Fruit Ripening, Antioxidants and Oil Composition in Koroneiki Olives (Olea europea L.) at Different Maturity Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source and Handling of Fruit
2.2. Fruit Maturity Index (MI) Evaluation
2.3. Respiration and Ethylene Production Rates
2.4. Peel Color
2.5. Extraction Procedure and Determinations of Total Antioxidant Capacity (TAC) and Phenolic Compounds
2.6. Extraction of Oil and Determination of Fatty Acid (FA) and α-Tocopherol Composition
2.7. Data Analysis
3. Results and Discussion
3.1. Ripening and Quality Traits in Olives of Different MIs
3.1.1. MIs, Peel Color and CO2 and Ethylene Production Rates
3.1.2. Phenolic Compounds
3.2. Oil Composition
3.3. α-Tocopherol Content in Oil
3.4. Principal Component Analyses and Relationships among Olive Attributes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loumou, A.; Giourga, C. Olive groves: The life and identity of the Mediterranean. Agric. Hum. Values 2003, 20, 87–95. [Google Scholar] [CrossRef]
- Conde, C.; Delrot, S.; Gerós, H. Physiological, biochemical and molecular changes occurring during olive development and ripening. J. Plant Physiol. 2008, 165, 1545–1562. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Lagiou, P.; Kuper, H.; Trichopoulos, D. Cancer and Mediterranean Dietary Traditions. Cancer Epidemiol. Biomark. Prev. 2000, 9, 869–873. [Google Scholar]
- Sanchez, J.; Harwood, J. Biosynthesis of triacylglycerols and volatiles in olives. Eur. J. Lipid Sci. Technol. 2002, 104, 564–573. [Google Scholar] [CrossRef]
- Rotondi, A.; Bendini, A.; Cerretani, L.; Mari, M.; Lercker, G.; Toschi, T.G. Effect of Olive Ripening Degree on the Oxidative Stability and Organoleptic Properties of Cv. Nostrana di Brisighella Extra Virgin Olive Oil. J. Agric. Food Chem. 2004, 52, 3649–3654. [Google Scholar] [CrossRef]
- Emmanouilidou, M.G.; Koukourikou-Petridou, M.; Gerasopoulos, D.; Kyriacou, M.C. Evolution of physicochemical constitution and cultivar-differential maturity configuration in olive (Olea europaea L.) fruit. Sci. Hortic. 2020, 272, 109516. [Google Scholar] [CrossRef]
- Uceda, M.; Frias, L. Evolution of the fruit oil content, oil composition and oil quality. In Proceedings of the International Olive Oil Council, Cordoba, Spain, 6–17 October 1975; pp. 125–130. [Google Scholar]
- Vinha, A.F.; Ferreres, F.; Silva, B.M.; Valentão, P.; Gonçalves, A.; Pereira, J.A.; Oliveira, M.B.; Seabra, R.M.; Andrade, P.B. Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chem. 2005, 89, 561–568. [Google Scholar] [CrossRef]
- Garcia, J.M.; Yousfi, K. Non-destructive and objective methods for the evaluation of the maturation level of olive fruit. Eur. Food Res. Technol. 2005, 221, 538–541. [Google Scholar] [CrossRef]
