HPLC/MS Phytochemical Profiling with Antioxidant Activities of Echium humile Desf. Extracts: ADMET Prediction and Computational Study Targeting Human Peroxiredoxin 5 Receptor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Plant Material and Extraction
2.3. Phytochemical Profiling
2.3.1. Extraction of TPC
2.3.2. Extraction of TFC
2.3.3. Extraction of TFlC
2.3.4. Extraction of TCTC
2.3.5. Extraction of TCC
2.3.6. HPLC-MS Analysis of Phenolic Compounds
2.4. Antioxidant Activity
2.4.1. DPPH Free Radical Scavenging Assay
2.4.2. ABTS Free Radical Scavenging Assay
2.4.3. FRAP Assay
2.4.4. TAC Assay
2.5. Molecular Docking Approach
2.6. ADMET Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Solvent on Extraction Yield
3.2. Effect of Solvent Extraction TPC, TFC, TFlC, TCTC and TCC
3.3. Phytochemical Determinations
3.4. Antioxidant Activities
3.4.1. DPPH Activity
3.4.2. ABTS Activity
3.4.3. FRAP Activity
3.4.4. TAC Activity
3.5. Correlation between DPPH, ABTS, FRAP and TAC Assays: Pearson Correlation
3.6. Correlation between Antioxidant Activities and Polyphenols Content
3.7. Structure Antioxidant Properties Relationships
3.8. Molecular Docking Study
Receptor–Ligand Complex Interactions
3.9. Pharmacokinetics and Toxicity Profiling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chrysargyris, A.; Mikallou, M.; Petropoulos, S.; Tzortzakis, N. Profiling of Essential Oils Components and Polyphenols for Their Antioxidant Activity of Medicinal and Aromatic Plants Grown in Different Environmental Conditions. Agronomy 2020, 10, 727. [Google Scholar] [CrossRef]
- Fierascu, R.; Fierascu, I.; Baroi, A.; Ortan, A. Selected Aspects Related to Medicinal and Aromatic Plants as Alternative Sources of Bioactive Compounds. Int. J. Mol. Sci. 2021, 22, 1521. [Google Scholar] [CrossRef]
- Alfadda, A.A.; Sallam, R.M. Reactive Oxygen Species in Health and Disease. J. Biomed. Biotechnol. 2012, 2012, 1–14. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Khan, R.A.; Abdel-Hafez, A.A.; Abdel-Aziz, M.; Ahmed, E.; Enany, S.; Mahgoub, S.; Al-Rugaie, O.; Alsharidah, M.; Aly, M.S.A.; et al. Phytochemical Profiling, In Vitro and In Silico Anti-Microbial and Anti-Cancer Activity Evaluations and Staph GyraseB and h-TOP-IIβ Receptor-Docking Studies of Major Constituents of Zygophyllum coccineum L. Aqueous-Ethanolic Extract and Its Subsequent Fractions: An Approach to Validate Traditional Phytomedicinal Knowledge. Molecules 2021, 26, 577. [Google Scholar]
- Bryll, A.; Skrzypek, J.; Krzyściak, W.; Szelągowska, M.; Śmierciak, N.; Kozicz, T.; Popiela, T. Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia. Biomolecule 2020, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef] [Green Version]
- Alminderej, F.; Bakari, S.; Almundarij, T.I.; Snoussi, M.; Aouadi, K.; Kadri, A. Antioxidant Activities of a New Chemotype of Piper cubeba L. Fruit Essential Oil (Methyleugenol/Eugenol): In Silico Molecular Docking and ADMET Studies. Plants 2020, 9, 1534. [Google Scholar] [CrossRef]
- Teixeira, J.; de Castro, A.A.; Soares, F.V.; Da Cunha, E.F.F.; Ramalho, T.C. Future Therapeutic Perspectives into the Alzheimer’s Disease Targeting the Oxidative Stress Hypothesis. Molecules 2019, 24, 4410. [Google Scholar] [CrossRef] [Green Version]
