Enhancing the Sustainability of Temperate Pasture Systems through More Diverse Swards
Abstract
:1. Introduction and Background
2. Characteristics of Temperate Grazing Systems
2.1. Grass–Legume Systems
2.2. Environmental Policy
3. Multispecies Swards
3.1. Herbage Accumulation from Multispecies Swards
3.2. Nutritive Value and Forage Quality
3.3. Internal Parasite Load
3.4. Weed Management
4. Challenges Related with Multispecies Sward Management
4.1. Fodder Quality
4.2. Plant–Animal Interactions
4.3. Forage Forb Persistence
5. Other Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Dillon, P.; Crosse, S.; O’Brien, B.; Mayes, R.W. The effect of forage type and level of concentrate supplementation on the performance of spring-calving dairy cows in early lactation. Grass Forage Sci. 2002, 57, 212–223. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewins, D.B.; Lyseng, M.P.; Schoderbek, D.F.; Alexander, M.; Willms, W.D.; Carlyle, C.; Chang, S.X.; Bork, E.W. Grazing and climate effects on soil organic carbon concentration and particle-size association in northern grasslands. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Raney, T. The State of Food and Agriculture: Livestock in the Balance; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.; Herrero, M.; Fisher, M.; Erb, K.-H.; Rao, I.; Subbarao, G.V.; Castro, A.; Arango, J.; Chará, J.; Murgueitio, E.; et al. Challenges and opportunities for improving eco-efficiency of tropical forage-based systems to mitigate greenhouse gas emissions. Trop. Grassl. Forrajes Trop. 2013, 1, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Boddey, R.; Macedo, R.; Tarré, R.; Ferreira, E.; de Oliveira, O.; Rezende, C.D.P.; Cantarutti, R.; Pereira, J.; Alves, B.; Urquiaga, S. Nitrogen cycling in Brachiaria pastures: The key to understanding the process of pasture decline. Agric. Ecosyst. Environ. 2004, 103, 389–403. [Google Scholar] [CrossRef]
- Woodard, K.R.; French, E.C.; Sweat, L.A.; Graetz, D.A.; Sollenberger, L.E.; Macoon, B.; Portier, K.M.; Rymph, S.J.; Wade, B.L.; Prine, G.M.; et al. Nitrogen Removal and Nitrate Leaching for Two Perennial, Sod-Based Forage Systems Receiving Dairy Effluent. J. Environ. Qual. 2003, 32, 996–1007. [Google Scholar] [CrossRef]
- Kirschenmann, F.L. Potential for a New Generation of Biodiversity in Agroecosystems of the Future. Agron. J. 2007, 99, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Tallowin, J.R.B.; Rook, A.J.; Rutter, M. Impact of grazing management on biodiversity of grasslands. Anim. Sci. 2005, 81, 193–198. [Google Scholar] [CrossRef]
- Grace, C.; Boland, T.M.; Sheridan, H.; Lott, S.; Brennan, E.; Fritch, R.; Lynch, M.B. The effect of increasing pasture species on herbage production, chemical composition and utilization under intensive sheep grazing. Grass Forage Sci. 2016, 73, 852–864. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Kohmann, M.M.; Dubeux, J.; Silveira, M.L. Grassland Management Affects Delivery of Regulating and Supporting Ecosystem Services. Crop. Sci. 2019, 59, 441–459. [Google Scholar] [CrossRef]
- Cummins, S.; Finn, J.A.; Richards, K.G.; Lanigan, G.J.; Grange, G.; Brophy, C.; Cardenas, L.M.; Misselbrook, T.H.; Reynolds, C.K.; Krol, D.J. Beneficial effects of multi-species mixtures on N2O emissions from intensively managed grassland swards. Sci. Total. Environ. 2021, 792, 148163. [Google Scholar] [CrossRef] [PubMed]
- Allen, V.; Batello, C.; Berretta, E.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.G.; Milne, J.; Morris, C.D.; Peeters, A.; et al. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Goh, K.; Bruce, G. Comparison of biomass production and biological nitrogen fixation of multi-species pastures (mixed herb leys) with perennial ryegrass-white clover pasture with and without irrigation in Canterbury, New Zealand. Agric. Ecosyst. Environ. 2005, 110, 230–240. [Google Scholar] [CrossRef]