- Anastasopoulos, E.; Kalogeropoulos, N.; Kaliora, A.C.; Kountouri, A.; Andrikopoulos, N.K. The influence of ripening and crop year on quality indices, polyphenols, terpenic acids, squalene, fatty acid profile, and sterols in virgin olive oil (Koroneiki cv.) produced by organic versus non-organic cultivation method. Int. J. Food Sci. Technol. 2011, 46, 170–178. [Google Scholar] [CrossRef]
- Dag, A.; Harlev, G.; Lavee, S.; Zipori, I.; Kerem, Z. Optimizing olive harvest time under hot climatic conditions of Jordan Valley, Israel. Eur. J. Lipid Sci. Technol. 2014, 116, 169–176. [Google Scholar] [CrossRef]
- Dag, A.; Kerem, Z.; Yogev, N.; Zipori, I.; Lavee, S.; Ben-David, E. Influence of time of harvest and maturity index on olive oil yield and quality. Sci. Hortic. 2011, 127, 358–366. [Google Scholar] [CrossRef]
- Kafkaletou, M.; Tsantili, E. Oil content and composition in relation to leaf photosynthesis, leaf sugars and fruit sugars in maturing Koroneiki olives–The mannitol effect on oil. J. Appl. Bot. Food Qual. 2016, 89, 1–10. [Google Scholar] [CrossRef]
- Pardo, J.E.; Tello, J.; Suárez, M.; Rabadán, A.; De Miguel, C.; Álvarez-Orti, M. Variety Characterization and Influence of Olive Maturity in Virgin Olive Oils from the Area Assigned to the Protected Designation of Origin “Aceite de la Alcarria” (Spain). Agronomy 2020, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Tsantili, E.; Kafkaletou, M.; Roussos, P.A.; Christopoulos, M.V. Phenolic compounds, maturation and quality in fresh green olives for table use during exposure at 20 °C after preharvest ReTain treatment. Sci. Hortic. 2012, 140, 26–32. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of Objective Color Measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Strain, J.J. [2] Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In Methods in Enzymology; Lester, P., Ed.; Academic Press: London, UK, 1999; Volume 299, pp. 15–27. [Google Scholar]
- Tsantili, E. Quality attributes and their relations in fresh black ripe ‘Kalamon’ olives (Olea europaea L.) for table use–phenolic compounds and total antioxidant capacity. Int. J. Food Sci. Technol. 2014, 49, 657–665. [Google Scholar] [CrossRef]
- Wagner, K.-H.; Elmadfa, I. Effects of tocopherols and their mixtures on the oxidative stability of olive oil and linseed oil under heating. Eur. J. Lipid Sci. Technol. 2000, 102, 624–629. [Google Scholar] [CrossRef]
- Ranalli, A.; Tombesi, A.; Ferrante, M.L.; De Mattia, G. Respiratory rate of olive drupes during their ripening cycle and quality of oil extracted. J. Sci. Food Agric. 1998, 77, 359–367. [Google Scholar] [CrossRef]
- Fernández-Bolaños, J.; Heredia, A.; Vioque, B.; Castellano, J.M.; Guillén, R. Changes in cell-wall-degrading enzyme activities in stored olives in relation to respiration and ethylene production Influence of exogenous ethylene. Z. Lebensm.-Unters. Forsch. 1997, 204, 293–299. [Google Scholar] [CrossRef]
