Preliminary Observations on Viola calcarata as a Source of Bioactive Compounds: Antioxidant Activity and Phytochemical Profile of Two Alpine Subspecies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extract Preparation
2.3. Bioactive Compounds
2.3.1. Total Phenolic Compounds
2.3.2. Total Anthocyanins
2.3.3. Antioxidant Activity
FRAP Assay
DPPH Assay
ABTS Assay
2.3.4. Phenolic Profile and Vitamin C
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koike, A.; Barreira, J.C.M.; Barros, L.; Santos-Buelga, C.; Villavicencio, A.L.C.H.; Ferreira, I.C.F.R. Edible flowers of Viola tricolor L. as a new functional food : Antioxidant activity, individual phenolics and effects of gamma and electron-beam irradiation. FOOD Chem. 2015, 179, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Demasi, S.; Falla, N.M.; Caser, M.; Scariot, V. Postharvest aptitude of Begonia semperflorens and Viola cornuta edible flowers. Adv. Hortic. Sci. 2020, 34, 13–20. [Google Scholar] [CrossRef]
- Lu, B.; Li, M.; Yin, R. Phytochemical Content, Health Benefits, and Toxicology of Common Edible Flowers: A Review. Food Sci. Nutr. 2016, 56, 130–148. [Google Scholar] [CrossRef]
- Scariot, V.; Gaino, W.; Demasi, S.; Caser, M.; Ruffoni, B. Flowers for edible gardens: Combinations of species and colours for northwestern Italy. Acta Hortic. 2018, 1215, 363–367. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Barros, L.; Santos-buelga, C.; Ferreira, I.C.F.R. Edible flowers: Emerging components in the diet. Trends Food Sci. Technol. 2019, 93, 244–258. [Google Scholar] [CrossRef]
- Krause, S.; Kadereit, J.W. Identity of the Calcarata species complex in Viola sect. Melanium (Violaceae). Willdenowia 2020, 50, 195–206. [Google Scholar] [CrossRef]
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Fernandes, L.; Saraiva, J.A.; Pereira, J.A.; Casal, S.; Ramalhosa, E. Post-harvest technologies applied to edible flowers: A review. Food Rev. Int. 2019, 35, 132–154. [Google Scholar] [CrossRef]
- Benvenuti, S.; Bortolotti, E.; Maggini, R. Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Sci. Hortic. 2016, 199, 170–177. [Google Scholar] [CrossRef]
- Demasi, S.; Caser, M.; Donno, D.; Enri, S.R.; Lonati, M.; Scariot, V. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Hortic. 2021, 33, 1–22. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible Flowers—A New Promising Source of Mineral Elements in Human Nutrition. Molecules 2012, 17, 6672–6683. [Google Scholar] [CrossRef] [PubMed]
- Poletti, A. Fiori e Erbe - Salute e Bellezza Dell’uomo; Musumeci Editore: Saint-Christophe, Italy, 1978. [Google Scholar]
- Fernandes, L.; Ramalhosa, E.; Baptista, P.; Saraiva, J.A.; Casal, S.I.P. Nutritional and Nutraceutical Composition of Pansies (Viola × wittrockiana) During Flowering. J. Food Sci. 2019, 84, 490–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viola, S. Piante Medicinali e Velenose Della Flora Italiana; Edizioni Artistiche Maestretti: Novara, Italy, 1965. [Google Scholar]
- Maugini, E. Botanica Farmaceutica; Piccin: Padua, Italy, 1988. [Google Scholar]
- Pignatti, S. Flora d’Italia Vol. 2; Edagricole: Bologna, Italy, 1982. [Google Scholar]
- Aeschimann, D.; Lauber, K.; Moser, D.M.; Theurillat, J.-P. Flora Alpina Vol. 1; Zanichelli: Bologna, Italy, 2001. [Google Scholar]
- Dalmasso, A.; Dolores, M.D.L.; Civera, T.; Pattono, D.; Cardazzo, B.; Bottero, T.M. Characterization of microbiota in Plaisentif cheese by high-throughput sequencing. LWT Food Sci. Technol. 2016, 69, 490–496. [Google Scholar] [CrossRef]
- Matonti, L. Erbe e Antichi Rimedi di Ieri, Oggi e Domani; Edizioni del Graffio: Borgone di Susa, Italy, 2015. [Google Scholar]
- Arpa Piemonte. Available online: http://www.arpa.piemonte.it/ (accessed on 21 October 2021).