- Delaby, L.; Finn, J.A.; Grange, G.; Horan, B. Pasture-Based Dairy Systems in Temperate Lowlands: Challenges and Opportunities for the Future. Front. Sustain. Food Syst. 2020, 4. [Google Scholar] [CrossRef]
- Tracy, B.F.; Sanderson, M.A. Forage productivity, species evenness and weed invasion in pasture communities. Agric. Ecosyst. Environ. 2004, 102, 175–183. [Google Scholar] [CrossRef]
- Soder, K.J.; Rook, A.J.; Sanderson, M.A.; Goslee, S.C. Interaction of Plant Species Diversity on Grazing Behavior and Performance of Livestock Grazing Temperate Region Pastures. Crop. Sci. 2007, 47, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, P.W.; Humphreys, M.O. Progress in breeding perennial forage grasses for temperate agriculture. J. Agric. Sci. 2003, 140, 129–150. [Google Scholar] [CrossRef]
- McDonagh, J.; O’Donovan, M.; McEvoy, M.; Gilliland, T.J. Genetic gain in perennial ryegrass (Lolium perenne) varieties 1973 to 2013. Euphytica 2016, 212, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Sathish, P.; Donaghy, D.J.; Roche, J.R. Plants Modify Biological Processes to Ensure Survival following Carbon Depletion: A Lolium perenne Model. PLoS ONE 2010, 5, e12306. [Google Scholar] [CrossRef]
- Harris, S.L.; Thom, E.R.; Clark, D.A. Effect of high rates of nitrogen fertiliser on perennial ryegrass growth and morphology in grazed dairy pasture in northern New Zealand. N. Z. J. Agric. Res. 1996, 39, 159–169. [Google Scholar] [CrossRef]
- Grace, C.; Boland, T.M.; Sheridan, H.; Brennan, E.; Fritch, R.; Lynch, M.B. The effect of grazing versus cutting on dry matter production of multispecies and perennial ryegrass-only swards. Grass Forage Sci. 2019. [Google Scholar] [CrossRef]
- Mote, R.S.; Hill, N.S.; Uppal, K.; Tran, V.T.; Jones, D.P.; Filipov, N.M. Metabolomics of fescue toxicosis in grazing beef steers. Food Chem. Toxicol. 2017, 105, 285–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, D.W.; Andrae, J. Novel Endophyte-Infected Tall Fescue. 2009. Available online: https://hdl.handle.net/10724/12210 (accessed on 5 May 2021).
- Van Santen, E.; Sleper, D.A. Orchardgrass. In Cool-Season Forage Grasses; Wiley Online Library: Hoboken, NJ, USA, 1996; pp. 503–534. [Google Scholar]
- Sanada, Y.; Gras, M.-C.; van Santen, E. Cocksfoot. In Fodder Crops and Amenity Grasses; Boller, B., Posselt, U.K., Veronesi, F., Eds.; Springer: New York, NY, USA, 2010; pp. 317–328. [Google Scholar]
- Casler, M.; Undersander, D.; Papadopolous, Y.; Bittman, S.; Hunt, D.; Mathison, R.; Min, D.; Robins, J.; Cherney, J.; Acharya, S.; et al. Sparse-Flowering Orchardgrass Represents an Improvement in Forage Quality During Reproductive Growth. Crop. Sci. 2014, 54, 421–429. [Google Scholar] [CrossRef]
- Casler, M.D.; Brink, G.E.; Cherney, J.H. Registration of ‘Azov’ Meadow Fescue. J. Plant Regist. 2017, 11, 9–14. [Google Scholar] [CrossRef]
- Casler, M.D.; Brink, G.E.; Cherney, J.H.; van Santen, E.; Humphreys, M.W.; Yamada, T.; Tamura, K.I.; Ellison, N.W.; Opitz, C. Registration of ‘Hidden Valley’ Meadow Fescue. J. Plant Regist. 2015, 9, 294–298. [Google Scholar] [CrossRef]
- Undersander, D.J.; Albert, B.; Cosgrove, D.; Johnson, D.; Peterson, P. Pastures for Profit: A Guide to Rotational Grazing; Cooperative Extensiton Publications, University of Wisconsin-Extension: Madison, WI, USA, 2002. [Google Scholar]
- Peyraud, J.L.; Le Gall, A.; Lüscher, A. Potential food production from forage legume-based-systems in Europe: An overview. Ir. J. Agric. Food Res. 2009, 48, 115–135. [Google Scholar]