- Felhi, S.; Hajlaoui, H.; Ncir, M.; Bakari, S.; Ktari, N.; Saoudi, M.; Gharsallah, N.; Kadri, A. Nutritional, phytochemical and antioxidant evaluation and FT-IR analysis of freeze dried extracts of Ecballium elaterium fruit juice from three localities. Food Sci. Technol. 2016, 36, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Mefteh, F.B.; Daoud, A.; Bouket, A.C.; Thissera, B.; Kadri, Y.; Cherif-Silini, H.; Eshelli, M.; Alenezi, F.N.; Vallat, A.; Oszako, T.; et al. Date Palm Trees Root-Derived Endophytes as Fungal Cell Factories for Diverse Bioactive Metabolites. Int. J. Mol. Sci. 2018, 19, 1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadri, A.; Zarai, Z.; Chobba, I.B.; Gharsallah, N.; Damak, M.; Bekir, A. Chemical composition and in vitro antioxidant activities of Thymelaea hirsuta L. essential oil from Tunisia. Afr. J. Biotechnol. 2011, 15, 2930–2935. [Google Scholar]
- Gad-Elkareem, M.A.M.; Abdelgadir, E.H.; Badawy, O.M.; Kadri, A. Potential antidiabetic effect of ethanolic and aqueous-ethanolic extracts of Ricinus communis leaves on streptozotocin-induced diabetes in rats. PeerJ 2019, 7, e6441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mseddi, K.; Alimi, F.; Noumi, E.; Veettil, V.N.; Deshpande, S.; Adnan, M.; Hamdi, A.; Elkahoui, S.; Alghamdi, A.; Kadri, A.; et al. Thymus musilii Velen. as a promising source of potent bioactive compounds with its pharmacological properties: In vitro and in silico analysis. Arab. J. Chem. 2020, 13, 6782–6801. [Google Scholar] [CrossRef]
- Daoud, A.; Ben Mefteh, F.; Mnafgui, K.; Turki, M.; Jmal, S.; Ben Amar, R.; Ayadi, F.; ElFeki, A.; Abid, L.; Rateb, M.E.; et al. Cardiopreventive effect of ethanolic extract of Date Palm Pollen against isoproterenol induced myocardial infarction in rats through the inhibition of the angiotensin-converting enzyme. Exp. Toxicol. Pathol. 2017, 69, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Felhi, S.; Saoudi, M.; Daoud, A.; Hajlaoui, H.; Ncir, M.; Chaabane, R.; El Feki, A.; Gharsallah, N.; Kadri, A. Investigation of phytochemical contents, in vitro antioxidant and antibacterial behavior and in vivo anti-inflammatory potential of Ecballium elaterium methanol fruits extract. Food Sci. Technol. 2017, 37, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Alminderej, F.; Bakari, S.; Almundarij, T.I.; Snoussi, M.; Aouadi, K.; Kadri, A. Antimicrobial and Wound Healing Potential of a New Chemotype from Piper cubeba L. Essential Oil and in Silico Study on S. aureus tyrosyl-tRNA Synthetase Protein. Plants 2021, 10, 205. [Google Scholar] [CrossRef]
- Bakari, S.; Hajlaoui, H.; Daoud, A.; Mighri, H.; Ross-Garcia, J.M.; Gharsallah, N.; Kadri, A. Phytochemicals, antioxidant and antimicrobial potentials and LC-MS analysis of hydroalcoholic extracts of leaves and flowers of Erodium glaucophyllum collected from Tunisian Sahara. Food Sci. Technol. 2018, 38, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Boersch, M.; Nagarajan, A.; Davey, A.K.; Zunk, M. Antioxidant Properties and Reported Ethnomedicinal Use of the Genus Echium (Boraginaceae). Antioxidants 2020, 9, 722. [Google Scholar] [CrossRef]
- Lima, I.S.M. Medicinal and Aromatic Plants of Cape Verde: Characterization of Volatile Metabolites of Endemic and Native Species. Ph.D. Thesis, Universidade de Coimbra, Coimbra, Portugal, 2013. [Google Scholar]