- Tsantili, E.; Christopoulos, M.V.; Pontikis, C.A.; Kaltsikes, P.; Kallianou, C.; Komaitis, M. Texture and Other Quality Attributes in Olives and Leaf Characteristics after Preharvest Calcium Chloride Sprays. HortScience 2008, 43, 1852–1856. [Google Scholar] [CrossRef] [Green Version]
- Kafkaletou, M.; Fasseas, C.; Tsantili, E. Increased firmness and modified cell wall composition by ethylene were reversed by the ethylene inhibitor 1-methylcyclopropene (1-MCP) in the non-climacteric olives harvested at dark green stage–Possible implementation of ethylene for olive quality. J. Plant Physiol. 2019, 238, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.; Robards, K. Critical Review. Phenolic compounds in olives. Analyst 1998, 123, 31R–44R. [Google Scholar] [CrossRef]
- Morelló, J.-R.; Motilva, M.a.-J.; Tovar, M.a.-J.; Romero, M.a.-P. Changes in commercial virgin olive oil (cv Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chem. 2004, 85, 357–364. [Google Scholar] [CrossRef]
- Amiot, M.J.; Fleuriet, A.; Macheix, J.J. Importance and evolution of phenolic compounds in olive during growth and maturation. J. Agric. Food Chem. 1986, 34, 823–826. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Fregapane, G.; Salvador, M.D. Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 2008, 41, 433–440. [Google Scholar] [CrossRef]
- Alagna, F.; Geu-Flores, F.; Kries, H.; Panara, F.; Baldoni, L.; O’Connor, S.E.; Osbourn, A. Identification and characterization of the iridoid synthase involved in oleuropein biosynthesis in olive (Olea europaea) fruits. J. Biol. Chem. 2016, 291, 5542–5554. [Google Scholar] [CrossRef] [Green Version]
- Bouaziz, M.; Jemai, H.; Khabou, W.; Sayadi, S. Oil content, phenolic profiling and antioxidant potential of Tunisian olive drupes. J. Sci. Food Agric. 2010, 90, 1750–1758. [Google Scholar] [CrossRef]
- Alagna, F.; Mariotti, R.; Panara, F.; Caporali, S.; Urbani, S.; Veneziani, G.; Esposto, S.; Taticchi, A.; Rosati, A.; Rao, R.; et al. Olive phenolic compounds: Metabolic and transcriptional profiling during fruit development. BMC Plant Biol. 2012, 12, 162. [Google Scholar] [CrossRef] [Green Version]
- Visioli, F.; Bellomo, G.; Galli, C. Free Radical-Scavenging Properties of Olive Oil Polyphenols. Biochem. Biophys. Res. Commun. 1998, 247, 60–64. [Google Scholar] [CrossRef]
- Romani, A.; Mulinacci, N.; Pinelli, P.; Vincieri, F.F.; Cimato, A. Polyphenolic Content in Five Tuscany Cultivars of Olea europaea L. J. Agric. Food Chem. 1999, 47, 964–967. [Google Scholar] [CrossRef]
- O’Donoghue, E.M.; Huber, D.J.; Timpa, J.D.; Erdos, G.W.; Brecht, J.K. Influence of avocado (Persea americana) Cx-cellulase on the structural features of avocado cellulose. Planta 1994, 194, 573–584. [Google Scholar] [CrossRef]
- Ortega-García, F.; Blanco, S.; Peinado, M.Á.; Peragón, J. Phenylalanine ammonia-lyase and phenolic compounds in leaves and fruits of Olea europaea L. cv. Picual during ripening. J. Sci. Food Agric. 2009, 89, 398–406. [Google Scholar] [CrossRef]