- Blaser, R.E.; Skrdla, W.H.; Taylor, T.H. Ecological and Physiological Factors in Compounding Forage Seed Mixtures. In Advances in Agronomy; Norman, A.G., Ed.; Academic Press: Cambridge, MA, USA, 1952; pp. 179–219. [Google Scholar]
- Rochon, J.J.; Doyle, C.J.; Greef, J.M.; Hopkins, A.; Molle, G.; Sitzia, M.; Scholefield, D.; Smith, C.J. Grazing legumes in Europe: A review of their status, management, benefits, research needs and future prospects. Grass Forage Sci. 2004, 59, 197–214. [Google Scholar] [CrossRef]
- Muir, J.P.; Pitman, W.D.; Foster, J.L. Sustainable, low-input, warm-season, grass-legume grassland mixtures: Mission (nearly) impossible? Grass Forage Sci. 2011, 66, 301–315. [Google Scholar] [CrossRef]
- Moot, D.J. An overview of dryland legume research in New Zealand. Crop. Pasture Sci. 2012, 63, 726–733. [Google Scholar] [CrossRef]
- Jahufer, M.Z.Z.; Ford, J.L.; Widdup, K.H.; Harris, C.; Cousins, G.; Ayres, J.F.; Lane, L.A.; Hofmann, R.; Ballizany, W.L.; Mercer, C.F.; et al. Improving white clover for Australasia. Crop. Pasture Sci. 2012, 63, 739–745. [Google Scholar] [CrossRef]
- Bouton, J. The economic benefits of forage improvement in the United States. Euphytica 2006, 154, 263–270. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Skinner, R.H.; Barker, D.J.; Edwards, G.; Tracy, B.F.; Wedin, D.A. Plant Species Diversity and Management of Temperate Forage and Grazing Land Ecosystems. Crop. Sci. 2004, 44, 1132–1144. [Google Scholar] [CrossRef]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Lüscher, A. Grass–legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric. Ecosyst. Environ. 2011, 140, 155–163. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Wright, J.P.; Cadotte, M.W.; Carroll, I.T.; Hector, A.; Srivastava, D.S.; Loreau, M.; Weis, J.J. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. USA 2007, 104, 18123–18128. [Google Scholar] [CrossRef] [Green Version]
- Sleugh, B.; Moore, K.J.; George, J.R.; Brummer, E.C. Binary Legume–Grass Mixtures Improve Forage Yield, Quality, and Seasonal Distribution. Agron. J. 2000, 92, 24–29. [Google Scholar] [CrossRef]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland–livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Schultze-Kraft, R.; Rao, I.M.; Peters, M.; Clements, R.J.; Bai, C.; Liu, G. Tropical forage legumes for environmental benefits: An overview. Trop. Grassl.-Forrajes Trop. 2018, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jensen, E.S.; Peoples, M.B.; Boddey, R.; Gresshoff, P.M.; Hauggaard-Nielsen, H.; Alves, B.J.; Morrison, M.J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron. Sustain. Dev. 2011, 32, 329–364. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, F.; Hellegers, P. The nitrate directive and farming practice in the European Union. In European Environment; Wiley Online Library: Hoboken, NJ, USA, 1996; Volume 6, pp. 204–209. [Google Scholar]
- European Commission. The European Green Deal. 2019. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 10 June 2021).
- European Commission. Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System. 2020. Available online: https://ec.europa.eu/food/horizontal-topics/farm-fork-strategy_en (accessed on 10 June 2021).
- House, T.W. FACT SHEET: President Biden Sets 2030 Greenhouse Gas Pollution Reduction Target Aimed at Creating Good-Paying Union Jobs and Securing U.S. Leadership on Clean Energy Technologies. 2021. Available online: https://bo.usembassy.gov/fact-sheet-president-biden-sets-2030-greenhouse-gas-pollution-reduction-target/ (accessed on 10 June 2021).
- Scarsbrook, M.R.; Melland, A. Dairying and water-quality issues in Australia and New Zealand. Anim. Prod. Sci. 2015, 55, 856–868. [Google Scholar] [CrossRef]
- Government, N.Z. National Policy Statement for Freshwater Management; New Zealand Government: Wellington, New Zealand, 2014.
