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Abstract: Hypericum japonicum is traditionally used as a folk medicine to treat cholestasis and hepatitis.
Quercetin 7-rhamnoside (Q7R) is one of the main flavonoid components of Hypericum japonicum
and has been rarely studied. The aim of the present study was to evaluate the antioxidant activity
and hepatoprotective potential of Q7R. In the in vitro experiments, DPPH, ABTS and ferric reducing
antioxidant power (FRAP) assays were first performed to assess the antioxidant properties of Q7R,
and then a H2O2-induced oxidative damage cellular model was used to determine the cytoprotective
and antioxidant properties of Q7R in human liver L-02 cells. In the in vivo experiment, the
hepatoprotective activity of Q7R was evaluated by carbon tetrachloride (CCl4)-induced liver damage
model in mice. The results of the three in vitro assays (DPPH, ABTS and FRAP) demonstrated
that Q7R significantly exhibited antioxidant activity. The cell experiment results showed that
Q7R possessed cytoprotective and antioxidant effects on H2O2-treated L-02 cells. In the in vivo
experiments, Q7R suppressed the up-regulation of serum activities of ALT, AST, LDH and triglyceride
(TG) levels with dose-dependency. Q7R down-regulated the production of MDA and increased the
hepatic GSH content and antioxidant enzymes CAT activities. Hepatic morphological analysis was
also performed to confirm the biochemical changes. In summary, these results suggested that Q7R
could be considered as a potential source of natural antioxidants, and may become a promising
candidate for the treatment of liver injury in the future.

Keywords: Quercetin 7-rhamnoside; intracellular antioxidant activity; hepatoprotective;
Hypericum japonicum

1. Introduction

Lots of liver damage, ranging from subclinical icteric hepatitis to necroinflammatory hepatitis,
cirrhosis and carcinoma, have been proven to associate with redox imbalance and oxidative stress [1,2].
The liver metabolizes various compounds that produce reactive oxygen radicals (ROS). Oxidative stress
is a consequence of discrepancy balance between the production of ROS and antioxidants in a system
of defense of human organisms [3]. Recent research in the field of free radical biology suggested
an important pathophysiological role of free radicals and oxidative stress in the development and
progression of liver diseases [4,5]. Hence, antioxidants are frequently used to treat oxidative liver
injury, and the consumption of antioxidants is known to be an important means of preventing
or delaying the appearance of liver diseases. Flavonoids, a vast class of hydroxylated phenolic
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substances, have long been reported as antioxidants in plants, which is due to their ability to scavenge
free radicals and to reduce free radical formation [6,7]. Since these compounds are based on the
flavan nucleus, the number, positions, and types of substitutions influence radical scavenging and
chelating activity [8]. They have multiple biological activities, including antioxidant activity [9],
anticarcinogenic, vasodilatory, antiinflammatory, antibacterial, antiallergic, immune-stimulating and
antiviral effects [10,11]. The antioxidant activity of flavonoids are due to their capacity to transfer
electrons free radicals, chelate metal catalysts, activate antioxidant enzymes, reduce alpha-tocopherol
radicals, and inhibit oxidases [12].

The entire herb of Hypericum japonicum, named “Tianjihuang” in China, has been widely
used for the treatment of cholestasis, as well as acute and chronic hepatitis [13]. Tianjihuang
injection was reported to have significant hepatoprotective effects on carbon tetrachloride (CCl4)
and acetaminophen-induced acute hepatotoxicity in rats [14]. Amani et al. [15] reported that Schouwia
thebaica Webb extracts containing Q7R significantly exerted curative effects on CCl4-induced liver
injury in rats. Q7R (Figure 1) is one of the main flavonoid components of Hypericum japonicum [16].
It has been reported that Q7R possesses strong anti-porcine epidemic diarrhea virus activity, which
is not simply due to its general action as an antioxidant [17,18]. Our previous study indicated Q7R
exhibited hepatoprotective as well as jaundice-relieving effects [19] and could attenuate L-02 cell injury
induced by glycochenodeoxycholic acid [13].
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Figure 1. Chemical structure of quercetin 7-rhamnoside (Q7R).

In order to figure out the antioxidant capacity of Q7R, a comprehensive investigation based on
in vitro methods (DPPH, ABTS, and ferric reducing antioxidant power (FRAP) assays), hepatocyte
cellular assay of H2O2-induced damage and experimental rat model of CCl4-induced toxic hepatitis
were used in this study.

