Nitrogen Release in Soils Amended with Different Organic and Inorganic Fertilizers under Contrasting Moisture Regimes: A Laboratory Incubation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Preparation
2.2. Collection of Organic Materials
2.3. Incubation Experiment
2.4. Soil Extraction and Analysis
2.4.1. Mineral N
2.4.2. Total N
2.4.3. Soil pH
2.5. Calculating Net Mineral N Data, Maximum N Release, N Release Per Unit Urea and Gaseous N Loss
- (note: all the units are expresses in mg N kg−1)
- where, loss of total N is the difference between initial and final total N concentration.
2.6. Fitting of N Release Data to the First Order Kinetic Model
2.7. Statistical Analysis
3. Results
3.1. NH4+-N Release
3.2. NO3−-N Releases
3.3. Mineral N (NH4+-N + NO3−-N) Releases
3.4. Nitrogen Release Kinetics
3.5. Nitrogen Balance
3.6. Changes in Soil pH
4. Discussion
4.1. Influence of Soil Type on N Dynamics and Changes in Soil pH
4.2. Influence of Soil Moisture on N Dynamics and Changes in Soil pH
4.3. Influence of Treatments and C:N Ratio on N Dynamics and Changes in Soil pH
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FRG. Fertilizer Recommendation Guide; Bangladesh Agricultural Research Council: Dhaka, Bangladesh, 2018.
- Satter, S.A.; Islam, M.N. Charlands of Bangladesh: Their extent, management and future research needs. In Proceedings of the Soil Fertility, Fertilizer Management and Future Strategy, Farmgate, Dhaka, 18–19 January 2010; pp. 1–9. [Google Scholar]
- Diacono, M.; Montemurro, F. Long term effects of organic amendments on soil fertility: A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K. Soil fertility and plant nutrition research under field conditions: Basic principles and methodology. J. Plant Nut. 2007, 30, 203–223. [Google Scholar] [CrossRef]
- Kumar, M.; Baishaya, L.K.; Ghosh, D.C.; Gupta, V.K.; Dubey, S.K.; Das, A.; Patel, D.P. Productivity and soil health of potato (Solanum tuberosum L.) field as influenced by organic manures, inorganic fertilizers and biofertilizers under high altitudes of Eastern Himalayas. J. Agric. Sci. 2012, 4, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Jeptoo, A.; Aguyoh, J.N.; Saidi, M. Improving Carrot Yield and Quality through the Use of Bio-Slurry Manure. Sustain. Agric. Res. 2013, 2, 164–172. [Google Scholar] [CrossRef]
- Islam, M.R.; Rashid, M.B.; Siddique, A.B.; Afroz, H. Integrated effects of manures and fertilizers on the yield and nutrient uptake by BRRI dhan49. J. Bangladesh Agril. Univ. 2014, 12, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Nuruzzaman, M.; Ashrafuzzaman, M.; Islam, M.Z.; Islam, M.R. Field efficiency of biofertilizers on the growth of okra (Abelmoschus esculentus [(L.) Moench]). J. Plant Nutr. Soil Sci. 2003, 166, 764–770. [Google Scholar] [CrossRef]
- Abid, M.; Batool, T.; Siddique, G.; Ali, S.; Binyamin, R.; Shahid, M.J.; Rizwan, M.; Alsahli, A.A.; Alyemeni, M.N. Integrated Nutrient Management Enhances Soil Quality and Crop Productivity in Maize-Based Cropping System. Sustainability 2020, 12, 10214. [Google Scholar] [CrossRef]
- Nweke, I.A.; Nsoanya, L.N. Effect of Cow Dung and Urea Fertilization on Soil Properties, Growth, and Yield of Cucumber (Cucumis sativus L.). J. Agric. Ecol. Res. Int. 2015, 3, 81–88. [Google Scholar] [CrossRef]