- United Nations Climate Change. The Paris Agreement. 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 10 June 2021).
- Glanemann, N.; Willner, S.N.; Levermann, A. Paris Climate Agreement passes the cost-benefit test. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Finn, J.A.; Kirwan, L.; Connolly, J.; Sebastià, M.T.; Helgadottir, A.; Baadshaug, O.H.; Bélanger, G.; Black, A.; Brophy, C.; Collins, R.P.; et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J. Appl. Ecol. 2013, 50, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Tozer, K.; Barker, G.; Cameron, C.; Wilson, D.; Loick, N. Effects of including forage herbs in grass–legume mixtures on persistence of intensively managed pastures sampled across three age categories and five regions. N. Z. J. Agric. Res. 2016, 59, 250–268. [Google Scholar] [CrossRef] [Green Version]
- Foster, L. Herbs in Pastures. Development Research in Britain, 1850–1984. Biol. Agric. Hortic. 1988, 5, 97–133. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Labreveux, M.; Hall, M.H.; Elwinger, G.F. Nutritive Value of Chicory and English Plantain Forage. Crop. Sci. 2003, 43, 1797–1804. [Google Scholar] [CrossRef] [Green Version]
- Cichota, R.; McAuliffe, R.; Lee, J.; Minnee, E.; Martin, K.; Brown, H.E.; Moot, D.J.; Snow, V. Forage chicory model: Development and evaluation. Field Crop. Res. 2019, 246, 107633. [Google Scholar] [CrossRef]
- Rumball, W. Grasslands Puna’ chicory (Cichorium intybus L.). N. Z. J. Exp. Agric. 1986, 14, 105–107. [Google Scholar]
- Rumball, W.; Keogh, R.G.; Lane, G.E.; Miller, J.E.; Claydon, R.B. ‘Grasslands Lancelot’ plantain (Plantago lanceolata L.). N. Z. J. Agric. Res. 1997, 40, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Grace, C.; Lynch, M.B.; Sheridan, H.; Lott, S.; Fritch, R.; Boland, T.M. Grazing multispecies swards improves ewe and lamb performance. Animal 2019, 13, 1721–1729. [Google Scholar] [CrossRef]
- Moloney, T.; Sheridan, H.; Grant, J.; O’Riordan, E.; O’Kiely, P. Conservation efficiency and nutritive value of silages made from grass-red clover and multi-species swards compared with grass monocultures. Ir. J. Agric. Food Res. 2021, 59. [Google Scholar] [CrossRef]
- Roca-Fernández, A.I.; Peyraud, J.L.; Delaby, L.; Delagarde, R. Pasture intake and milk production of dairy cows rotationally grazing on multi-species swards. Animal 2016, 10, 1448–1456. [Google Scholar] [CrossRef] [Green Version]
- Bryant, R.H.; Miller, M.E.; Greenwood, S.L.; Edwards, G. Milk yield and nitrogen excretion of dairy cows grazing binary and multispecies pastures. Grass Forage Sci. 2017, 72, 806–817. [Google Scholar] [CrossRef]
- Gregorini, P.; Minnee, E.; Griffiths, W.; Lee, J. Dairy cows increase ingestive mastication and reduce ruminative chewing when grazing chicory and plantain. J. Dairy Sci. 2013, 96, 7798–7805. [Google Scholar] [CrossRef] [PubMed]
- Soder, K.; Sanderson, M.; Stack, J.; Muller, L. Intake and Performance of Lactating Cows Grazing Diverse Forage Mixtures. J. Dairy Sci. 2006, 89, 2158–2167. [Google Scholar] [CrossRef]
- Skinner, R.H.; Dell, C.J. Reestablishing Chicory into Multi-Species Perennial Pastures. Forage Grazinglands 2010, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Skinner, R.H.; Dell, C.J. Yield and Soil Carbon Sequestration in Grazed Pastures Sown with Two or Five Forage Species. Crop. Sci. 2016, 56, 2035–2044. [Google Scholar] [CrossRef]
- Sanderson, M. Nutritive Value and Herbage Accumulation Rates of Pastures Sown to Grass, Legume, and Chicory Mixtures. Agron. J. 2010, 102, 728–733. [Google Scholar] [CrossRef] [Green Version]