- Morelló, J.-R.; Romero, M.-P.; Ramo, T.; Motilva, M.-J. Evaluation of L-phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time. Plant Sci. 2005, 168, 65–72. [Google Scholar] [CrossRef]
- Briante, R.; La Cara, F.; Febbraio, F.; Patumi, M.; Nucci, R. Bioactive derivatives from oleuropein by a biotransformation on Olea europaea leaf extracts. J. Biotechnol. 2002, 93, 109–119. [Google Scholar] [CrossRef]
- Baiano, A.; Gambacorta, G.; Terracone, C.; Previtali, M.A.; La Notte, E. Characteristics of drupes, phenolic content and antioxidant capacity of Italian olive fruits. J. Food Lipids 2009, 16, 209–226. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Parvini, F.; Zeinanloo, A.A.; Ebrahimie, E.; Tahmasebi-Enferadi, S.; Hosseini-Mazinani, M. Differential expression of fatty acid desaturases in Mari and Shengeh olive cultivars during fruit development and ripening. Eur. J. Lipid Sci. Technol. 2015, 117, 523–531. [Google Scholar] [CrossRef]
- Psomiadou, E.; Tsimidou, M.; Boskou, D. α-Tocopherol Content of Greek Virgin Olive Oils. J. Agric. Food Chem. 2000, 48, 1770–1775. [Google Scholar] [CrossRef]
- Allalout, A.; Krichène, D.; Methenni, K.; Taamalli, A.; Oueslati, I.; Daoud, D.; Zarrouk, M. Characterization of virgin olive oil from Super Intensive Spanish and Greek varieties grown in northern Tunisia. Sci. Hortic. 2009, 120, 77–83. [Google Scholar] [CrossRef]
- Garcia, B.; Magalhães, J.; Fregapane, G.; Salvador, M.D.; Paiva-Martins, F. Potential of selected Portuguese cultivars for the production of high quality monovarietal virgin olive oil. Eur. J. Lipid Sci. Technol. 2012, 114, 1070–1082. [Google Scholar] [CrossRef]
- Gutierrez-Rosales, F.; Romero, M.P.; Casanovas, M.; Motilva, M.J.; Mínguez-Mosquera, M.I. Metabolites Involved in Oleuropein Accumulation and Degradation in Fruits of Olea europaea L.: Hojiblanca and Arbequina Varieties. J. Agric. Food Chem. 2010, 58, 12924–12933. [Google Scholar] [CrossRef] [PubMed]
Crop yea | MI | OE (mg g−1) | Ver (mg g−1) | HT (μg g−1) | Tyr (μg g−1) | Lut-7 (mg g−1) | Rutin (mg g−1) | Quercetin (μg g−1) | Luteolin (μg g−1) | TAC (μmol g−1) |
---|---|---|---|---|---|---|---|---|---|---|
A | 0.9 | 9.89 ± 0.16 1 | 0.32 ± 0.01 | 39.70 ± 1.34 | 20.14 ± 1.94 | 0.37 ± 0.01 | 0.35 ± 0.02 | 26.29 ± 2.15 | 17.85 ± 0.44 | 178.75 ± 0.98 |
1.4 | 10.63 ± 0.14 | 0.33 ± 0.02 | 45.26 ± 1.18 | 28.95 ± 0.77 | 0.34 ± 0.01 | 0.33 ± 0.01 | 20.18 ± 1.67 | 10.10 ± 1.75 | 163.10 ± 1.87 | |
2.1 | 6.36 ± 0.28 | 0.31 ± 0.01 | 49.95 ± 1.53 | 18.82 ± 2.59 | 0.30 ± 0.01 | 0.26 ± 0.01 | 10.41 ± 1.30 | 10.89 ± 0.81 | 155.02 ± 1.20 | |
4.0 | 4.05 ± 0.09 | 0.32 ± 0.01 | 100.95 ± 5.73 | 16.90 ± 1.30 | 0.18 ± 0.01 | 0.25 ± 0.01 | 9.94 ± 1.78 | 7.46 ± 1.18 | 160.13 ± 2.81 | |
HSD 2 | 0.48 | 0.02 | 8.11 | 4.66 | 0.02 | 0.04 | 4.58 | 3.01 | 4.85 | |
p3 | *** | ns | *** | *** | *** | *** | *** | *** | *** | |