- Kulczycki, G.; Magnucka, E.G.; Oksińska, M.P.; Kucińska, J.; Kobyłecki, R.; Paweska, K.; Zarzycki, R.; Kacprzak, A.; Pietr, S.J. The Effect of Various Types of Biochar Mixed with Mineral Fertilization on the Development and Ionome of Winter Wheat (Triticum aestivum L.) Seedlings and Soil Properties in a Pot Experiment. Agronomy 2020, 10, 1903. [Google Scholar] [CrossRef]
- Schaller, J.; Wang, J.; Islam, M.R.; Planer-Friedrich, B. Black carbon yields highest nutrient and lowest arsenic release when using rice residuals in paddy soils. Sci. Rep. 2018, 8, 17004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossman, J.M.; O’Neill, B.E.; Tsai, S.M.; Liang, B.; Neves, E.; Lehmann, J.; Thies, J.E. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb. Ecol. 2010, 60, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Gruber, N.; Galloway, J.N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Shan, Y.S.; Hao, F.H.; Chen, S.Y.; Pu, X.; Wang, M.K. The effect on soil nutrients resulting from land use transformations in a freeze-thaw agricultural ecosystem. Soil Till. Res. 2013, 132, 30–38. [Google Scholar] [CrossRef]
- Masunga, R.H.; Uzokwe, V.N.; Mlay, P.D.; Odeh, I.; Singh, A.; Buchan, D.; De Neve, S. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl. Soil Ecol. 2016, 101, 185–193. [Google Scholar] [CrossRef]
- Cassity-Duffey, K.; Cabrera, M.; Franklin, D.; Gaskin, J.; Kissel, D. Effect of soil texture on nitrogen mineralization from organic fertilizers in four common southeastern soils. Soil Sci. Soc. Am. J. 2020, 84, 534–542. [Google Scholar] [CrossRef]
- Dessureault-Rompré, J.; Zebarth, B.J.; Burton, D.L.; Georgallas, A. Predicting soil nitrogen supply from soil properties. Can. J. Soil Sci. 2015, 95, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Wade, J.; Horwath, W.R.; Burger, M.B. Integrating soil biological and chemical indices to predict net nitrogen mineralization across California agricultural systems. Soil Sci. Soc. Am. J. 2016, 80, 1675–1687. [Google Scholar] [CrossRef]
- Pramanik, P.; Safique, S.; Zahan, A.; Phukan, M.; Ghosh, S. Cellulolytic microorganisms control the availability of nitrogen in microcosm of shredded pruning litter treated highly acidic tea-growing soils of Assam in Northeast India. Appl. Soil Ecol. 2017, 120, 30–34. [Google Scholar] [CrossRef]
- Waldrop, M.P.; Holloway, M.J.; Smith, D.B.; Goldhaber, M.B.; Drenovsky, R.E.; Scow, K.M.; Dick, R.; Howard, D.; Wylie, B.; Grace, J.B. The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale. Ecology 2017, 98, 1957–1967. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management, Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 1–12. [Google Scholar]
- Ulyett, J.; Sakrabani, R.; Kibblewhite, M.; Hann, M. Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils. Eur. J. Soil Sci. 2014, 65, 96–104. [Google Scholar] [CrossRef]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Stott, A.W.; Grant, H.K.; Whitaker, J. Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol. Biochem. 2015, 81, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Thangarajan, R.; Bolan, N.S.; Sarkar, B.; Khan, N.; Ok, Y.S.; Naidu, R. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere 2016, 142, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wang, Z.Y.; Deng, X.; Zhao, J.; Luo, Y.; Novak, J.; Herbert, S.; Xing, B.S. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour. Technol. 2013, 130, 463–471. [Google Scholar] [CrossRef]