- Eruygur, N.; Yılmaz, G.; Kutsal, O.; Yücel, G.; Üstün, O. Bioassay-guided isolation of wound healing active compounds from Echium species growing in Turkey. J. Ethnopharmacol. 2016, 185, 370–376. [Google Scholar] [CrossRef]
- Heidari, M.R.; Azad, E.M.; Mehrabani, M. Evaluation of the analgesic effect of Echium amoenum Fisch & CA Mey. extract in mice: Possible mechanism involved. J. Ethnopharmacol. 2006, 103, 345–349. [Google Scholar]
- Bakari, S.; Daoud, A.; Felhi, S.; Smaoui, S.; Gharsallah, N.; Kadri, A. Proximate analysis, mineral composition, phytochemical contents, antioxidant and antimicrobial activities and GC-MS investigation of various solvent extracts of cactus cladode. Food Sci. Technol. 2017, 37, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Felhi, S.; Daoud, A.; Hajlaoui, H.; Mnafgui, K.; Gharsallah, N.; Kadri, A. Solvent extraction effects on phytochemical constituents profiles, antioxidant and antimicrobial activities and functional group analysis of Ecballium elaterium seeds and peels fruits. Food Sci. Technol. 2017, 37, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Hajlaoui, H.; Arraouadi, S.; Mighri, H.; Chaaibia, M.; Gharsallah, N.; Ros, G.; Nieto, G.; Kadri, A.A.; Kadri, A. Ros Phytochemical Constituents and Antioxidant Activity of Oudneya africana L. Leaves Extracts: Evaluation Effects on Fatty Acids and Proteins Oxidation of Beef Burger during Refrigerated Storage. Antioxidants 2019, 8, 442. [Google Scholar] [CrossRef] [Green Version]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein—Ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [CrossRef] [Green Version]
- Kadri, A.; Aouadi, K. In vitro antimicrobial and α-glucosidase inhibitory potential of enantiopure cycloalkylglycine derivatives: Insights into their in silico pharmacokinetic, druglikeness, and medicinal chemistry properties. J. Appl. Pharm. Sci. 2020, 10, 107–115. [Google Scholar]
- Othman, I.M.M.; Gad-Elkareem, M.A.M.; Anouar, E.H.; Aouadi, K.; Kadri, A.; Snoussi, M. Design, synthesis ADMET and molecular docking of new imidazo[4,5-b]pyridine-5-thione derivatives as potential tyrosyl-tRNA synthetase inhibitors. Bioorg. Chem. 2020, 102, 104105. [Google Scholar] [CrossRef]
- Ghannay, S.; Kadri, A.; Aouadi, K. Synthesis, in vitro antimicrobial assessment, and computational investigation of pharmacokinetic and bioactivity properties of novel trifluoromethylated compounds using in silico ADME and toxicity prediction tools. Mon. Chem.-Chem. Mon. 2020, 151, 267–280. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Do, Q.-D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Truong, D.-H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the Use of Different Solvents for Phytochemical Constituents, Antioxidants, and In Vitro Anti-Inflammatory Activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [Green Version]
- Bazzaz, B.S.F.; Haririzadeh, G.; AImami, S.; Rashed, M.H. Survey of Iranian Plants for Alkaloids, Flavonoids, Saponins, and Tannins [Khorasan Province]. Int. J. Pharmacogn. 1997, 35, 17–30. [Google Scholar] [CrossRef]