B | 1.1 | 10.49 ± 0.35 | 0.18 ± 0.01 | 100.16 ± 9.65 | 17.54 ± 5.11 | 0.12 ± 0.009 | 0.17 ± 0.009 | 6.65 ± 1.70 | 15.17 ± 1.16 | 172.06 ± 2.83 |
3.8 | 0.80 ± 0.03 | 0.21 ± 0.02 | 429.90 ± 14.90 | 154.05 ± 18.51 | 0.03 ± 0.005 | 0.05 ± 0.003 | 14.81 ± 2.15 | 43.15 ± 4.72 | 123.47 ± 3.69 | |
6.9 | 0.34 ± 0.06 | 0.16 ± 0.01 | 328.48 ± 17.55 | 88.33 ± 7.63 | 0.02 ± 0.002 | 0.02 ± 0.003 | 3.98 ± 0.60 | 27.83 ± 7.37 | 128.73 ± 4.13 | |
HSD | 0.52 | 0.04 | 36.10 | 29.88 | 0.01 | 0.01 | 4.06 | 12.78 | 9.00 | |
p | *** | ns | *** | *** | *** | *** | *** | *** | *** |
MI | Palmitic C16:0 (%) | Palmitoleic C16:1 n-9 (%) | Stearic C18:0 (%) | Oleic C18:1 n-9 (%) | Vaccenic C18:1 n-11 (%) | Linoleic C18:2 n-9, 12 (%) | Linolenic C18:3 n-9, 12, 15 (%) | Arachidic C20:0 (%) | Gondoic C20:1 n-11 (%) | SFA Cv:0 (%) | MUFA Cv:1 (%) | PUFA Cv:n (n ≥ 1) (%) | UFA/SFA | ω-6/ω-3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.9 | 11.16 ± 0.58 1 | 0.84 ± 0.03 | 2.92 ± 0.10 | 76.18 ± 0.76 | 1.89 ± 0.09 | 5.20 ± 0.07 | 0.80 ± 0.01 | 0.52 ± 0.04 | 0.31 ± 0.03 | 14.61 ± 0.69 | 79.24 ± 0.65 | 6.01 ± 0.08 | 5.85 ± 0.33 | 6.44 ± 0.11 |
1.4 | 11.02 ± 0.92 | 0.84 ± 0.04 | 2.93 ± 0.31 | 76.35 ± 1.50 | 1.50 ± 0.14 | 5.52 ± 0.12 | 0.75 ± 0.01 | 0.55 ± 0.08 | 0.34 ± 0.02 | 14.51 ± 1.27 | 79.05 ± 1.37 | 6.28 ± 0.12 | 5.92 ± 0.63 | 7.27 ± 0.19 |
2.1 | 10.46 ± 0.71 | 0.87 ± 0.07 | 2.70 ± 0.33 | 76.64 ± 0.80 | 1.81 ± 0.18 | 5.73 ± 0.27 | 0.75 ± 0.04 | 0.41 ± 0.08 | 0.36 ± 0.03 | 13.66 ± 1.12 | 79.70 ± 0.96 | 6.49 ± 0.31 | 6.34 ± 0.62 | 7.63 ± 0.04 |
4.0 | 9.85 ± 0.82 | 0.87 ± 0.09 | 2.48 ± 0.45 | 76.07 ± 1.51 | 1.94 ± 0.12 | 7.13 ± 0.13 | 0.66 ± 0.03 | 0.48 ± 0.09 | 0.34 ± 0.04 | 12.82 ± 1.35 | 79.24 ± 1.44 | 7.81 ± 0.13 | 6.85 ± 0.83 | 10.68 ± 0.56 |
HSD 2 | 2.01 | 0.16 | 0.54 | 3.14 | 0.35 | 0.44 | 0.07 | 0.19 | 0.08 | 2.97 | 3.01 | 0.48 | 1.64 | 0.78 |
p3 | ns | ns | ns | ns | * | *** | *** | ns | ns | ns | ns | *** | ns | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kafkaletou, M.; Ouzounidou, G.; Tsantili, E. Fruit Ripening, Antioxidants and Oil Composition in Koroneiki Olives (Olea europea L.) at Different Maturity Indices. Agronomy 2021, 11, 122. https://doi.org/10.3390/agronomy11010122
Kafkaletou M, Ouzounidou G, Tsantili E. Fruit Ripening, Antioxidants and Oil Composition in Koroneiki Olives (Olea europea L.) at Different Maturity Indices. Agronomy. 2021; 11(1):122. https://doi.org/10.3390/agronomy11010122
Chicago/Turabian StyleKafkaletou, Mina, Georgia Ouzounidou, and Eleni Tsantili. 2021. "Fruit Ripening, Antioxidants and Oil Composition in Koroneiki Olives (Olea europea L.) at Different Maturity Indices" Agronomy 11, no. 1: 122. https://doi.org/10.3390/agronomy11010122
APA StyleKafkaletou, M., Ouzounidou, G., & Tsantili, E. (2021). Fruit Ripening, Antioxidants and Oil Composition in Koroneiki Olives (Olea europea L.) at Different Maturity Indices. Agronomy, 11(1), 122. https://doi.org/10.3390/agronomy11010122