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin- Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demasi, S.; Mellano, M.G.; Falla, N.M.; Caser, M.; Scariot, V. Sensory profile, shelf life, and dynamics of bioactive compounds during cold storage of 17 edible flowers. Horticulturae 2021, 7, 166. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Falla, N.M.; Demasi, S.; Caser, M.; Scariot, V. Phytochemical profile and antioxidant properties of italian green tea, a new high quality niche product. Horticulturae 2021, 7, 91. [Google Scholar] [CrossRef]
- Wong, S.P.; Leong, L.P.; William Koh, J.H. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006, 99, 775–783. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Caser, M.; Demasi, S.; Stelluti, S.; Donno, D.; Scariot, V. Crocus sativus L. Cultivation in Alpine Environments: Stigmas and Tepals as Source of Bioactive Compounds. Agronomy 2020, 10, 1473. [Google Scholar] [CrossRef]
- Caser, M.; Demasi, S.; Victorino, M.M.I.; Donno, D.; Faccio, A.; Lumini, E.; Bianciotto, V.; Scariot, V. Arbuscular Mycorrhizal Fungi Modulate the Crop Performance and Metabolic Profile of Saffron in Soilless Cultivation. Agronomy 2019, 9, 232. [Google Scholar] [CrossRef] [Green Version]
- Donno, D.; Mellano, M.G.; Riondato, I.; De Biaggi, M.; Andriamaniraka, H.; Gamba, G.; Beccaro, G.L. Traditional and Unconventional Dried Fruit Snacks as a Source of Health-Promoting Compounds. Antioxidants 2019, 8, 396. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, L.A.; Fischer, S.Z.; Zambiazi, R.C. Proximal composition, bioactive compounds content and color preference of Viola x Wittrockiana flowers. Int. J. Gastron. Food Sci. 2020, 22, 100236. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Melgarejo, P.; Calín-Sánchez, Á.; Carbonell-Barrachina, Á.A.; Martínez-Nicolás, J.J.; Legua, P.; Martínez, R.; Hernández, F. Antioxidant activity, volatile composition and sensory profile of four new very-early apricots (Prunus armeniaca L.). J. Sci. Food Agric. 2014, 94, 85–94. [Google Scholar] [CrossRef]
- Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 2005, 21, 207–213. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [Green Version]
- González-Barrio, R.; Periago, M.J.; Luna-Recio, C.; Javier, G.-A.F.; Navarro-González, I. Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chem. 2018, 252, 373–380. [Google Scholar] [CrossRef]
- Lim, T.K. Edible Medicinal and Non Medicinal Plants: Volume 8, Flowers; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2014; pp. 792–821. [Google Scholar]
- Kaisoon, O.; Konczak, I.; Siriamornpun, S. Potential health enhancing properties of edible flowers from Thailand. Food Res. Int. 2012, 46, 563–571. [Google Scholar] [CrossRef]
Classes of Compounds | Mobile Phase | Elution Conditions | Wavelength (nm) |
---|---|---|---|
Cinnamic acids Flavonols | A: 10 mM KH2PO4/H3PO4, pH = 2.8 B: CH3CN | 5%B to 21%B in 17 min + 21%B in 3 min (2 min conditioning time); flow: 1.5 mL min−1 | 330 |
