakes of Pressurised Irrigation Networks into Sectors to Minimize Energy Consumption. Biosyst. Eng. 2010, 105, 429–438. [Google Scholar] [CrossRef]
- Miles, M.B.; Huberman, A.M.; Saldaña, J. Qualitative Data Analysis: A Methods Sourcebook, 3rd ed.; Huberman, A.M., Saldaña, J., Eds.; Sage: Thousand Oaks, CA, USA, 2014; p. 381. ISBN 9781452257877. [Google Scholar]
- Burke, L.; Hannah, C. Improve Accuracy with Proper Water Meter Installation. Opflow 2010, 36, 18–21. [Google Scholar] [CrossRef]
- Arregui, F.; Jr, E.C.; Cobacho, R. Integrated Water Meter Management; IWA Publishing: London, UK, 2007. [Google Scholar]
- Palau, C.V.; Balbastre, I.; Arviza, J.; Sanchis-Alós, L.H. Bloqueo de contadores de chorro múltiple en hidrantes multiusuario para riego. In Proceedings of the 33th Congreso Nacional de Riegos, Valencia, Spain, 16–18 June 2015. [Google Scholar] [CrossRef] [Green Version]
- Wu, I.-P. An Assessment of Hydraulic Design of Micro-Irrigation Systems. Agric. Water Manag. 1997, 32, 275–284. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation Management under Water Scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- International Organization for Standardization. International Organization for Standardization. International Standard ISO 4064-1:2014. In Water meters for Cold Potable Water and Hot Water—Part 1: Metrological and Technical Requirements; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- International Organization of Legal Metrology. OIML R 49-3:2013. In Water Meters for Cold Potable Water and Hot Water; International Organization of Legal Metrology: Paris, France, 2013. [Google Scholar]
- Simão, M.; Besharat, M.; Carravetta, A.; Ramos, H.M. Flow velocity distribution towards flowmeter accuracy: CFD, UDV, and field tests. Water 2018, 10, 1807. [Google Scholar] [CrossRef] [Green Version]
- Palau, C.V.; Balbastre, I.; Manzano, J.; Azevedo, B.M.; Bomfim, G.V. Numerical Analysis of Woltman Meter Accuracy under Flow Perturbations. Water 2019, 11, 2622. [Google Scholar] [CrossRef] [Green Version]
Type | Function | ΔhH (kPa) |
---|---|---|
1 | Shut-off and metering | 50 |
2 | Shut-off, metering, and flow-rate limitation | 80 |
3 | Shut-off, metering, and pressure regulation | 80 |
4 | Shut-off, metering, flow-rate limitation, and pressure limitation | 110 |
Hydrant Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Hydrant Morphology | V2 | V2 | V2 | V1 | V2 | V2 | V1 | V2 | V2 | H2 | V1 | H2 | |
Function Type | 3 | 3 | 1 | 4 | 1 | 3 | 4 | 1 | 3 | 3 | 3 | 3 | |
NSH | 5 | 7 | 8 | 3 | 6 | 8 | 10 | 8 | 6 | 7 | 7 | 10 | |
DNB (mm) | 80 | 80 | 100 | 100 | 100 | 80 | 100 | 150 | 100 | 100 | 100 | 150 | |
QNB (m3 h–1) | 31.0 | 31.0 | 61.5 | 61.0 | 53.0 | 28.0 | 68.0 | 63.5 | 73.5 | 63.0 | 112.0 | 51.0 | |
DNP (mm) NSDN | 80 | - | - | - | 1 | - | - | - | - | - | - | 1 | - |
65 | - | - | - | - | - | - | - | - | 1 | - | - | - | |
50 | - | - | - | 1 | 1 | - | - | - | 1 | 3 | 1 | - | |
40 | 1 | 1 | 5 | - | 2 | - | 2 | 5 | 3 | - | 3 | 1 | |
30 | 2 | - | - | 1 | 3 | - | 8 | 2 | - | 2 | - | 5 | |
25 | 1 | 6 | 3 | - | - | 8 | - | 1 | 1 | 1 | 2 | 1 | |
20 | 1 | - | - | - | - | - | - | - | - | 1 | - | 3 | |
PN (bar) a | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 6 | 10 | 10 | 6 | 10 |
CAUSE | Hydrant Problem |
---|---|
Lack of Maintenance of the Elements | Blockages in mesh filters. Blockage problems in shut-off valves due to lack of maneuverability. Lack of signal in pulse emitters. |
Poor Quality of Materials | Rust and perforations in metallic materials. Solenoid valve failures during opening and closing. |