- Bass, A.M.; Bird, M.I.; Kay, G.; Muirhead, B. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Sci. Total Environ. 2016, 550, 459–470. [Google Scholar] [CrossRef]
- Ameloot, N.; Sleutel, S.; Das, K.C.; Kanagaratnam, J.; de Neve, S. Biochar amendment to soils with contrasting organic matter level: Effects on N mineralization and biological soil properties. GCB Bioen. 2015, 7, 135–144. [Google Scholar] [CrossRef]
- Maestrini, B.; Herrmann, A.M.; Nannipieri, P.; Schmidt, M.W.I.; Abiven, S. Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil. Soil Biol. Biochem. 2014, 69, 291–301. [Google Scholar] [CrossRef]
- Dempster, D.N.; Jones, D.L.; Murphy, D.V. Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition. Soil Biol. Biochem. 2012, 48, 47–50. [Google Scholar] [CrossRef]
- Prayogo, C.; Jones, J.; Baeyens, J.; Bending, G. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol. Fertil. Soils 2013, 50, 695–702. [Google Scholar] [CrossRef]
- Dempster, D.N.; Gleeson, D.B.; Solaiman, Z.M.; Jones, D.L.; Murphy, D.V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 2012, 354, 311–324. [Google Scholar] [CrossRef]
- Wang, C.; Wan, S.; Xing, X.; Zhang, L.; Han, X. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biol. Biochem. 2006, 38, 1101–1110. [Google Scholar] [CrossRef]
- Curtin, D.; Beare, M.H.; Hernandez-Ramirez, G. Temperature and moisture effects on microbial biomass and soil organic matter mineralization. Soil Sci. Soc. Am. J. 2012, 76, 2055–2067. [Google Scholar] [CrossRef]
- Haque, M.A.; Jahiruddin, M.; Rahman, M.M.; Saleque, M.A. Nitrogen mineralization of bioslurry and other manures in soil. Res. Agric. Livest. Fish. 2015, 2, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.H.; Islam, M.R.; Jahiruddin, M.; Rafii, M.Y.; Hanafi, M.M.; Malek, M.A. Integrated nutrient management in maize-legume-rice cropping pattern and its impact on soil fertility. J. Food Agric. Environ. 2013, 11, 648–652. [Google Scholar]
- Guntiñas, M.E.; Leirós, M.C.; Trasar-Cepeda, C.; Gil-Sotres, F. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. Eur. J. Soil Biol. 2012, 48, 73–80. [Google Scholar] [CrossRef]
- Ono, S. Nitrogen mineralization from paddy and upland soils under flooded and non-flooded incubation. Soil Sci. Plant Nutr. 1989, 35, 417–426. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Munazza, H.; Khalique, A.; Khan, S.R. Mineralization of three organic manures used as nitrogen source in a soil incubated under laboratory conditions. Commun. Soil Sci. Plant Anal. 2007, 38, 1691–1711. [Google Scholar] [CrossRef]
- Jahangir, M.M.R.; Islam, S.; Nitu, T.T.; Uddin, S.; Kabir, A.K.M.A.; Meah, M.B.; Islam, R. Bio-Compost-Based Integrated Soil Fertility Management Improves Post-Harvest Soil Structural and Elemental Quality in a Two-Year Conservation Agriculture Practice. Agronomy 2021, 11, 2101. [Google Scholar] [CrossRef]
- Moharana, P.C.; Biswas, D.R.; Datta, S.C. Mineralization of Nitrogen, Phosphorus and Sulphur in Soil as Influenced by Rock Phosphate Enriched Compost and Chemical Fertilizers. J. Indian Soc. Soil Sci. 2015, 63, 283–293. [Google Scholar] [CrossRef]