- Nobilly, F.; Bryant, R.; McKenzie, B.; Edwards, G. Productivity of rotationally grazed simple and diverse pasture mixtures under irrigation in Canterbury. Proc. N. Z. Grassl. Assoc. 2013, 165–172. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Soder, K.J.; Muller, L.D.; Klement, K.D.; Skinner, R.H.; Goslee, S.C. Forage Mixture Productivity and Botanical Composition in Pastures Grazed by Dairy Cattle. Agron. J. 2005, 97, 1465–1471. [Google Scholar] [CrossRef] [Green Version]
- Skinner, R.H.; Gustine, D.L.; Sanderson, M.A. Growth, Water Relations, and Nutritive Value of Pasture Species Mixtures under Moisture Stress. Crop. Sci. 2004, 44, 1361–1369. [Google Scholar] [CrossRef]
- Moloney, T. Multi-species swards for silage production. Ph.D. Dissertation, University College Dublin, Dublin, Ireland, 2018. [Google Scholar]
- Hooper, D.U.; Chapin Iii, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effect of biodiversity on ecosystem functioning: A consensys of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Barry, T.N. The feeding value of chicory (Cichorium intybus) for ruminant livestock. J. Agric. Sci. 1998, 131, 251–257. [Google Scholar] [CrossRef]
- McCarthy, K.; McAloon, C.; Lynch, M.; Pierce, K.; Mulligan, F. Herb species inclusion in grazing swards for dairy cows—A systematic review and meta-analysis. J. Dairy Sci. 2020, 103, 1416–1430. [Google Scholar] [CrossRef]
- Gregorini, P.; Gunter, S.A.; Masino, C.A.; Beck, P. Effects of ruminal fill on short-term herbage intake rate and grazing dynamics of beef heifers. Grass Forage Sci. 2007, 62, 346–354. [Google Scholar] [CrossRef]
- Barry, T.; Hoskin, S.; Wilson, P. Novel forages for growth and health in farmed deer. N. Z. Vet. J. 2002, 50, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Kusmartono; Shimada, A.; Stafford, K.J.; Barry, T.N. Intra-ruminal particle size reduction in deer fed fresh perennial ryegrass (Lolium perenne) or chicory (Cichorium intybus). J. Agric. Sci. 1996, 127, 525–531. [Google Scholar] [CrossRef]
- Foster, J.G.; Fedders, J.M.; Clapham, W.M.; Robertson, J.W.; Bligh, D.P.; Turner, K.E. Nutritive Value and Animal Selection of Forage Chicory Cultivars Grown in Central Appalachia. Agron. J. 2002, 94, 1034–1042. [Google Scholar] [CrossRef]
- Foster, J.G.; Cassida, K.A.; Sanderson, M.A. Seasonal variation in sesquiterpene lactone concentration and composition of forage chicory (Cichorium intybus L.) cultivars. Grass Forage Sci. 2011, 66, 424–433. [Google Scholar] [CrossRef]
- Box, L.A.; Edwards, G.R.; Bryant, R.H. Seasonal and diurnal changes in aucubin, catalpol and acteoside concentration of plantain herbage grown at high and low N fertiliser inputs. N. Z. J. Agric. Res. 2018, 62, 343–353. [Google Scholar] [CrossRef]
- Gardiner, C.; Clough, T.; Cameron, K.; Di, H.; Edwards, G.; De Klein, C. Potential for forage diet manipulation in New Zealand pasture ecosystems to mitigate ruminant urine derived N2O emissions: A review. N. Z. J. Agric. Res. 2016, 59, 301–317. [Google Scholar] [CrossRef]
- Tamura, Y. Effects of Temperature, Shade, and Nitrogen Application on the Growth and Accumulation of Bioactive Compounds in Cultivars of Plantago lanceolata L. Jpn. J. Crop. Sci. 2001, 70, 548–553. [Google Scholar] [CrossRef] [Green Version]
- Pae, H.O.; Oh, G.S.; Choi, B.M.; Shin, S.; Chai, K.Y.; Oh, H.; Kim, J.M.; Kim, H.J.; Jang, S.I.; Chung, H.T. Inhibitory effects of the stem bark of Catalpa ovata G. Don. (Bignoniaceae) on the productions of tumor necrosis factor-alpha and nitric oxide by the lipopolisaccharide-stimulated RAW 264.7 macrophages. J. Ethnopharmacol. 2003, 88, 287–291. [Google Scholar] [CrossRef]
- Navarrete, S.; Kemp, P.D.; Pain, S.J.; Back, P.J. Bioactive compounds, aucubin and acteoside, in plantain (Plantago lanceolata L.) and their effect on in vitro rumen fermentation. Anim. Feed. Sci. Technol. 2016, 222, 158–167. [Google Scholar] [CrossRef]
