Genetic Analysis of Yield and Quality Traits in Switchgrass Based on Population Crosses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Materials and Experiment
2.2. Data Collection
2.3. Statistical Analyses
3. Results
3.1. Genetic Parameters for Biomass (Dry Matter) Yield
3.2. Genetic Parameters for Quality Traits
3.2.1. In Vitro Dry Matter Digestibility (IVDMD)
3.2.2. Lignin Content (ADL and KL)
3.2.3. Ethanol Yield
3.2.4. Relative Importance of GCA and SCA
3.2.5. Combining Ability Effects
4. Discussion
4.1. General Assumptions
4.2. Implications for the Breeding Program
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, E.B.; Jager, H.I.; West, T.O.; Perlack, R.D.; Brandt, C.C.; Wullschleger, S.D.; Baskaran, L.M.; Wilkerson, E.G.; Downing, M.E.; Gunderson, C.A. Exploring Potential U.S. Switchgrass Production for Lignocellulosic Ethanol; ORNL/TM-2007/193; U.S. Dept of Energy, 2007. Available online: http://digitalcommons.unl.edu/usdoepub (accessed on 15 September 2021).
- Schmer, M.R.; Vogel, K.P.; Mitchell, R.B.; Perrin, R.K. Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. USA 2008, 105, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Liebig, M.A.; Schmer, M.R.; Vogel, K.P.; Mitchell, R.B. Soil carbon storage by switchgrass grown for bioenergy. BioEnergy Res. 2008, 1, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Vogel, K.P.; Mitchell, R.B.; Casler, M.D.; Sarath, G. Registration of ‘Liberty’ Switchgrass. J. Plant Regist. 2014, 8, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Edmé, S.; Mitchell, R.; Sarath, G. Genetic parameters and prediction of breeding values in switchgrass bred for bioenergy. Crop Sci. 2017, 57, 1464–1474. [Google Scholar] [CrossRef]
- Edmé, S.J.; Sarath, G.; Palmer, N.; Yuen, G.Y.; Muhle, A.A.; Mitchell, R.; Tatineni, S.; Tobias, C. Genetic (co)variation and accuracy of selection for resistance to viral mosaic disease and production traits in an inter-ecotypic switchgrass breeding population. Crop Sci. 2021, 61, 1652–1665. [Google Scholar] [CrossRef]
- Jahufer, M.Z.Z.; Casler, M.D. Application of the Smith-Hazel selection index for improving biomass yield and quality of switchgrass. Crop Sci. 2015, 55, 1212–1222. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, W.; Saha, M.C.; Udvardi, M.K.; Kang, Y. Improved node culture methods for rapid vegetative propagation of switchgrass (Panicum virgatum L.). BMC Plant Biol. 2021, 21, 128. [Google Scholar] [CrossRef]
- Griffing, B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 1956, 9, 463–493. [Google Scholar] [CrossRef]
- Henderson, C.R. Theoretical basis and computational methods for a number of different animal models. J. Dairy Sci. 1988, 71 (Suppl. S2), 1–16. [Google Scholar] [CrossRef]
- Cowling, W.A.; Stefanova, K.T.; Beeck, C.P.; Nelson, M.N.; Hargreaves, B.L.; Sass, O.; Gilmour, A.R.; Siddique, K.H. Using the animal model to accelerate response to selection in a self-pollinating crop. G3 Genes Genomes Genet. 2015, 5, 1419–1428. [Google Scholar] [CrossRef] [Green Version]
- Hayes, B.; Visscher, P.; Goddard, M. Increased accuracy of artificial selection by using the realized relationship matrix. Genet. Res. 2009, 91, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Isik, F.; Holland, J.; Maltecca, C. Genetic Data Analysis for Plant and Animal Breeding; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; 400p. [Google Scholar]
- Martínez-Reyna, J.M.; Vogel, K.P. Incompatibility systems in switchgrass. Crop Sci. 2002, 42, 1800–1805. [Google Scholar] [CrossRef] [Green Version]
- Vogel, K.P.; Dien, B.S.; Jung, H.G.; Casler, M.D.; Masterson, S.D.; Mitchell, R.B. Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analysis. BioEnergy Res. 2011, 4, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Gilmour, A.R.; Gogel, B.J.; Cullis, B.R.; Welham, S.J.; Thompson, R. ASReml User Guide Release 4.2 Functional Specification; VSN International Ltd.: Hemel Hempstead, UK, 2021; Available online: www.vsni.co.uk (accessed on 15 September 2021).