- FAO and UNDP. Land Resources Appraisal of Bangladesh for Agricultural Development; Report 2; Agro-Ecological Regions of Bangladesh, Food and Agriculture Organization: Rome, Italy, 1988; pp. 212–221. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen-Inorganic Forms. In Methods of Soil Analysis, Part 2, 2nd ed.; Agronomy 9; ASA and SSSA: Madison, WI, USA, 1982; p. 643. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-Total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Peech, M. Hydrogen-ion activity. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1965; Volume 9, pp. 914–926. [Google Scholar]
- Islam, M.R.; Bilkis, S.; Hoque, T.S.; Uddin, S.; Jahiruddin, M.; Rahman, M.M.; Rahman, M.M.; Alhomrani, M.; Gaber, A.; Hossain, M.A. Mineralization of Farm Manures and Slurries for Successive Release of Carbon and Nitrogen in Incubated Soils Varying in Moisture Status under Controlled Laboratory Conditions. Agriculture 2021, 11, 846. [Google Scholar] [CrossRef]
- Sihag, D.; Singh, J.P. Effect of temperature and soil moisture regime on green manure N mineralization in clay loam soil. J. Indian Soc. Soil Sci. 1999, 47, 212–217. [Google Scholar]
- Zhenghu, D.; Honglang, X. Effects of Soil Properties on Ammonia Volatilization. Soil Sci. Plant Nutr. 2000, 46, 845–852. [Google Scholar] [CrossRef]
- Sommer, S.G.; Schjoerring, J.K.; Denmead, O.T. Ammonia Emission from Mineral Fertilizers and Fertilized Crops. Adv. Agron. 2004, 82, 557–622. [Google Scholar]
- Sahrawat, K.L. Factors Affecting Nitrification in Soils. Commun. Soil Sci. Plant Anal. 2008, 39, 1436–1446. [Google Scholar] [CrossRef] [Green Version]
- Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers, 2nd ed.; The Macmillan Co.: New York, NY, USA, 1970. [Google Scholar]
- Canali, S.; Di Bartolomeo, E.; Tittarelli, F.; Montemurro, F.; Verrastro, V.; Ferri, D. Comparison of different laboratory incubation procedures to evaluate nitrogen mineralization in soils amended with aerobic and anaerobic stabilized organic materials. J. Food Agric. Environ. 2011, 9, 540–546. [Google Scholar]
- Abbasi, M.K.; Khaliq, A. Nitrogen Mineralization of a Loam Soil Supplemented with Organic–Inorganic Amendments under Laboratory Incubation. Front. Plant Sci. 2016, 7, 1038. [Google Scholar] [CrossRef] [Green Version]
- Stadler, C.; con Tucher, S.; Schmidhalter, U.; Gutser, R.; Heuwinkel, H. Nitrogen release from plant-derived and industrially processed organic fertilizers used in organic horticulture. J. Plant Nutr. Soil Sci. 2006, 1, 69549–69556. [Google Scholar] [CrossRef]
- Hadas, A.; Bar-Yosef, B.; Davidov, S.; Sofer, M. Effect of pelleting, temperature, and soil type on mineral nitrogen release from poultry and dairy manures. Soil Sci. Soc. Am. J. 1983, 47, 1129–1133. [Google Scholar] [CrossRef]
- Ghorbani, M.; Asadi, H.; Abrishamkesh, S. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. Int. Soil Water Conserv. Res. 2019, 7, 258–265. [Google Scholar] [CrossRef]
- Duhan, B.S.; Devender, K.; Singh, J.P.; Kuhad, M.S.; Dahiya, S.S. Effect of nitrogen, farmyard manure and metribuzin on nitrogen transformation. J. Indian Soc. Soil Sci. 2005, 53, 184–187. [Google Scholar]
- Calderon, F.J.; McCarty, G.W.; Van Kassel, J.A.; Reeves, J.B. 2004: Carbon and Nitrogen dynamic during incubation of manured soil. Soil Sci. Soc. Am. J. 2004, 68, 1592–1599. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.C. The Nature and Properties of Soils, 14th ed.; (Revised); Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson Education in Asia: Noida, India, 2012; pp. 513–517. [Google Scholar]