2. Results

2.1. Antioxidant Activity by DPPH Method

Lower IC50 indicates higher antioxidant capacity. In the Figure 2A, Q7R showed stronger activity
against H2O2 (IC50 = 118.75 µM) than that of BHT (IC50 = 313.69 µM).

2.2. Antioxidant Activity by ABTS Method

In ABTS assay, the capacity of Q7R and Trolox to scavenge ABTS is shown in Figure 2B. The EC50

value of Q7R is 128.47 µM, much lower than the Trolox with EC50 equal to 172.18 µM. It suggests that
the antioxidant activity of Q7R was higher than that of Trolox.

2.3. Antioxidant Activity by FRAP Method

In FRAP assay, a higher FeSO4 value indicates a higher ferric reducing power. The antioxidant
activity of Q7R with FeSO4 value was shown in Figure 2C, and a higher capacity of reducing ferric
capacity was found for Q7R (FeSO4 value = 4.72) when compared to Trolox (FeSO4 value = 1.75).
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2.4. Q7R Protected L-02 Cells against H2O2-Induced Cytoxicity

As shown in Figure 3, the 50% effective concentration (EC50) for 24 h of H2O2 treatment was
537 µM. Q7R (0–200 µM) showed no cytotoxicity in L-02 cells. As shown in Figure 3c, cell viability is
markedly decreased after a 24 h exposure to H2O2 and pretreatment with Q7R (50, 100 and 200 µM)
significantly attenuated H2O2-induced cytoxity in L-02 cells.Molecules 2018, 23, x FOR PEER REVIEW  3 of 12 
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Figure 2. Antioxidant activity of Q7R. The Q7R were examined for DPPH radical scavenging activity
(A); ABTS radical scavenging activity (B); and FRAP (C). Values are expressed as mean ± SD of three
different experiments performed in triplicate (** p < 0.01 were considered significant versus Trolox).
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Figure 3. Cytotoxic activity of H2O2 (a) and Q7R (b), and Q7R protected against H2O2-induced cell
cytoxicity in L-02 cells (c). No H2O2 and Q7R treatment served as control group. Data were expressed
as mean ± standard deviation (SD) of three different experiments performed in triplicate. (## p < 0.01
compared to control group. ** p < 0.01 compared to cells treated with H2O2 alone).

2.5. Effect of Q7R on SOD and MDA Level

As shown in Figure 4, compared with control group, activity of SOD in H2O2 alone group was
significantly decreased (p < 0.01). Pretreatment with Q7R (50 and 100 µM) for 1 h could increase activity
of SOD. In addition, compared with control group, the level of MDA was significantly increased in
H2O2 alone group (p < 0.01), and Q7R (25, 50 and 100 µM) could significantly inhibited the generation
of MDA (p < 0.01).
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Figure 4. The SOD and MDA levels of normal human liver L-02 cells were served as control group
(No H2O2 and Q7R treatment). The SOD (A) and MDA (B) levels of L-02 cells were treated with
different doses of Q7R before exposure to 100 µM H2O2 for 24 hours. Bars represent the standard
deviation from the mean of three separate experiments. * p < 0.05, ** p < 0.01, compared to the H2O2

alone treated group and ## p < 0.01, compared to the control group.

2.6. Measurement of Serum ALT, AST, LDH and Triglyceride (TG)

The effect of Q7R on ALT, AST, LDH and TG are summarized in Figure 5. Mice treated with CCl4
alone showed higher serum levels of ALT, AST, LDH and TG as compared to normal control (p < 0.05),
indicating that CCl4-induced hepatotoxicity. Q7R administration caused a significantly reduction of
serum levels of ALT, AST, LDH and TG in comparison with those observed in the CCl4-treated group
(p < 0.05). Silymarin (at dose of 200 mg/kg) also reduced the activities of serum enzymes including
ALT, AST and LDH and decreased the level of TG. These results suggested that Q7R possessed a potent
hepatoprotective action against liver injury induced by CCl4.
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Figure 5. Effects of the Q7R on serum AST (A), ALT (B), triglyceride (TG) (C), LDH (D) in
CCl4-intoxicated mice. Values express as mean ± SD, n = 12. ## p < 0.01, compared to normal
control group and * p < 0.05, ** p < 0.01, compared to the CCl4 alone treated group.
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2.7. Measurement of CAT, GSH and MDA in Liver Tissue

As shown in Figure 6, the levels of CAT and GSH were conspicuously decreased in CCl4
treated mice. Treatment with Q7R and silymarin both reversed such reduction of the activities
of CAT and GSH. Animals exposed to CCl4 showed significant increase in the levels of MDA (p < 0.01).
However, the mice were pre-treated with Q7R and silymarin showed significant lower MDA level.