- Chaouche, T.; Haddouchi, F.; Bekkara, F.A. Phytochemical study of roots and leaves of the plant Echium pycnanthum Pomel. Der Pharm. Lett. 2011, 3, 1–4. [Google Scholar]
- Olennikov, D.N.; Daironas, Z.V.; Zilfikarov, I.N. Shikonin and Rosmarinic-Acid Derivatives from Echium russicum Roots. Chem. Nat. Compd. 2017, 53, 953–955. [Google Scholar] [CrossRef]
- Kefi, S.; Essid, R.; Mkadmini, K.; Kefi, A.; Haddada, F.M.; Tabbene, O.; Limam, F. Phytochemical investigation and biological activities of Echium arenarium (Guss) extracts. Microb. Pathog. 2018, 118, 202–210. [Google Scholar] [CrossRef]
- Eruygur, N.; Yimaz, G.; Üstün, O. Analgesic and antioxidant activity of some Echium species wild growing in Turkey. FABAD J. Pharm. Sci. 2012, 37, 151–159. [Google Scholar]
- Radwan, H.M.; Shams, K.A.; Mohamed, W.A.; Ismail, I.A. Phytochemical and biological investigation of Echium sericeum (Vahl) growing in Egypt. Planta Med. 2007, 73, P_334. [Google Scholar] [CrossRef]
- Durán, A.G.; Gutiérrez, M.T.; Rial, C.; Torres, A.; Varela, R.M.; Valdivia, M.M.; Molinillo, J.M.; Skoneczny, D.; Weston, L.A.; Macías, F.A. Bioactivity and quantitative analysis of isohexenylnaphthazarins in root periderm of two Echium spp.: E. plantagineum and E. gaditanum. Phytochemistry 2017, 141, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Weston, P.A.; Weston, L.A.; Hildebrand, S. Metabolic profiling in Echium plantagineum: Presence of bioactive pyrrolizidine alkaloids and napthoquinones from accessions across southeastern Australia. Phytochem. Rev. 2013, 12, 831–837. [Google Scholar] [CrossRef]
- Egea, P.; Sánchez-Bel, F.; Romojaro, M.T. Pretel Six edible wild fruits as potential antioxidant additives or nutritional supplements. Plant Foods Hum. Nutr. 2010, 65, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Scherer, R.; Godoy, H.T. Effects of extraction methods of phenolic compounds from Xanthium strumarium L. and their antioxidant activity. Rev. Bras. Plant Med. Camp. 2014, 16, 41–46. [Google Scholar] [CrossRef]
- Fuyu, S.; Ruifa, J. Theoretical study on the radical scavenging activity of shikonin and its ester derivatives. Res. J. Appl. Sci. Eng. Technol. 2012, 6, 281–284. [Google Scholar]
- Nićiforović, N.; Mihailović, V.; Mašković, P.; Solujić, S.; Stojković, A.; Muratspahić, D.P. Antioxidant activity of selected plant species; potential new sources of natural antioxidants. Food Chem. Toxicol. 2010, 48, 3125–3130. [Google Scholar] [CrossRef]
- Materska, M. Quercetin and its derivates: Chemical structure and bioactivity—A review. Polish J. Food Nutr. Sci. 2008, 58, 407–413. [Google Scholar]
- Slimen, I.B.; Mabrouk, M.; Hanène, C.; Najar, T.; Abderrabba, M. LC-MS Analysis of Phenolic Acids, Flavonoids and Betanin from Spineless Opuntia ficusindica Fruits. Cell Biol. 2017, 5, 17. [Google Scholar] [CrossRef]
- Rashmi, R.; Magesh, S.B.; Ramkumar, K.M.; Suryanarayanan, S.; Subbarao, M.V. Antioxidant Potential of Naringenin Helps to Protect Liver Tissue from Streptozotocin-Induced Damage. Rep. Biochem. Mol. Biol. 2018, 7, 76–84. [Google Scholar] [PubMed]
- Hu, J.; Ma, W.; Li, N.; Wang, K.-J. Antioxidant and Anti-Inflammatory Flavonoids from the Flowers of Chuju, a Medical Cultivar of Chrysanthemum Morifolim Ramat. J. Mex. Chem. Soc. 2018, 61, 282–289. [Google Scholar] [CrossRef]