- Chen, C.H.; Lin, Y.S.; Chien, M.Y.; Hou, W.C.; Hu, M.L. Antioxidant and antihypertensive activities of acteoside and its analogs. Bot. Stud. 2012, 53, 421–429. [Google Scholar]
- Jung, G.A.; Shaffer, J.A.; Everhart, J.R.; Varga, G.A. Performance of ‘Grasslands Puna’ Chicory at Different Management Levels. Agron. J. 1996, 88, 104–111. [Google Scholar] [CrossRef]
- Reed, K.F.M.; Walsh, J.R.; Cross, P.A.; McFarlane, N.M.; Sprague, M.A. Ryegrass endophyte (Neotyphodium lolii) alkaloids and mineral concentrations in perennial ryegrass (Lolium perenne) from southwest Victorian pasture. Aust. J. Exp. Agric. 2004, 44, 1185–1194. [Google Scholar] [CrossRef]
- Corah, L. Trace mineral requirements of grazing cattle. Anim. Feed. Sci. Technol. 1996, 59, 61–70. [Google Scholar] [CrossRef]
- McDowell, L.R. Feeding minerals to cattle on pasture. Anim. Feed. Sci. Technol. 1996, 60, 247–271. [Google Scholar] [CrossRef]
- Sykes, A.R. Parasitism and production in farm animals. Anim. Sci. 1994, 59, 155–172. [Google Scholar] [CrossRef]
- Min, B.R.; Hart, S.P. Tannins for suppression of internal parasites. J. Anim. Sci. 2003, 81, E102–E109. [Google Scholar]
- Marley, C.; Cook, R.; Keatinge, R.; Barrett, J.; Lampkin, N. The effect of birdsfoot trefoil (Lotus corniculatus) and chicory (Cichorium intybus) on parasite intensities and performance of lambs naturally infected with helminth parasites. Vet. Parasitol. 2002, 112, 147–155. [Google Scholar] [CrossRef]
- Lu, C.; Gangyi, X.; Kawas, J. Organic goat production, processing and marketing: Opportunities, challenges and outlook. Small Rumin. Res. 2010, 89, 102–109. [Google Scholar] [CrossRef]
- Peña-Espinoza, M.; Thamsborg, S.M.; Desrues, O.; Hansen, T.V.A.; Enemark, H.L. Anthelmintic effects of forage chicory (Cichorium intybus) against gastrointestinal nematode parasites in experimentally infected cattle. Parasitology 2016, 143, 1279–1293. [Google Scholar] [CrossRef] [Green Version]
- Alomar, D.; Ruiz, P.; Balocchi, O.; Valenzuela, G.; Goic, D. Finishing lambs on a chicory-plantain mixture or a temperate grass-based pasture: Live weight gain and gastrointestinal parasitism. Cienc. E Investing. Agrar. 2018, 45, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Ghanizadeh, H.; Harrington, K.C. Weed Management in New Zealand Pastures. Agronomy 2019, 9, 448. [Google Scholar] [CrossRef] [Green Version]
- Glassey, C.B.; Clark, C.E.F.; Roach, C.G.; Lee, J.M. Herbicide application and direct drilling improves establishment and yield of chicory and plantain. Grass Forage Sci. 2012, 68, 178–185. [Google Scholar] [CrossRef]
- Tilman, D.; Wedin, D.; Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 1996, 379, 718–720. [Google Scholar] [CrossRef]
- Connolly, J.; Finn, J.A.; Black, A.D.; Kirwan, L.; Brophy, C.; Lüscher, A. Effects of multi-species swards on dry matter production and the incidence of unsown species at three Irish sites. Ir. J. Agric. Food Res. 2009, 48, 243–260. [Google Scholar]
- Beaumont, D.A.; Storkey, J.; Eales, G.; Jones, H.E.; LeCocq, K.; Saunders, K.S.; Stagg, B.; Lee, M.R.F. Impact of tillage methods and sowing rates on yield and weed suppression in multi-species swards. In Proceedings of the Meeting the Future Demands for Grassland Production, Helsinki, Finland, 19 October 2020; pp. 445–447. [Google Scholar]
- Moloney, T.; Sheridan, H.; Grant, J.; O’Riordan, E.; O’Kiely, P. Yield of binary- and multi-species swards relative to single-species swards in intensive silage systems. Ir. J. Agric. Food Res. 2021, 59. [Google Scholar] [CrossRef]