2.8. Histopathological Examination

Hematoxylin and eosin (H&E) stained sections are shown in Figure 7. Normal liver lobular
architecture and cell structure were shown in normal control group. While the liver tissue of the
CCl4-treated group showed apparent morphological changes including large areas of extensive
cell necrosis with loss of hepatocyte architecture around the central vein (CV). Furthermore, some
condensed nuclei and massive inflammatory cells infiltration were observed in the injured area.
The silymarin (200 mg/kg, i.p.)-treated group showed mild central venous congestion and mild
fatty infiltration. The Q7R (20 mg/kg, i.p.)-treated group showed absence of cell necrosis and minimal
inflammatory conditions with near-normal liver architecture. Apparently, the Q7R and silymarin
pretreatment significantly decreased the injured area, necrotic cells and inflammatory infiltration.

Molecules 2018, 23, x FOR PEER REVIEW  5 of 12 

 

inflammatory conditions with near-normal liver architecture. Apparently, the Q7R and silymarin 

pretreatment significantly decreased the injured area, necrotic cells and inflammatory infiltration. 

 

Figure 6. Effect of Q7R on CAT, GSH and MDA levels in liver homogenate. Values expresses as mean 

± SD, n = 12. # p < 0.05, ## p < 0.01, compared to normal control group and * p < 0.05, ** p < 0.01, 

compared to the CCl4 alone treated group. 

 

Figure 7. Effects of Q7R on hepatic morphological analysis in CCl4-intoxicated mice (Hematoxylin 

and eosin (H&E)). Note the liver lobular architecture, cell structure and central vein (arrow heads). 

0

20

40

60

80

100

- + + + + +

G
S

H
 (

μ
M

)
B

**

##

CCl4

**

Silymarin (mg/kg)       0       200    0        0       0    
Q7R (mg/kg)                                      105 2000-

-

**

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

- + + + + +

M
D

A
(μ

m
o
l/

m
g

)

C

*

#

CCl4

Silymarin (mg/kg) 0       200      0         0        0    
Q7R (mg/kg)                                      105 2000-

-

*
*

0

5

10

15

20

25

30

35

- + + + + +

C
A

T
 (

u
n

it
s
/m

g
 P

r
o
)

A

**

##

CCl4

**

Silymarin (mg/kg  )  200     0      0       0       0 
Q7R (mg/kg)                                              105 2000-

-

**
**

Figure 6. Effect of Q7R on CAT, GSH and MDA levels in liver homogenate. Values expresses as
mean ± SD, n = 12. # p < 0.05, ## p < 0.01, compared to normal control group and * p < 0.05, ** p < 0.01,
compared to the CCl4 alone treated group.
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Figure 7. Effects of Q7R on hepatic morphological analysis in CCl4-intoxicated mice (Hematoxylin and
eosin (H&E)). Note the liver lobular architecture, cell structure and central vein (arrow heads).

3. Discussion

Reactive oxygen species (ROS) are known mediators of intracellular signaling cascades. A balance
between oxidant and antioxidant intracellular systems is hence vital for cell function, regulation, and
adaptation to diverse growth conditions [20]. Excessive production of ROS may, however, lead to
oxidative stress, loss of cell function and ultimately apoptosis or necrosis. This oxidative damage is
considered to play a causative role in aging and several degenerative diseases, such as heart disease,
cataracts, cognitive dysfunction and cancer [21]. Several reports have indicated that an important
mechanism of hepatoprotective effects may be related to their capacity to transfer hydrogen to free
radicals, activate antioxidant enzymes and inhibit oxidases [22–25].

The previous studies indicated that ABTS, DPPH, and FRAP assays as simple and efficient
methods could be used to determine antioxidant activity in many plant extracts [26]. Hence, the
antioxidant capacities of Q7R were studied using DPPH, ABTS, and FRAP assays first. In fact, BHT
and Trolox have been used as a standard antioxidant in the performed experiments [27]. According to
the data obtained from the present study, Q7R was found to be an effective antioxidant.

The present study also investigated the potential protective effect and mechanism of Q7R against
oxidative stress induced by H2O2 in human liver L-02 cells. H2O2, a typical oxidant, has been used
to study the response of cells to oxidative stress [28]. MDA is the product of lipid peroxidation
and a classic indicator of oxidative stress and SOD is one of the major enzymes responsible for the
inactivation of superoxide and hydrogen peroxid [29]. The results of this study showed that Q7R could
increase the activity of SOD and inhibit the generation of MDA in L-02 cells.