- Holland, J.B.; Nyquist, W.E.; Cervantes-Martínez, C.T. Estimating and Interpreting Heritability for Plant Breeding: An Update. Plant Breed. Rev. 2002, 22, 9–112. [Google Scholar] [CrossRef]
- Okada, M.; Lanzatella, C.; Saha, M.C.; Bouton, J.; Wu, R.; Tobias, C.M. Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 2010, 185, 745–760. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.J. Issues in diallel analysis. Crop Sci. 1978, 18, 533–536. [Google Scholar] [CrossRef]
- Cockerham, C.C.; Weir, B.S. Quadratic Analyses of Reciprocal Crosses. Biometrics 1977, 33, 187. [Google Scholar] [CrossRef]
- Hayman, I. The theory and analysis of diallel crosses. Genetics 1954, 39, 789–809. [Google Scholar] [CrossRef]
- Bhandari, H.S.; Webb, S.L.; Bouton, J.H.; Saha, M.C. Reciprocal Effects for Biomass Yield in Lowland Switchgrass. Crop Sci. 2014, 54, 955–962. [Google Scholar] [CrossRef]
- Casler, M.D.; Vogel, K.P.; Taliaferro, C.M.; Wynia, R.L. Latitudinal Adaptation of Switchgrass Populations. Crop Sci. 2004, 44, 293–303. [Google Scholar] [CrossRef]
- Palmer, N.A.; Saathoff, A.J.; Tobias, C.; Twigg, P.; Xia, Y.; Vogel, K.P.; Madhavan, S.; Sattler, S.; Sarath, G. Contrasting metabolism in perenniating structures of upland and lowland switchgrass plants late in the growing season. PLoS ONE 2014, 9, e105138. [Google Scholar] [CrossRef]
- Sarath, G.; Vogel, K.P.; Tobias, C.M.; Soundararajan, M.; Twigg, P.; Saathoff, A.J.; Okada, M. Discovering traits controlling winter-hardiness and spring regrowth in diverse switchgrass germplasm; Abstract. In Biotechnology for Fuels and Chemicals Symposium Proceedings 19–22 April 2010; U.S. Department of Agriculture: Clearwater, FL, USA, 2010. [Google Scholar]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics; Longman Group Ltd.: London, UK, 1996; 464p. [Google Scholar]
- Vogel, K.P.; Mitchell, R.B. Heterosis in switchgrass: Biomass yield in swards. Crop Sci. 2008, 48, 2159–2164. [Google Scholar] [CrossRef] [Green Version]
- Burris, J.N.; Mann, D.G.J.; Joyce, B.L.; Stewart, C.N. An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass (Panicum virgatum L.). BioEnergy Res. 2009, 2, 267–274. [Google Scholar] [CrossRef]
Populations | Origin | Ecotype | Type | Selection for | Name | Coding |
---|---|---|---|---|---|---|
PI 19064231 | New York | Lowland | Wild | None | Kings County | KC |
Summer | Great Plains | Upland | Breeding line | Late maturity | Summer Late | SL |
Kanlow | Great Plains | Lowland | Breeding line | Early maturity | Kanlow Early | KE |