- Rotz, C.A. Field Curing of Forages. In Post-Harvest Physiology and Preservation of Forages; Crop Science Society of America: Madison, WI, USA, 1995; pp. 39–66. [Google Scholar]
- Martinson, K.; Coblentz, W.; Sheaffer, C. The Effect of Harvest Moisture and Bale Wrapping on Forage Quality, Temperature, and Mold in Orchardgrass Hay. J. Equine Vet. Sci. 2011, 31, 711–716. [Google Scholar] [CrossRef]
- Bariroh, N.R.; Bryant, R.H.; Black, A.D. Plantain silage quality under variable management practices. J. N. Z. Grassl. 2018, 119–124. [Google Scholar] [CrossRef]
- Kälber, T.; Kreuzer, M.; Leiber, F. Silages containing buckwheat and chicory: Quality, digestibility and nitrogen utilisation by lactating cows. Arch. Anim. Nutr. 2012, 66, 50–65. [Google Scholar] [CrossRef]
- Rook, A.J.; Tallowin, J.R. Grazing and pasture management for biodiversity benefit. Anim. Res. 2003, 52, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Bullock, J.M.; Marriott, C.A.; BBSRC Institute of Grassland and Environmental Research. Plant responses to grazing, and opportunities for manipulation. In Proceedings of the British Grassland Society Conference Held at the Cairn Hotel, Harrogate, England, 29 February–2 March 2000; pp. 17–26. [Google Scholar]
- Rutter, S.M.; Orr, R.J.; Yarrow, N.H.; Champion, R.A. Dietary Preference of Dairy Cows Grazing Ryegrass and White Clover. J. Dairy Sci. 2004, 87, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Parsons, A.; Newman, J.; Penning, P.; Harvey, A.; Orr, R. Diet Preference of Sheep: Effects of Recent Diet, Physiological State and Species Abundance. J. Anim. Ecol. 1994, 63, 465. [Google Scholar] [CrossRef]
- De La Hoz, V.M.B.; Wilman, D. Effects of cattle grazing, sheep grazing, cutting and sward height on a grass-white clover sward. J. Agric. Sci. 1981, 97, 699–706. [Google Scholar] [CrossRef]
- Nicol, A.; Soper, M.; Stewart, A. Diversity of diet composition decreases with conjoint grazing of cattle with sheep and goats. In XX International Grassland Congress; University College Dublin: Dublin, Ireland, 2005. [Google Scholar]
- Wright, I.; Connolly, J. Improved utilization of heterogeneous pastures by mixed species. In Recent Developments in the Nutrition of Herbivores; Institute National de la Recherche Agronomique: Paris, France, 1995. [Google Scholar]
- Collins, H.; Nicol, A. The consequence for feed dry matter intake of grazing sheep, cattle and goats to the same residual herbage mass. In Proceedings of the New Zealand Society of Animal Production; New Zealand Society of Animal Production: Palmerston, New Zealand, 1986. [Google Scholar]
Location | Treatments and Approach | Outcome and Considerations | Reference |
---|---|---|---|
Ireland | Cutting vs. grazing 5 different sward types consisting of grass, grass–legume, 6 or 9 multispecies swards. | Multispecies swards had lesser herbage accumulation under grazing vs. cutting. Herbage accumulation of grass monocultures was not affected by defoliation method. Legume and forb proportion were reduced under cattle grazing. | [23] |
Ireland | Sheep grazing 4 different sward types consisting of grass, grass–legume, 6 or 9 multispecies swards. | Multispecies pastures had similar herbage production as N-fertilized grass. Reduced proportions of legume and forbs over time. Challenge of sustaining forb proportion in the sward. Lambs had greater average daily gains and body condition score and reduced fecal egg counts, when grazing multispecies swards compared to perennial ryegrass monoculture. | [11,61] |
Ireland | Ensilability of binary (grass–legume) and multispecies swards utilized was compared to grass monocultures utilizing laboratory silos. | Binary grass–clover and multispecies swards had a greater requirement for adequate field wilting or preservative application, compared to perennial ryegrass monocultures. | [62] |