Benzoic acids Flavanols | A: H2O/CH3OH/HCOOH (5:95:0.1 v/v/v), pH = 2.5 B: CH3OH/HCOOH (100:0.1 v/v) | 3%B to 85%B in 22 min + 85%B in 1 min (2 min conditioning time); flow: 0.6 mL min−1 | 280 |
Vitamin C | A: 5 mM C16H33N(CH3)3Br/50 mM KH2PO4, pH = 2.5 B: CH3OH | Isocratic, ratio of phase A and B: 95:5 in 10 min (5 min conditioning time); flow: 0.9 mL min−1 | 261, 348 |
Viola calcarata Subspecies | Dry Matter % | Total Phenolic Compounds (mg GAE/100 g FW) | Total Anthocyanins (mg C3G/100 g FW) | Antioxidant Activity | ||||||
---|---|---|---|---|---|---|---|---|---|---|
FRAP (mmol Fe2+/kg) | DPPH | ABTS | ||||||||
(µmol TE/g FW) | (µmol TE/g FW) | |||||||||
CW | 17.60 ± 0.95 | 887.63 ± 94.93 | b | nd | 215.07 ± 25.00 | 99.53 ± 7.4 | a | 32.30 ± 1.76 | a | |
CY | 17.47 ± 1.02 | 1116.43 ± 29.63 | a | 7.47 ± 4.89 | b | 223.57 ± 45.72 | 75.20 ± 7.62 | b | 22.43 ± 1.86 | b |
CV | 18.13 ± 0.25 | 719.30 ± 30.45 | b | 44.73 ± 23.02 | a | 168.07 ± 6.73 | 64.27 ± 3.87 | b | 24.33 ± 3.17 | ab |
VB | 17.33 ± 0.47 | 845.63 ± 106.08 | b | 10.67 ± 1.85 | b | 217.33 ± 26.43 | 90.97 ± 1.22 | a | 29.17 ± 5.94 | ab |
p | ns | ** | * | Ns | *** | * |
Viola calcarata Subspecies | Flavonols | |||||
Hyperoside | Isoquercitrin | Quercitrin | Rutin | |||
CW | nd | nd | 41.73 ± 14.2 | b | nd | |
CY | 93.70 ± 30.25 | a | nd | 15.50 ± 3.22 | c | nd |
CV | 13.70 ± 2.92 | b | 5.40 ± 0.89 | nd | 329.63 ± 44.10 | |
VB | 12.10 ± 4.48 | b | nd | 136.85 ± 40.75 | a | 16.73 ± 0.64 |
p | ** | - | * | *** | ||
Viola calcarata subspecies | Cinnamic acids | Benzoic acids | Catechins | Vitamin C | ||
Ferulic acid | Ellagic acid | Epicatechin | ||||
CW | 144.50 ± 13.86 | c | 27.03 ± 0.75 | 22.33 ± 3.07 | b | 4.20 ± 0.60 |
CY | 288.63 ± 21.95 | a | 25.80 ± 3.60 | 21.00 ± 1.31 | b | 3.90 ± 1.31 |
CV | 227.27 ± 33.07 | b | 28.27 ± 1.37 | nd | 3.37 ± 0.59 | |
VB | nd | 26.33 ± 3.57 | 176.83 ± 53.08 | a | 3.80 ± 0.46 | |
p | ** | ns | *** | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falla, N.M.; Demasi, S.; Caser, M.; Scariot, V. Preliminary Observations on Viola calcarata as a Source of Bioactive Compounds: Antioxidant Activity and Phytochemical Profile of Two Alpine Subspecies. Agronomy 2021, 11, 2241. https://doi.org/10.3390/agronomy11112241
Falla NM, Demasi S, Caser M, Scariot V. Preliminary Observations on Viola calcarata as a Source of Bioactive Compounds: Antioxidant Activity and Phytochemical Profile of Two Alpine Subspecies. Agronomy. 2021; 11(11):2241. https://doi.org/10.3390/agronomy11112241
Chicago/Turabian StyleFalla, Nicole Mélanie, Sonia Demasi, Matteo Caser, and Valentina Scariot. 2021. "Preliminary Observations on Viola calcarata as a Source of Bioactive Compounds: Antioxidant Activity and Phytochemical Profile of Two Alpine Subspecies" Agronomy 11, no. 11: 2241. https://doi.org/10.3390/agronomy11112241
APA StyleFalla, N. M., Demasi, S., Caser, M., & Scariot, V. (2021). Preliminary Observations on Viola calcarata as a Source of Bioactive Compounds: Antioxidant Activity and Phytochemical Profile of Two Alpine Subspecies. Agronomy, 11(11), 2241. https://doi.org/10.3390/agronomy11112241