Kanlow | Great Plains | Lowland | Breeding line | Cellulose; bioenergy | Kanlow Bioenergy | KB |
Crosses | ||||||
KE × KC | KC × KE | |||||
KE × SL | SL × KE | |||||
KC × SL | SL × KC | |||||
KB × KC | KC × KB | |||||
KB × SL | SL × KB | |||||
KB × KE | KE × KB |
Sources of Variation † | DMY ‡ | σ2/SE § | IVDMD | σ2/SE | ADL | σ2/SE | KL | σ2/SE | ETOH | σ2/SE |
---|---|---|---|---|---|---|---|---|---|---|
GCA | 0.16 | 0 | 0.247 | 0.14 | 27.356 | 0.91 | 5.069 | 1.54 | ||
Rep.GCA | - | - | 25.30 | 1.06 | 0.224 | 0.58 | 1.424 | 0.24 | - | - |
Year.GCA | 0.00 | 0 | 22.81 | 1.53 | 2.628 | 1.38 | 18.304 | 1.03 | 0.249 | 0.37 |
GCA.Recip | 0.85 | 2.26 | 0.00 | 0 | - | - | 1.286 | 0.27 | - | - |
Year.GCA.Recip | - | - | - | - | - | - | 0.00 | 0.00 | - | - |
Year.Rep | 0.07 | 0.53 | 49.24 | 1.63 | 0 | 0.00 | - | - | - | - |
SCA | 3.01 | 2.78 | 43.61 | 1.43 | 6.575 | 2.19 | 53.570 | 1.13 | 5.011 | 1.41 |
SCA.Reci | - | - | - | - | - | - | 48.652 | 1.02 | 1.855 | 0.68 |
Rep.SCA | 1.59 | 2.56 | 10.23 | 0.17 | 1.809 | 1.24 | 13.665 | 0.55 | 3.498 | 1.85 |
Year.SCA | 0.23 | 0.57 | 0.00 | 0 | 1.013 | 0.52 | 23.914 | 0.78 | 0.404 | 0.26 |
Year.SCA.Recip | - | - | - | - | 0.630 | 0.39 | 30.044 | 0.72 | 5.340 | 1.83 |
Year.Rep.SCA | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.726 | 0.31 |
Residual | 10.10 | 13.3 | 703.18 | 13.86 | 25.208 | 13.26 | 467.532 | 13.2 | 22.476 | 10.9 |
h2FS ϕ | 0.06 | 0.00 | 0.06 | 0.20 | 0.38 | |||||
H2FS | 0.59 | 0.28 | 0.59 | 0.39 | 0.57 | |||||
h2wfs | 0.03 | 0.00 | 0.03 | 0.12 | 0.38 | |||||
H2wfs | 0.88 | 0.19 | 0.88 | 0.46 | 0.93 | |||||
Baker’s Ratio | 0.10 | 0.003 | 0.10 | 0.51 | 0.67 |
Population or Crosses † | Code ‡ | DMY | Gain (%) § | IVDMD | Gain (%) | ADL | Gain (%) | KL | Gain (%) | ETOH | Gain |
---|---|---|---|---|---|---|---|---|---|---|---|
Summer | 1 | −1.79 | 1.59 | 0.00 | 8.11 | −2.95 | |||||
Kanlow | 2 | −0.31 | −3.98 | 0.00 | 7.28 | 2.68 | |||||
King’s County | 3 | −1.73 | 2.10 | 0.00 | −11.96 | −0.72 | |||||
Summer (Late maturity) | 4 | −2.10 | 3.62 | 0.31 | 2.50 | 0.64 | |||||
Kanlow (bioenergy) | 5 | 0.95 | 2.24 | −0.65 | −2.79 | 0.67 | |||||
Liberty (cv) | 6 | −0.75 | −2.49 | 0.12 | −1.86 | −1.14 | |||||
KE/KC | 11 × 810 | −0.62 | 2.55 | 0.63 | 4.59 | 0.38 | |||||
KE/KC | 4 × 910 | 1.30 | 0.36 | −5.47 | 1.24 | 0.94 | −0.83 | ||||
KE/KC | 8 × 510 | −2.25 | 5.21 | 0.44 | −0.84 | 0.30 | −6.47 | 1.76 | 0.31 | ||
KE/KC | 20 × 610 | 0.08 | 4.24 | 0.17 | −0.20 | −5.30 | 1.27 | 0.25 | |||