- Nishimura, F.D.C.Y.; De Almeida, A.C.; Ratti, B.A.; Ueda-Nakamura, T.; Nakamura, C.V.; Ximenes, V.F.; Silva, S.D.O. Antioxidant Effects of Quercetin and Naringenin Are Associated with Impaired Neutrophil Microbicidal Activity. Evid.-Based Complement. Altern. Med. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Gong, J.; Chu, B.; Gong, L.; Fang, Z.; Zhang, X.; Qiu, S.; Wang, J.; Xiang, Y.; Xiao, G.; Yuan, H.; et al. Comparison of Phenolic Compounds and the Antioxidant Activities of Fifteen Chrysanthemum morifolium Ramat cv. ‘Hangbaiju’ in China. Antioxidants 2019, 8, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavia, M.; Busto, M.; Pilar-Izquierdo, M.C.; Ortega, N.; Perez-Mateos, M.; Muñiz, P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: A comparative study. J. Sci. Food Agric. 2010, 90, 1238–1244. [Google Scholar] [CrossRef]
- Nile, S.H.; Ko, E.Y.; Kim, D.H.; Keum, Y.-S. Screening of ferulic acid related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity. Rev. Bras. Farm. 2016, 26, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.-Q.; Chen, P.; Su, W.-W.; Wang, Y.-G.; Wu, H.; Peng, W.; Li, P.-B. Antioxidant Activity and Hepatoprotective Potential of Quercetin 7-Rhamnoside In Vitro and In Vivo. Molecules 2018, 23, 1188. [Google Scholar] [CrossRef] [Green Version]
- Kiliç, I.; Yeşiloğlu, Y. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 115, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Guleria, S.; Tiku, A.K.; Singh, G.; Koul, A.; Gupta, S.; Rana, S. In vitro antioxidant activity and phenolic contents in methanol extracts from medicinal plants. J. Plant Biochem. Biotechnol. 2013, 22, 9–15. [Google Scholar] [CrossRef]
- Lin, F.-J.; Yen, F.-L.; Chen, P.-C.; Wang, M.-C.; Lin, C.-N.; Lee, C.-W.; Ko, H.-H. HPLC-Fingerprints and Antioxidant Constituents of Phyla nodiflora. Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.R.; Menezes, P.F.C.; Martinello, T.; Novakovich, G.F.L.; Praes, C.E.O.; Feferman, I.H.S. Antioxidant kinetics of plant-derived substances and extracts. Int. J. Cosmet. Sci. 2010, 32, 73–80. [Google Scholar] [CrossRef]
- Masella, R.; Santangelo, C.; D’Archivio, M.; LiVolti, G.; Giovannini, C.; Galvano, F. Protocatechuic Acid and Human Disease Prevention: Biological Activities and Molecular Mechanisms. Curr. Med. Chem. 2012, 19, 2901–2917. [Google Scholar] [CrossRef]
- Ho, J.H.-C.; Hong, C.-Y. Salvianolic acids: Small compounds with multiple mechanisms for cardiovascular protection. J. Biomed. Sci. 2011, 18, 30. [Google Scholar] [CrossRef] [Green Version]
- De Clercq, E.; Naesens, L.; De Bolle, L.; Schols, D.; Zhang, Y.; Neyts, J. Antiviral agents active against human herpesviruses HHV-6, HHV-7 and HHV-8. Rev. Med. Virol. 2001, 11, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Othman, I.M.; Gad-Elkareem, M.A.; Aouadi, K.; Snoussi, M.; Kadri, A. New substituted pyrazolones and dipyrazolotriazines as promising tyrosyl-tRNA synthetase and peroxiredoxin-5 inhibitors: Design, synthesis, molecular docking and structure-activity relationship (SAR) analysis. Bioorg. Chem. 2021, 109, 104704. [Google Scholar] [CrossRef]