France | Lactating dairy cows grazing simple to complex multispecies pastures. | Greater DM intake and milk production from multispecies swards. | [63] |
New Zealand | Lactating dairy cows grazing binary or multispecies pastures. | Legume proportion in sward affected milk production more than number of species. Multispecies pastures reduced N losses without compromising milk yield. | [64] |
New Zealand | Authors assessed how the grazing behavior of dairy cows was affected by dietary proportions of chicory or plantain fed as monocultures for part of the day. | Rumination time was reduced by up to 90 min when chicory and plantain composed 60% of the diet. Cows grazing chicory and plantain exhibited greater mastication during ingestion and reduced their rumination time and chewing. Cows consumed 20% less chicory compared with plantain. | [65] |
USA | Lactating dairy cows grazing binary grass–legume, or 3, 6, or 9 multispecies swards. | Intake was similar across treatments; no effect on milk production. Greater conjugated linoleic acid in milk from multispecies swards. Multispecies swards did not affect cow performance. | [66] |
USA | Authors evaluated three seeding methods of re-establishing chicory in multispecies pastures. Seeding methods included frost seeding in winter, no-till seeding in early spring, and broadcast seeding in late spring. | The three seeding methods did not differ from each other, and all resulted in the adequate re-establishment of chicory. In all instances, however, persistence was poor after the first year, with mortality rates of 77–84% by the fall of the seeding year. Greater suppression of existing vegetation and greater seeding rates are required for successful reestablishing chicory. | [67] |
USA | Forage production of grazed pastures consisting of grass–legume mixture or 9-species multispecies pastures | Across 9 y, multispecies pastures produced 31% more herbage. Multispecies swards had greater soil C accumulation than binary mixes. | [68] |
USA | Grazed pastures consisting of four mixtures (2, 3, 6, and 9 species) of multispecies swards, all containing chicory. | Multispecies pastures containing chicory (3, 6, and 9 species swards) had greater herbage accumulation rates than binary grass–legume swards. | [69] |
Forbs | Grasses | |||
---|---|---|---|---|
Element | Plantain a | Chicory a | Orchardgrass b | Perennial Ryegrass c |
g kg−1 | ||||
P | 3.9 | 4.7 | 3 | 2 |
K | 25 | 36 | 27 | 16 |
Ca | 19 | 18 | 5 | 4 |
Mg | 3.5 | 4.8 | 3 | 2 |
Mn | 89 | 170 | 112 | - |
Cu | 22 | 32 | 7 | 8 |
B | 25 | 33 | 7 | 5 |
Zn | 31 | 45 | 21 | 39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaramillo, D.M.; Sheridan, H.; Soder, K.; Dubeux, J.C.B., Jr. Enhancing the Sustainability of Temperate Pasture Systems through More Diverse Swards. Agronomy 2021, 11, 1912. https://doi.org/10.3390/agronomy11101912
Jaramillo DM, Sheridan H, Soder K, Dubeux JCB Jr. Enhancing the Sustainability of Temperate Pasture Systems through More Diverse Swards. Agronomy. 2021; 11(10):1912. https://doi.org/10.3390/agronomy11101912
Chicago/Turabian StyleJaramillo, David M., Helen Sheridan, Kathy Soder, and Jose C. B. Dubeux, Jr. 2021. "Enhancing the Sustainability of Temperate Pasture Systems through More Diverse Swards" Agronomy 11, no. 10: 1912. https://doi.org/10.3390/agronomy11101912
APA StyleJaramillo, D. M., Sheridan, H., Soder, K., & Dubeux, J. C. B., Jr. (2021). Enhancing the Sustainability of Temperate Pasture Systems through More Diverse Swards. Agronomy, 11(10), 1912. https://doi.org/10.3390/agronomy11101912