CCl4 has been extensively studied as a liver toxicant. Hepatotoxicity induced by CCl4 is the
most commonly used model system for screening of hepatoprotective activity of plant extracts and
compounds [30]. There is a growing number of researches showed that oxidative stress is an important
mechanism for hepatotoxicity induced by CCl4 [31,32]. CCl4 is biotransformed by the cytochrome P450
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system to produce the trichloromethyl free radicals, which in turn covalently bind to cell membranes
and organelles to elicit lipid peroxidation [32]. This study evaluated the hepatoprotective effect of
Q7R in CCl4-induced liver injuries in rat model. Previous work clearly demonstrated that silymarin
has anti-inflammatory potential and can alter histopathological changes induced by CCl4, such as
necrosis, ballooning, and inflammatory infiltration of lymphocytes [33–35]. In the present study,
silymarin was used as an effective positive control and showed similar results compared with other
works [36]. The levels of serum AST, ALT, TG and LDH activities reflects damage to hepatocytes
and were considered to be highly sensitive and fairly specific preclinical and clinical biomarkers of
hepatotoxicity [37]. In the present study, Q7R could significantly decrease serum levels of AST, ALT,
TG, and LDH when compared with the CCl4 alone group. The present results are also consistent
with the previous reports that Q7R were able to significantly prevent the D-aminogalactose-induced
increases in serum enzymes (AST and ALT) and lower ANIT-increased serum total bilirubin levels [19].
To further understand the protective effect of Q7R, this study determined the activities of antioxidant
enzymes CAT and GSH, as well as the levels of MDA in mice livers. Since CAT and GSH as antioxidant
enzymes were considered to be a primary defense system for oxidative damage prevention [38].
These antioxidant enzymes are effortlessly inactivated by lipid peroxides or free radical, which results
in decreased activities of these enzymes in CCl4 toxicity. In the present study, treatment with Q7R
could enhance the activities of antioxidant enzyme system, including CAT and GSH. The elevation
of MDA level in the liver implies enhanced peroxidation leading to tissue damage and breakdown
of the antioxidant defense mechanisms [23]. Treatment with Q7R resulted in the reduction of MDA
level in CCl4-induced liver injury mice, indicating its ability to break the chain reaction of lipid
peroxidation. Histological examination of CCl4-treated mouse liver showed significant hepatotoxicity
characteristics, such as necrosis in hepatic lobules, vacuolization, Kupffer cells around the central vein.
However, treatment with Q7R significantly decreased these hepatotoxicity characteristics in mouse
liver, suggesting that Q7R provided protection against CCl4-induced liver injury. Taking all above
together, the results suggested that Q7R possessed a significant hepatoprotective effect on acute
CCl4-induced liver injury possibly via its antioxidant activity.

In conclusion, the results of this study demonstrate that Q7R isolated from the traditional
medicinal plant Hypericum japonicum offers hepatoprotection against CCl4-induced hepatotoxicity.
Our results showed that the hepatoprotective effects of Q7R may be related to its antioxidant activity.

4. Materials and Methods

4.1. Extraction and Purity of Q7R from Hypericum japonicum

The plant materials were collected from the herbal market, and were authorized as the authentic
Hypericum japonicum by prof. Wenbo Liao of Sun Yat-sen University. Q7R (98.3% purity) was extracted
and purified from Hypericum japonicum. Detailed experimental procedures could be seen in our
previous work [13]. Chemical structure of Q7R was shown in Figure 1.

4.2. Cell Lines and Culture

The immortalized normal liver cell line L-02 was obtained from Animal Experiment Center
(Sun Yat-sen University, Guangzhou, China). The L-02 cells were cultured in RPMI-1640 (GIBCO,
Carlsbad, CA, USA) medium supplemented with 10% fetal bovine serum (FBS) (Hyclone, Logan,
UT, USA), 1% penicillin and 1% streptomycin (GIBCO, USA) at 37 ◦C in a humidified atmosphere
containing 5% CO2.

4.3. Animals

Kunming mice (22–25 g) of either sex procured from Guangdong Medical Laboratorial Animal
Center, PR China. The animals were kept in polypropylene cages and maintained under standard
laboratory conditions of a 12-h light/dark cycle and fixed temperature (25 ± 2 ◦C). They were
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maintained on water and laboratory chow freely. All experimental procedures were approved by
the Animal Care and Use Committee of School of Life Sciences, Sun Yat-sen University, PR China.
Adequate measures were taken to minimize pain of experimental animals.