- Allen, S.C.; Jose, S.; Nair, P.K.R.; Brecke, B.J.; Nair, V.D.; Graetz, D.A.; Ramsey, C.L. Nitrogen mineralization in a pecan (Carya illinoensis K. Koch)–cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Biol. Fert. Soils 2005, 41, 28–37. [Google Scholar] [CrossRef]
- Uddin, S.; Nitu, T.T.; Milu, U.M.; Nasreen, S.S.; Hossenuzzaman, M.; Haque, M.E.; Hossain, B.; Jahiruddin, M.; Bell, R.W.; Müller, C.; et al. Ammonia fluxes and emission factors under an intensively managed wetland rice ecosystem. Environ. Sci. Process. Impacts 2021, 23, 132–143. [Google Scholar] [CrossRef]
- Islam, M.R.; Bilkis, S.; Hoque, T.S.; Uddin, S.; Jahiruddin, M.; Rahman, M.M.; Siddique, A.B.; Hossain, M.A.; Danso Marfo, T.; Danish, S.; et al. Mineralization of Farm Manures and Slurries under Aerobic and Anaerobic Conditions for Subsequent Release of Phosphorus and Sulphur in Soil. Sustainability 2021, 13, 8605. [Google Scholar] [CrossRef]
- Zarate-Valdez, J.L.; Zasoski, R.J.; Läuchli, A.E. Short-term effects of moisture content on soil solution pH and soil Eh. Soil Sci. 2006, 171, 423–431. [Google Scholar]
- Shi, R.Y.; Ni, N.; Nkoh, J.N.; Li, J.Y.; Xu, R.K.; Qian, W. Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification. Chemosphere 2019, 234, 43–51. [Google Scholar] [CrossRef]
- Jahangir, M.M.R.; Nitu, T.T.; Uddin, S.; Siddaka, A.; Sarker, P.; Khan, S.; Jahiruddin, M.; Müller, C. Carbon and nitrogen accumulation in soils under conservation agriculture practices decreases with nitrogen application rates. Appl. Soil Ecol. 2021, 168, 104178. [Google Scholar] [CrossRef]
- Clough, T.; Condron, L.; Kammann, C.; Müller, C. A review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Camps Arbestain, M.; Hedley, M.; Bishop, P. Chemical and bioassay characterisation of nitrogen availability in biochar produced from dairy manure and biosolids. Org. Geochem. 2012, 51, 45–54. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota-a review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Sarkhot, D.V.; Berhe, A.A.; Ghezzehei, T.A. Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics. J. Environ. Qual. 2012, 41, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- Calderón, F.J.; McCarty, G.W.; Reeves, J.B. Analysis of manure and soil nitrogen mineralization during incubation. Biol. Fert. Soils 2005, 41, 328–336. [Google Scholar] [CrossRef]
- Mohanty, M.; Reddy, S.K.; Probert, M.E.; Dalal, R.C.; Rao, S.A.; Menzies, N.W. Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study. Ecol. Modelling 2011, 222, 719–726. [Google Scholar] [CrossRef]
- Manojlović, M.; Čabilovski, R.; Bavec, M. Organic materials: Sources of nitrogen in the organic production of lettuce. Turk. J. Agric. For. 2010, 34, 163–172. [Google Scholar]
- Cordovil, C.M.D.S.; Coutinho, J.; Goss, M.; Cabral, F. Potentially mineralizable nitrogen from organic materials applied to a sandy soil: Fitting the one-pool exponential model. Soil Use Manag. 2005, 21, 65–72. [Google Scholar] [CrossRef]
- Tong, C.; Xiao, H.; Tang, G.; Wang, H.; Huang, T.; Xia, H.; Keith, S.J.; Li, Y.; Liu, S.; Wu, J. Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China. Soil Till. Res. 2009, 106, 8–14. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Qian, W.; Wang, R.H. Comparison of the ameliorating effects on an acidic Ultisol between four crop straws and their biochars. J. Soils Sediments 2011, 11, 741–750. [Google Scholar] [CrossRef]