- Othman, I.M.; Gad-Elkareem, M.A.; Snoussi, M.; Aouadi, K.; Kadri, A. Novel fused pyridine derivatives containing pyrimidine moiety as prospective tyrosyl-tRNA synthetase inhibitors: Design, synthesis, pharmacokinetics and molecular docking studies. J. Mol. Struct. 2020, 1219, 128651. [Google Scholar] [CrossRef]
- Zrieq, R.; Ahmad, I.; Snoussi, M.; Noumi, E.; Iriti, M.; Algahtani, F.D.; Patel, H.; Saeed, M.; Tasleem, M.; Sulaiman, S.; et al. Tomatidine and Patchouli Alcohol as Inhibitors of SARS-CoV-2 Enzymes (3CLpro, PLpro and NSP15) by Molecular Docking and Molecular Dynamics Simulations. Int. J. Mol. Sci. 2021, 22, 10693. [Google Scholar] [CrossRef] [PubMed]
Extracts | Polarity Index | Yields (%) | TPC (mg GAE/g) | TFC (mg QE/g) | TFlC (mg QE/g) | TCTC (mg CE/g) | TCC (mg β-CE/g) |
---|---|---|---|---|---|---|---|
Hexane | 0 | 1.58 | 76.72 ± 0.68 c | 58.42 ± 0.03 c | 18.95 ± 0.19 c | 131.50 ± 0.16 a | 175.73 ± 7.40 b |
Dichloromethane | 3.7 | 0.90 | 389.81 ± 2.74 b | 151.69 ± 0.60 a | 97.39 ± 0.19 a | 125.74 ± 5.72 a | 537.85 ± 5.06 c |
Ethyl acetate | 4.4 | 0.64 | 390.32 ± 5.09 b | 97.04 ± 0.27 b | 56.96 ± 0.45 b | 55.59 ± 0.29 b | - |
Methanol | 6.6 | 7.25 | 443.05 ± 0.50 a | 14.48 ± 0.16 d | 11.36 ± 0.06 d | 47.97 ± 0.19 b | - |
Aqueous | 9 | 3.11 | 440.59 ± 0.50 a | 14.96 ± 0.62 d | 9.66 ± 0.06 e | 6.89 ± 0.17 c | 40.92 ± 0.21 a |
Peak | Retention Time (min) | MS[M-H]− m/z | Compounds | Concentration (µg/g) |
---|---|---|---|---|
1 | 2.130 | 191.00 | Quinic acid | 11.178 ± 0.42 |
2 | 7.385 | 153.00 | Protocatchuic acid | 15.88 ± 0.54 |
3 | 9.189 | 289.00 | (+)-Catechin | 37.7 ± 1.45 |
4 | 13.795 | 289.00 | Epicatechin | 18.56 ± 2.14 |
5 | 12.993 | 179.00 | Caffeic acid | 71.01 ± 1.32 |
6 | 14.960 | 515.00 | 1,3-di-O-caffeoyquinic acid | 8.191 ± 0.36 |
7 | 17.087 | 163.00 | p-Coumaric acid | 2052 ± 7.34 |
8 | 18.744 | 193.00 | trans-Ferulic acid | 323.4 ± 1.96 |
9 | 21.634 | 579.00 | Naringin | 2.507 ± 0.09 |
10 | 22.209 | 359.00 | Rosmarinic acid | 16.25 ± 0.98 |
11 | 22.910 | 463.00 | Hyperoside (quercetin-3-O-galactoside) | 5.135 ± 0.71 |
12 | 22.888 | 609.00 | Rutin | 4.781 ± 0.12 |
13 | 23.754 | 717.00 | Salviolinic acid | 29.29 ± 0.6 |
14 | 23.754 | 515.00 | 4,5-di-O-caffeoyquinic acid | 228.1 ± 1.75 |
15 | 24.302 | 431.00 | Apigenin-7-O-glucoside | 4.02 ± 0.61 |
16 | 25.112 | 447.00 | Quercetrin (quercetin-3-O-rhamonoside) | 15.23 ± 0.77 |
17 | 26.977 | 271.00 | Naringenin | 1.56 ± 0.12 |
18 | 29.763 | 285.00 | Luteolin | 6.302 ± 1.60 |
19 | 23.451 | 329.00 | Cirsiliol | 583.5 ± 5.18 |
20 | 31.852 | 269.00 | Apigenin | 7.427 ± 2.14 |
21 | 37.061 | 283.00 | Acacetin | 69.5 ± 1.89 |
Extracts | DPPH IC50 (µg/mL) | ABTS IC50 (µg/mL) | FRAP CE50 (µg/mL) | TAC (µg AAE/g) |
---|---|---|---|---|
Hexane | – | – | 3875.00 ± 0.02 a | 827.93 ± 2.60 a |
Dichloromethane | 1002.5 ± 3.53 a | 1505.00 ± 0.54 b,c | 375.00 ± 0.02 e | 1999.00 ± 2.05 b |
Ethylacetate | 17.25 ± 1.76 c | 1433.30 ± 1.78 c | 617.33 ± 0.04 d | 1219.50 ± 6.09 c |
Methanol | 64.00 ± 1.65 b | 1583.33 ± 1.45 b | 1372.30 ± 0.01 c | 362.30 ± 2.53 d |
Aqueous | – | 1708.30 ± 0.27 a | 2187.16 ± 0.61 b | 251.21 ± 2.65 d |
Ascorbicacid | 108.11 ± 0.06 d | – | 31.02 ± 0.48 f | – |
Trolox | – | 71.00 ± 0.04 d | – | – |
ABTS | DPPH | FRAP | TAC | TCC | TFC | TFlC | TPC | |
---|---|---|---|---|---|---|---|---|
DPPH | 0.037 | |||||||