4.4. Chemicals and Reagents

DPPH, Trolox, ABTS, MTT and DMSO of technical grade used in this study were supplied by
Sigma Co. (St. Louis, MO, USA). Total Antioxidant Capacity Assay Kit (FRAP method) was supplied
by Beyotime Biotechnology Ltd. RPMI-1640 medium, penicillin and streptomycin were purchased
from Invitrogen-Gibco (New York, NY, USA). Fetal bovine serum (FBS) was supplied by Hyclone
(Hyclone, Logan, UT, USA). SOD, CAT, ALT, AST, T-GSH/GSSG and MDA Kits were supplied by
Namjing Jiancheng Bioengineering Institute, Nanjing, China. Silymarin were purchased from Jianmin
Pharmaceutical Group Co., Ltd, Wuhan, China.

4.5. In Vitro Antioxidant Studies

4.5.1. Antioxidant Activity by DPPH Method

The DPPH assay was performed as described by Clarke et al. [39]. The stock solution was prepared
by dissolving 19.7 mg DPPH with 50 mL ethanol and then stored at 4 ◦C until needed. The Q7R diluted
appropriately in ethanol in a concentration range from 12.5 to 500 µM, was mixed with 100 µL of 0.1 mM
DPPH in ethanol in wells of 96-well plates. Then, the mixture was incubated at room temperature in a
chamber without any light. After incubation for 30 min, the evaluation of the scavenging ability was
performed by measuring absorbance at 515 nm in a plate reader (TECAN-Infinite M200). BHT were
used as positive control in a concentration range from 25 to 1000 µM. The scavenging activity (%) was
calculated using the following equation:

DPPH scavenging (%) =

[
1−

(
As −Ab

Ac

)]
× 100

where Ac is the absorbance of the control (without sample), As is the absorbance in the presence of
the sample, and Ab is the absorbance of sample without DPPH radical. The scavenging ability of the
samples was expressed as EC50 value, which is the effective concentration at which 50% of DPPH
radicals were scavenged. The EC50 values were calculated from the relationship curve of scavenging
activities (%) versus concentrations of respective sample.

4.5.2. Antioxidant Activity by ABTS·+ Method

Radical cation scavenging capacity of Q7R was examined against ABTS·+ with some
modifications [21]. The preparation of ABTS·+ free radical solution by incubating a mixture of
ABTS (7 mM) and K2S2O8 (2.45 mM) was dissolved in distillated water. To create a stable color
of radical solution, the mixture was incubated in a dark room at 4 ◦C for 12 h. Before use, the standard
ABTS·+ solution was diluted with ethanol to get the absorption between 0.68 and 0.72 AU at 734 nm.
Then, 20 µL of sample at various concentration (25–1000 µM) was mixed with 180 µL of diluted
ABTS work solution. Each concentration was analyzed in triplicate after 30 min in a dark condition.
Trolox dissolved in pure ethanol was used as positive control. The percentage decrease of absorbance at
734 nm with a microplate reader was calculated for each point. The scavenging activity of the samples
was expressed as EC50 value, and it was calculated from the relationship curve of scavenging activities
(%) versus concentrations of respective sample. The scavenging activity (%) was calculated as:

ABTS·+ scavenging (%) =

[
1−

(
A1 − A2

A0

)]
× 100
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where A1 is the absorbance in the presence of the sample. Sample solution without ABTS working
solution was used as a sample blank (A2), while ABTS working solution plus ethanol was used as a
control blank (A0).

4.5.3. Ferric Reducing Assay

Ferric reducing antioxidant power (FRAP) assay was performed according to Luo et al. [40] with
some modifications. Q7R was dissolved in ethanol to make a concentration of 1 mM. FRAP kits were
used to obtain the FRAP values of the Q7R. FRAP values can be calculated using standard curves
(concentration FeSO4 of from 0.5 to 5 mM). Trolox was determined as the positive control and the
assays were performed as per the manufacturer’s instructions. The analysis was conducted in triplicate
for each sample. The results were expressed as FeSO4 values, which were calculated as:

FeSO4 value =
FRAP value

Concentration of Q7R (1 mM )