- Manna, M.C.; Swarup, A.; Wanjari, R.H.; Mishra, B.; Shahi, D.K. Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil Till. Res. 2007, 94, 397–409. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Ejue, W.S.; Aboyeji, C.M.; Dunsin, O.; Aremu, C.O.; Owolabi, A.O.; Ajiboye, B.O.; Okunlola, O.F.; Adesola, O.O. Biochar, poultry manure and NPK fertilizer: Sole and combine application effects on soil properties and ginger (Zingiber officinale Roscoe) performance in a tropical Alfisol. Open Agric. 2020, 5, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, M.; Iqbal, M.K.; Khalid, A.; Khan, R.A. Humification of poultry waste and rice husk using additives and its application. Int. J. Recycl. Org. Waste Agric. 2019, 8, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Wolf, J.; de Gouvea, A.; da Silva, E.R.L.; Potrich, M.; Appel, A. Métodos físicos e cal hidratada para manejo do cascudinho dos aviários. Ciencia Rural. 2014, 44, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Masud, M.M.; Baquyb, M.A.; Akhtera, S.; Sena, R.; Barmana, A.; Khatun, M.R. Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicol. Environ. Saf. 2020, 202, 110865. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.A.; Jiang, J.; Li, J.Y.; Shi, R.Y.; Mehmood, K.; Baquy, M.A.A.; Xu, R.K. Amelioration of soil acidity, Olsen-P, and phosphatase activity by manure- and peat derived biochars in different acidic soils. Arab. J. Geosci. 2018, 11, 272. [Google Scholar] [CrossRef]
- Li, J.H.; Lv, G.H.; Bai, W.B.; Liu, Q.; Zhang, Y.C.; Song, J.Q. Modification and use of biochar from wheat straw (Triticum aestivum L.) for nitrate and phosphate removal from water. Desalin. Water Treat. 2016, 57, 4681–4693. [Google Scholar]
- Shi, R.Y.; Ni, N.; Nkoh, J.N.; Dong, Y.; Zhao, W.R.; Pan, X.Y.; Li, J.Y.; Xu, R.K.; Qian, W. Biochar retards Al toxicity to maize (Zea mays L.) during soil acidification: The effects and mechanisms. Sci. Total Environ. 2020, 719, 137448. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Acidic Soil | Charland Soil |
---|---|---|
Mechanical fractions (USDA system) | ||
Sand (0.2–0.02) mm % | 34.24 | 58.91 |
Silt (0.02–0.002 mm) % | 35.95 | 31.95 |
Clay (<0.002mm) % | 29.81 | 9.14 |
Textural class | Clay loam | Sandy loam |
Bulk density (g cm−3) | 1.18 | 1.29 |
Organic matter (%) | 1.84 | 0.88 |
Water holding capacity (%) | 24.10 | 17.28 |
pH | 5.45 | 6.56 |
Total N (g kg−1 soil) | 0.90 | 0.50 |
Available P (mg kg−1) | 7.37 | 6.95 |
Exchangeable K (mg kg−1) | 70.20 | 62.40 |
Available S (mg kg−1) | 13.26 | 19.50 |
Manure | C (%) | N (%) | P (%) | K (%) | S (%) | C:N | C:P | C:K | C:S | pH | CEC (meq/100 g) |
---|---|---|---|---|---|---|---|---|---|---|---|
CO | 15.27 | 0.61 | 0.08 | 0.11 | 0.04 | 25.0 | 190.9 | 138.8 | 381.8 | 7.3 | 10.07 |
PM | 28.56 | 1.85 | 0.08 | 0.10 | 0.08 | 15.4 | 357.0 | 285.6 | 357.0 | 8.3 | 12.29 |
RHB | 38.62 | 1.57 | 0.11 | 0.13 | 0.11 | 24.6 | 351.1 | 297.1 | 351.1 | 7.5 | 19.54 |
PMB | 47.76 | 2.74 | 0.14 | 0.14 | 0.13 | 17.4 | 341.1 | 341.1 | 367.4 | 8.5 | 35.68 |
CD | 25.02 | 1.40 | 0.09 | 0.10 | 0.09 | 17.9 | 278.0 | 250.2 | 278.0 | 7.6 | 14.11 |
Treatment Combination | N from Organic Amendment (mg N kg−1 Soil) | N from Chemical Fertilizer i.e., Urea (mg N kg−1 Soil) |
---|---|---|
Control | 0 | 0 |
CO + CF | 51.2 | 68.8 |