External Causes | Theft of appliances. Wiring breakage by rodents. Wiring breakage due to electrical storms. |
Incorrect Design and Setting | Inappropriate configurations due to poor accessibility to the hydraulic elements. Filters misplaced. Low pressure in plots due to excess head losses in the multioutlet hydrant. Blocking of measuring instruments in vertical position. |
Hydrant Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
QNB (m3 h−1) | 51.0 | 31.0 | 61.5 | 61.0 | 53.0 | 28.0 | 68.0 | 63.5 | 73.5 | 63.0 | 112.0 | 51.0 |
ΔhH EN Standard Limit (kPa) | 80 | 80 | 50 | 110 | 50 | 80 | 110 | 50 | 80 | 80 | 80 | 80 |
Accomplish | NO | YES | NO | YES | NO | YES | NO | NO | NO | NO | NO | YES |
Number of Outlets over Head Loss | all | 0 | 6 | 0 | 2 | 0 | 9 | 2 | 4 | 3 | all | 0 |
ΔhH max (kPa) | 191.5 | 53.6 | 130.5 | 94.7 | 57.6 | 53.0 | 133.4 | 55.6 | 89.0 | 84.8 | 138.0 | 58.6 |
Hydrant Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
QNBa (m3 h−1) | 51.0 | 31.0 | 61.5 | 61.0 | 53.0 | 28.0 | 68.0 | 63.5 | 73.5 | 63 | 112.0 | 51 |
QH b(m3 h−1) | 51.46 | - | 60.59 | 64.29 | 52.51 | 28.44 | 67.22 | 60.80 | 75.99 | 66.65 | 115.50 | 52.22 |
QEMF c (m3 h−1) | 49.69 | - | 60.34 | 63.91 | 53.28 | 28.08 | 67.86 | 62.00 | 73.21 | 64.4 | 111.40 | 51.14 |
ε (%) | +3.60 | - | −0.41 | −0.60 | −1.43 | −1.30 | +0.90 | +1.90 | +3.80 | +3.5 | −3.70 | +2.10 |
DN | Total Water Meters | Number of Blocked Water Meters | % |
---|---|---|---|
15 | 13 | 6 | 46.2 |
20 | 15 | 10 | 66.7 |
25 | 17 | 16 | 94.1 |
30 | 17 | 17 | 100.0 |
40 | 24 | 7 | 29.2 |
TOTAL | 86 | 56 | 65.1 |
Hydrant Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydrant Morphology | V2 | V2 | V2 | V1 | V2 | V2 | V1 | V2 | V2 | H2 | V1 | H2 |
Function/Type | 3 | 3 | 1 | 4 | 1 | 3 | 4 | 1 | 3 | 3 | 3 | 3 |
QNB a (m3 h−1) | 51.0 | 31.0 | 61.5 | 61.0 | 53.0 | 28.0 | 68.0 | 63.5 | 73.5 | 63.0 | 112.0 | 51.0 |
Transient | SI | - | No | SI | NO | SI | SI | NO | SI | SI | NO | SI |
ΔH b max (kPa) | 200 | - | - | 50 | - | 250 | 150 | - | 150 | 50 | - | 100 |
Intake with Maximum Transient | 5 | - | - | 3 | - | H | F | - | D | F | - | I |
Process | Close | - | - | Close | - | Close | Open | - | Close | Open/ close | - | Close |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balbastre-Peralta, I.; Arviza-Valverde, J.; Palau, C.V.; González-Pavón, C.; Manzano-Juárez, J. Multioutlet Hydrants in Mediterranean Pressurized Irrigation Networks: Operation Problems and Hydraulic Characterization. Agronomy 2021, 11, 2240. https://doi.org/10.3390/agronomy11112240
Balbastre-Peralta I, Arviza-Valverde J, Palau CV, González-Pavón C, Manzano-Juárez J. Multioutlet Hydrants in Mediterranean Pressurized Irrigation Networks: Operation Problems and Hydraulic Characterization. Agronomy. 2021; 11(11):2240. https://doi.org/10.3390/agronomy11112240
Chicago/Turabian StyleBalbastre-Peralta, Iban, Jaime Arviza-Valverde, Carmen Virginia Palau, Cesar González-Pavón, and Juan Manzano-Juárez. 2021. "Multioutlet Hydrants in Mediterranean Pressurized Irrigation Networks: Operation Problems and Hydraulic Characterization" Agronomy 11, no. 11: 2240. https://doi.org/10.3390/agronomy11112240
APA StyleBalbastre-Peralta, I., Arviza-Valverde, J., Palau, C. V., González-Pavón, C., & Manzano-Juárez, J. (2021). Multioutlet Hydrants in Mediterranean Pressurized Irrigation Networks: Operation Problems and Hydraulic Characterization. Agronomy, 11(11), 2240. https://doi.org/10.3390/agronomy11112240