4.5.4. Cell Viability Assay

To evaluate the IC50 of H2O2 and the noncytotoxic concentration of Q7R on L-02 cells, the effect
of H2O2 and Q7R on viability of L-02 cell were evaluated using MTT assay respectively. Briefly, the
cells were seeded in 96-well culture plate at the concentration of 1 × 105 cells per well in 180 µL of
RPMI-1640 medium. After incubation of the cells for 48 h at 37 ◦C in a humiditied atmosphere of 5%
CO2, at approximately 80% confluence, various concentrations of H2O2 and Q7R were respectively
added to culture medium for 24 h. Furthermore, the protective effect of Q7R against H2O2-induced
L-02 cell damage also was evaluated using MTT assay. Briefly, cells were pretreated with various
noncytotoxic concentration of Q7R for 1 h, and then, cells were treated with H2O2 at its approximate
IC50 concentration for 24 h. The cell viability was calculated by the samples of optical densities to the
control (medium only) cells. The optical density of the formazan formed in the control cells was taken
as 100% viability.

4.5.5. Determination of SOD Activities and MDA Concentration

The SOD activity and MDA concentration were performed according to Kepekci et al [32].
The L-02 cells (1 × 105 cells /mL) were plated in a 96-well plate in RPMI-1640 medium containing 0.1%
DMSO and incubated at 37 ◦C in a humiditied atmosphere of 5% CO2. The L-02 cells were treated with
various concentration of Q7R for 1 h, and then, H2O2 (final concentration, 100 µM) were added in the
plate for 24 h. The levels of SOD and MDA were determined by commercial assay kits, respectively.

4.6. Animal Studies

4.6.1. Treatments

Mice were randomly divided into six experimental groups of 12 animals each. Normal control
group and CCl4 group received normal saline only (10 mL/kg, i.p.) for 7 days. Silymarin group
were pretreated with Silymarin (200 mg/kg/day, in normal saline, p.o.) for 7 days. Q7R groups
were pretreated with three different doses of Q7R (5, 10 and 20 mg/kg/day, in normal saline, i.p.)
respectively for 7 days. On the 7th day, normal control group received olive oil two hours after
the last administration of vehicle. CCl4 group, Silymarin group and Q7R groups received 0.2%
CCl4 (10 ml/kg, in olive oil, i.p.) two hours after the last administration of vehicle, silymarin,
or Q7R. Animals were killed 24 h after receiving CCl4. Blood samples were collected from the
orbital venous plexus. The serum was used for the assay of markers viz., AST, ALT, LDH and TG.
Liver samples were dissected out and washed immediately with ice cold saline to remove as much
blood as possible, and immediately stored at −80 ◦C Ultra-low temperature freezer until analysis.
An extra sample of liver was excised and fixed in 10% formalin solution for histopathologic analysis.
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4.6.2. Measurement of Serum AST, ALT, LDH and TG

The blood was centrifuged at 3000× g for 10 min to separate serum. Liver damage was assessed
by the estimation of serum activities of ALT and AST, using commercially available test kits provided
by Nanjing Jiancheng Bioengineering Institute. In addition, the serum levels of LDH and TG were
estimated by Hitachi 7100 automatic biochemical analyzer.

4.6.3. Measurement of CAT, GSH, and MDA in Liver Homogenate

Livers were homogenized and the homogenates were centrifuged at 10,000 r/min for 10 min at
4 ◦C, and the supernatants were subjected to further measurement. Lipid peroxidation was determined
by measuring the thiobar-bituric acid-reactive substances (TBARS) in the homogenate and expressed
as MDA concentration. The activities of CAT and GSH were determined according to the instructions
supplied with the commercial assay kits.

4.6.4. Histopathological Studies

The livers were preserved in neutral buffered formalin and were processed for paraffin embedding,
following the standard microtechnique. Four to five micronsections of livers were stained with
haematoxylin and eosin and observed under microscope for the histopathological changes.

4.6.5. Statistical Analysis

Data were expressed as mean ± standard deviation (SD). The significant differences between the
groups were assessed by the one-way analysis of variance (ANOVA) using SPSS 20.0, and p < 0.05 was
considered as significant difference.
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ROS Reactive oxygen species
DPPH 1,1-diphenyl-2-picrylhydrazyl
ABTS 2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate)
FRAP Ferric Reducing Ability of Plasma
BHT butylated hydroxytoluene
Trolox 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
ALT Alanine transaminase
AST glutamic oxalacetic aminopherase
SOD Superoxide Dismutase
MDA Malondialdehyde
TG Triglycerides
LDH lactate dehydrogenase
GSH Glutathione
CAT Catalase
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5,diphenyl-tetrazolium bromide
DMSO Dimethyl Sulfoxide
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