PM + CF | 74.0 | 46.0 |
RHB + CF | 62.8 | 57.2 |
PMB + CF | 98.8 | 21.2 |
CD + CF | 56.0 | 64.0 |
Net NH4+ Concentration (mg N kg−1) | Net NO3− Concentration (mg N kg−1) | Net Mineral N Concentration (mg N kg−1) | Soil pH | |
---|---|---|---|---|
Soil type | ||||
Acidic soil | 24.2 ± 5.38 a | 26.6 ± 8.37 a | 50.8 ± 4.46 a | 5.6 ± 0.11 b |
Charland soil | 19.7 ± 4.22 b | 23.7 ± 7.61 b | 36.9 ± 2.83 b | 6.5 ± 0.06 a |
level of significance | ** | *** | *** | *** |
Moisture Status | ||||
FC | 8.4 ± 0.67 b | 48.1 ± 3.30 a | 50.8 ± 4.46 a | 5.8 ± 0.17 b |
CSW | 35.5 ± 2.58 a | 2.2 ± 0.17 b | 36.9 ± 2.83 b | 6.3 ± 0.13 a |
level of significance | *** | *** | *** | *** |
Treatments | ||||
CO + CF | 26.6 ± 9.47 a | 31.6 ± 16.69 a | 53.6 ± 7.85 a | 5.9 ± 0.29 b |
PM + CF | 23.1 ± 9.08 ab | 25.3 ± 13.27 b | 45.9 ± 4.52 ab | 6.0 ± 0.32 ab |
RHB + CF | 18.9 ± 6.97 b | 21.4 ± 11.44 c | 38.2 ± 5.17 b | 6.2 ± 0.25 a |
PMB + CF | 16.0 ± 5.46 c | 18.1 ± 9.59 d | 31.2 ± 4.37 c | 6.2 ± 0.26 a |
CD + CF | 25.0 ± 9.12 a | 29.4 ± 15.62 a | 50.3 ± 7.11 a | 6.0 ± 0.31 ab |
level of significance | ** | *** | ** | * |
Statistical analysis for interaction | ||||
Soil type × Soil Moisture | ** | ** | *** | *** |
Soil type × Treatment | ns | *** | ** | * |
Soil Moisture × Treatment | ** | ** | ** | * |
Soil type × Soil Moisture × Treatment | ns | ns | ns | ns |
Soil Type | Moisture Status | Treatment Combination | N0 (mg N kg−1 Soil) | k (mg N kg−1 Soil Day−1) | Regression Equation | R2 adj * | p-Value |
---|---|---|---|---|---|---|---|
Acidic soil | FC | CO + CF | 88.20 | 0.885 | y = 1.175x − 15.32 | 0.870 | p < 0.0001 |
PM + CF | 64.57 | 0.648 | y = 1.302x − 19.26 | 0.775 | p < 0.0001 | ||
RHB + CF | 58.73 | 0.589 | y = 1.247x − 14.30 | 0.843 | p < 0.0001 | ||
PMB + CF | 48.63 | 0.488 | y = 1.332x − 15.83 | 0.801 | p < 0.0001 | ||
CD + CF | 80.31 | 0.806 | y = 1.282x − 22.13 | 0.830 | p < 0.0001 | ||
CSW | CO + CF | 54.68 | 0.54 | y = 1.195x − 11.51 | 0.594 | p < 0.0001 | |
PM + CF | 50.90 | 0.503 | y = 1.164x − 9.27 | 0.565 | p < 0.0001 | ||
RHB + CF | 42.12 | 0.416 | y = 1.240x − 10.22 | 0.764 | p < 0.0001 | ||
PMB + CF | 32.99 | 0.326 | y = 1.281x − 9.48 | 0.641 | p < 0.0001 | ||
CD + CF | 53.02 | 0.524 | y = 1.104x − 6.45 | 0.667 | p < 0.0001 | ||
Charland soil | FC | CO + CF | 75.66 | 0.577 | y = 1.249x − 18.41 | 0.855 | p < 0.0001 |
PM + CF | 61.10 | 0.466 | y = 1.480x − 28.71 | 0.597 | p < 0.0001 | ||
RHB + CF | 50.51 | 0.385 | y = 1.422x − 20.93 | 0.709 | p < 0.0001 | ||
PMB + CF | 43.99 | 0.335 | y = 1.384x − 16.60 | 0.743 | p < 0.0001 | ||
CD + CF | 69.23 | 0.528 | y = 1.367x − 24.96 | 0.670 | p < 0.0001 | ||
CSW | CO + CF | 45.92 | 0.487 | y = 1.253x − 11.87 | 0.750 | p < 0.0001 | |
PM + CF | 39.20 | 0.416 | y = 1.142x − 6.34 | 0.608 | p < 0.0001 | ||
RHB + CF | 29.61 | 0.314 | y = 1.326x − 9.79 | 0.687 | p < 0.0001 | ||
PMB + CF | 26.75 | 0.284 | y = 1.203x − 5.57 | 0.833 | p < 0.0001 | ||
CD + CF | 43.07 | 0.457 | y = 1.122x − 5.57 | 0.856 | p < 0.0001 |
Soil Type | Moisture Regime | Treatment | Maximum Net Mineral N (mg N kg−1) | N Release (% of Input) | N Release (Per Unit Urea) |
---|---|---|---|---|---|
Acidic soil | FC | CO + CF | 91.55 | 76.29 | 1.33 |
PM + CF | 68.32 | 56.93 | 1.49 | ||
RHB + CF | 63.38 | 52.82 | 1.11 | ||
PMB + CF | 50.68 | 42.23 | 2.39 | ||
CD + CF | 82.73 | 68.94 | 1.29 | ||