FRAP | −0.478 * | −0.515 * | ||||||
TAC | −0.222 | 0.794 ** | 0.631 ** | |||||
TCC | −0.169 | 0.957 *** | −0.278 | 0.769 ** | ||||
TFC | −0.220 | 0.756 ** | −0.618 ** | 0.995 *** | 0.740 ** | |||
TFlC | −0.077 | 0.810 *** | −0.709 ** | 0.987 *** | 0.758 ** | 0.987 *** | ||
TPC | 0.984 *** | −0.023 | −0.479 * | −0.282 | −0.249 | −0.285 | 0.140 | |
CTC | −0.636 | 0.688 ** | −0.233 | 0.797 ** | 0.738 ** | 0.758 ** | 0.706 ** | −0.645 ** |
N° | Entry | Binding Energy (kcal/mol) |
---|---|---|
1 | Quinic acid | −4.6 |
2 | Protocatchuic acid | −4.4 |
3 | (+)-Catechin | −5.4 |
4 | Epicatechin | −5.5 |
5 | Caffeic acid | −4.6 |
6 | 1,3-di-O-caffeoyquinic acid | −6.6 |
7 | p-Coumaric acid | −4.4 |
8 | Trans-Ferulic acid | −4.7 |
9 | Naringin | −7.0 |
10 | Rosmarinic acid | −6.6 |
11 | Hyperoside (quercetin-3-O-galactoside) | −5.8 |
12 | Rutin | −6.5 |
13 | Salviolinic acid | −6.3 |
14 | 4,5-di-O-caffeoyquinic acid | −5.5 |
15 | Apigenin-7-O-glucoside | −6.5 |
16 | Quercetrin (quercetin-3-O-rhamonoside) | −6.3 |
17 | Naringenin | −5.7 |
18 | Luteolin | −5.7 |
19 | Cirsiliol | −5.5 |
20 | Apigenin | −5.8 |
21 | Acacetin | −5.8 |
Entry | p-Coumaric Acid | Trans-Ferulic Acid | Cirsiliol |
---|---|---|---|
Pharmacokinetics/Drug-likeness | |||
GI absorption | High | High | High |
BBB permeant | Yes | Yes | No |
P-gp substrate | No | No | No |
CYP1A2 inhibitor | No | No | Yes |
CYP2C19 inhibitor | No | No | No |
CYP2C9 inhibitor | No | No | No |
CYP2D6 inhibitor | No | No | Yes |
CYP3A4 inhibitor | No | No | Yes |
Log Kp (cm/s) | −6.26 | −6.41 | −6.25 |
Lipinski | Yes | Yes | Yes |
Bioavailability Score | 0.85 | 0.85 | 0.55 |
log VDss (human) | −1.151 | −1.367 | 1.153 |
CNS permeability | −2.418 | −2.612 | −2.251 |
Toxicity | |||
AMES toxicity | No | No | No |
Hepatotoxicity | No | No | No |
hERG I/II inhibitors | No | No | No |
Skin Sensitization | No | No | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aouadi, K.; Hajlaoui, H.; Arraouadi, S.; Ghannay, S.; Snoussi, M.; Kadri, A. HPLC/MS Phytochemical Profiling with Antioxidant Activities of Echium humile Desf. Extracts: ADMET Prediction and Computational Study Targeting Human Peroxiredoxin 5 Receptor. Agronomy 2021, 11, 2165. https://doi.org/10.3390/agronomy11112165
Aouadi K, Hajlaoui H, Arraouadi S, Ghannay S, Snoussi M, Kadri A. HPLC/MS Phytochemical Profiling with Antioxidant Activities of Echium humile Desf. Extracts: ADMET Prediction and Computational Study Targeting Human Peroxiredoxin 5 Receptor. Agronomy. 2021; 11(11):2165. https://doi.org/10.3390/agronomy11112165
Chicago/Turabian StyleAouadi, Kaïss, Hafedh Hajlaoui, Soumaya Arraouadi, Siwar Ghannay, Mejdi Snoussi, and Adel Kadri. 2021. "HPLC/MS Phytochemical Profiling with Antioxidant Activities of Echium humile Desf. Extracts: ADMET Prediction and Computational Study Targeting Human Peroxiredoxin 5 Receptor" Agronomy 11, no. 11: 2165. https://doi.org/10.3390/agronomy11112165
APA StyleAouadi, K., Hajlaoui, H., Arraouadi, S., Ghannay, S., Snoussi, M., & Kadri, A. (2021). HPLC/MS Phytochemical Profiling with Antioxidant Activities of Echium humile Desf. Extracts: ADMET Prediction and Computational Study Targeting Human Peroxiredoxin 5 Receptor. Agronomy, 11(11), 2165. https://doi.org/10.3390/agronomy11112165