KE/KC | 1 × 410 | −1.54 | −0.55 | 0.06 | 0.86 | −0.33 | |||||
KE/KC | 17 × 110 | −0.83 | −7.12 | 0.31 | 2.78 | −0.56 | |||||
KE/KC | 24 × 410 | −1.48 | 1.46 | −1.18 | 0.82 | −2.13 | 0.10 | ||||
KE/KC | 7 × 110 | 2.73 | 1.87 | 6.47 | 0.79 | −0.94 | 0.45 | −0.99 | 3.63 | 0.35 | |
KE/KC | 26 × 10 | −2.65 | −2.81 | 1.05 | 3.11 | −1.08 | |||||
KB/KC | 42 × 10 | −0.51 | −0.16 | 0.76 | 3.71 | 0.11 | |||||
KB/KC | 51 × 910 | −1.04 | 3.53 | −0.43 | −7.13 | −0.03 | −0.84 | ||||
KB/KC | 44 × 610 | 1.61 | 0.69 | −0.96 | 0.12 | 0.70 | 1.15 | 0.18 | |||
KB/KC | 49 × 810 | 0.80 | −0.16 | 0.11 | 0.49 | −0.15 | −0.84 | ||||
KB/KC | 45 × 310 | 3.63 | 2.81 | −0.38 | 0.32 | −1.38 | 1.17 | 0.18 | |||
KE/SL | 18 × 618 | −0.92 | −5.46 | 1.15 | 6.37 | −1.56 | |||||
KE/SL | 22 × 611 | 1.14 | −6.68 | 1.22 | 3.55 | −1.96 | |||||
KE/SL | 19 × 616 | 0.08 | 5.94 | 0.64 | −0.57 | −3.98 | 3.79 | 0.31 | |||
KE/SL | 12 × 630 | −0.76 | 0.55 | −0.43 | 1.06 | −0.60 | |||||
KE/SL | 2 × 628 | 1.49 | 0.56 | 1.80 | −0.15 | 0.83 | 0.18 | ||||
KE/SL | 6 × 633 | 1.21 | 0.27 | 6.01 | 0.66 | −1.81 | 1.80 | −0.62 | 2.60 | 0.57 | |
KE/SL | 9 × 617 | 0.46 | −1.45 | 1.19 | 2.96 | −1.48 | |||||
KB/SL | 48 × 614 | 2.09 | 1.19 | 2.36 | −0.92 | −3.61 | 5.73 | 1.81 | 1.77 | ||
KB/SL | 40 × 607 | −3.75 | 0.23 | 0.50 | 3.21 | −2.17 | |||||
KB/SL | 43 × 604 | 1.24 | 0.30 | −2.17 | 0.04 | 3.55 | −0.44 | ||||
KC/SL | 310 × 638 | 1.43 | 0.50 | −2.21 | −1.03 | 0.60 | −8.20 | 0.73 | 1.54 | 0.55 | |
KC/SL | 710 × 601 | 0.72 | −0.25 | 3.33 | −0.08 | −0.45 | 1.39 | −0.72 | |||
KC/SL | 710 × 627 | 2.39 | −3.75 | −9.07 | −9.07 | 0.44 | −0.74 | 0.95 | |||
KC/SL | 110 × 606 | −0.31 | 3.63 | −2.36 | 6.47 | −0.35 | −0.19 | −0.25 | 3.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edmé, S.; Mitchell, R. Genetic Analysis of Yield and Quality Traits in Switchgrass Based on Population Crosses. Agronomy 2021, 11, 2220. https://doi.org/10.3390/agronomy11112220
Edmé S, Mitchell R. Genetic Analysis of Yield and Quality Traits in Switchgrass Based on Population Crosses. Agronomy. 2021; 11(11):2220. https://doi.org/10.3390/agronomy11112220
Chicago/Turabian StyleEdmé, Serge, and Rob Mitchell. 2021. "Genetic Analysis of Yield and Quality Traits in Switchgrass Based on Population Crosses" Agronomy 11, no. 11: 2220. https://doi.org/10.3390/agronomy11112220
APA StyleEdmé, S., & Mitchell, R. (2021). Genetic Analysis of Yield and Quality Traits in Switchgrass Based on Population Crosses. Agronomy, 11(11), 2220. https://doi.org/10.3390/agronomy11112220