CSW | CO + CF | 61.60 | 51.33 | 0.90 | |
PM + CF | 58.14 | 48.45 | 1.26 | ||
RHB + CF | 45.13 | 37.61 | 0.79 | ||
PMB + CF | 36.66 | 30.55 | 1.73 | ||
CD + CF | 60.76 | 50.64 | 0.95 | ||
Charland soil | FC | CO + CF | 61.60 | 51.33 | 0.90 |
PM + CF | 58.14 | 48.45 | 1.26 | ||
RHB + CF | 45.13 | 37.61 | 0.79 | ||
PMB + CF | 36.66 | 30.55 | 1.73 | ||
CD + CF | 60.76 | 50.64 | 0.95 | ||
CSW | CO + CF | 50.76 | 42.30 | 0.74 | |
PM + CF | 46.98 | 39.15 | 1.02 | ||
RHB + CF | 32.77 | 27.31 | 0.57 | ||
PMB + CF | 27.87 | 23.23 | 1.31 | ||
CD + CF | 48.83 | 40.69 | 0.76 |
Soil Type | Moisture Regime | Treatment | Initial Total N (mg N kg−1) | Final Total N (mg N kg−1) | Loss of Total N (mg N kg−1) | Mineral N Conc. after 120 Days (mg N kg−1) | Unaccounted N/Gaseous N Loss (mg N kg−1) |
---|---|---|---|---|---|---|---|
Acidic soil | FC | CO + CF | 1020.0 | 928.4 | 91.6 | 85.9 | 5.7 |
PM + CF | 1020.0 | 951.7 | 68.3 | 61.2 | 7.1 | ||
RHB + CF | 1020.0 | 956.6 | 63.4 | 56.1 | 7.3 | ||
PMB + CF | 1020.0 | 969.3 | 50.7 | 46.1 | 4.6 | ||
CD + CF | 1020.0 | 937.3 | 82.7 | 78.0 | 4.7 | ||
CSW | CO + CF | 1020.0 | 958.4 | 61.6 | 45.2 | 16.4 | |
PM + CF | 1020.0 | 961.9 | 58.1 | 42.3 | 15.8 | ||
RHB + CF | 1020.0 | 974.9 | 45.1 | 37.4 | 7.7 | ||
PMB + CF | 1020.0 | 983.3 | 36.7 | 29.2 | 7.5 | ||
CD + CF | 1020.0 | 959.2 | 60.8 | 43.8 | 17.0 | ||
Charland soil | FC | CO + CF | 620.0 | 558.4 | 61.6 | 45.2 | 16.4 |
PM + CF | 620.0 | 561.9 | 58.1 | 42.3 | 15.8 | ||
RHB + CF | 620.0 | 574.9 | 45.1 | 37.4 | 7.7 | ||
PMB + CF | 620.0 | 583.3 | 36.7 | 29.2 | 7.5 | ||
CD + CF | 620.0 | 559.2 | 60.8 | 43.8 | 17.0 | ||
CSW | CO + CF | 620.0 | 569.2 | 50.8 | 34.3 | 16.5 | |
PM + CF | 620.0 | 573.0 | 47.0 | 29.1 | 17.9 | ||
RHB + CF | 620.0 | 587.2 | 32.8 | 25.0 | 7.8 | ||
PMB + CF | 620.0 | 592.1 | 27.9 | 20.2 | 7.7 | ||
CD + CF | 620.0 | 571.2 | 48.8 | 31.6 | 17.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, S.; Islam, M.R.; Jahangir, M.M.R.; Rahman, M.M.; Hassan, S.; Hassan, M.M.; Abo-Shosha, A.A.; Ahmed, A.F.; Rahman, M.M. Nitrogen Release in Soils Amended with Different Organic and Inorganic Fertilizers under Contrasting Moisture Regimes: A Laboratory Incubation Study. Agronomy 2021, 11, 2163. https://doi.org/10.3390/agronomy11112163
Uddin S, Islam MR, Jahangir MMR, Rahman MM, Hassan S, Hassan MM, Abo-Shosha AA, Ahmed AF, Rahman MM. Nitrogen Release in Soils Amended with Different Organic and Inorganic Fertilizers under Contrasting Moisture Regimes: A Laboratory Incubation Study. Agronomy. 2021; 11(11):2163. https://doi.org/10.3390/agronomy11112163
Chicago/Turabian StyleUddin, Shihab, Mohammad Rafiqul Islam, Mohammad Mofizur Rahman Jahangir, Mohammad Mojibur Rahman, Sabry Hassan, Mohamed M. Hassan, Ali A. Abo-Shosha, Atef F. Ahmed, and Mohammad Mahmudur Rahman. 2021. "Nitrogen Release in Soils Amended with Different Organic and Inorganic Fertilizers under Contrasting Moisture Regimes: A Laboratory Incubation Study" Agronomy 11, no. 11: 2163. https://doi.org/10.3390/agronomy11112163
APA StyleUddin, S., Islam, M. R., Jahangir, M. M. R., Rahman, M. M., Hassan, S., Hassan, M. M., Abo-Shosha, A. A., Ahmed, A. F., & Rahman, M. M. (2021). Nitrogen Release in Soils Amended with Different Organic and Inorganic Fertilizers under Contrasting Moisture Regimes: A Laboratory Incubation Study. Agronomy, 11(11), 2163. https://doi.org/10.3390/agronomy11112163