Agricultural and Forest Land-Use Impact on Soil Properties in Zagreb Periurban Area (Croatia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Treatments Description, Soil Sampling, and Laboratory Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gibbs, H.K.; Rausch, L.; Munger, J.; Schelly, I.; Morton, D.C.; Noojipady, P.; Soares-Filho, B.; Barreto, P.; Micol, L.; Walker, N.F.; et al. Brazil’s Soy Moratorium. Science 2015, 347, 377–378. [Google Scholar] [CrossRef] [PubMed]
- Khaledian, Y.; Kiani, F.; Ebrahimi, S.; Brevik, E.C.; Aitkenhead-Peterson, J.; Khaledian, M. Assessment and Monitoring of Soil Degradation during Land Use Change Using Multivariate Analysis. Land Degrad. Dev. 2016, 28, 128–141. [Google Scholar] [CrossRef]
- United Nations. Available online: https://www.un.org/en/sections/issues-depth/population/ (accessed on 16 May 2020).
- Wei, Y.D.; Ewing, R. Urban expansion, sprawl and inequality. Landsc. Urban Plan. 2018, 177, 259–265. [Google Scholar] [CrossRef]
- Pereira, P.; Barceló, D.; Panagos, P. Soil and water threats in a changing environment. Environ. Res. 2020, 186, 109501. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Owusu, P.A.; Leirvik, T. Global effect of urban sprawl, industrialization, trade and economic development on carbon dioxide emissions. Environ. Res. Lett. 2020, 15, 034049. [Google Scholar] [CrossRef]
- Scalenghe, R.; Marsan, F.A. The anthropogenic sealing of soils in urban areas. Landsc. Urban Plan. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Bakker, M.M.; Govers, G.; Kosmas, C.; Vanacker, V.; Van Oost, K.; Rounsevell, M. Soil erosion as a driver of land-use change. Agric. Ecosyst. Environ. 2005, 105, 467–481. [Google Scholar] [CrossRef]
- Giertz, S.; Junge, B.; Diekkrüger, B. Assessing the effects of land use change on soil physical properties and hydrological processes in the sub-humid tropical environment of West Africa. Phys. Chem. Earth Parts A/B/C 2005, 30, 485–496. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, W.S.; Panachuki, E.; De Oliveira, P.T.S.; Menezes, R.D.S.; Sobrinho, T.A.; De Carvalho, D.F. Effect of soil tillage and vegetal cover on soil water infiltration. Soil Tillage Res. 2018, 175, 130–138. [Google Scholar] [CrossRef]
- Bogunović, I.; Fernández, M.P.; Kisic, I.; Marimón, M.B. Agriculture and grazing environments. In Advances in Chemical Pollution, Environmental Management and Protection, 1st ed.; Elsevier BV: London, UK, 2019; Volume 4, pp. 23–70. [Google Scholar]
- Canedoli, C.; Crocco, F.; Comolli, R.; Padoa-Schioppa, E. Landscape fragmentation and urban sprawl in the urban region of Milan. Landsc. Res. 2017, 43, 632–651. [Google Scholar] [CrossRef]
- Weilenmann, B.; Seidl, I.; Schulz, T. The socio-economic determinants of urban sprawl between 1980 and 2010 in Switzerland. Landsc. Urban Plan. 2017, 157, 468–482. [Google Scholar] [CrossRef]
- Abu Hatab, A.; Cavinato, M.E.R.; Lindemer, A.; Lagerkvist, C.-J. Urban sprawl, food security and agricultural systems in developing countries: A systematic review of the literature. Cities 2019, 94, 129–142. [Google Scholar] [CrossRef]
- Zasada, I. Multifunctional peri-urban agriculture—A review of societal demands and the provision of goods and services by farming. Land Use Policy 2011, 28, 639–648. [Google Scholar] [CrossRef]
- Ferreira, A.J.D.; Guilherme, R.I.M.M.; Ferreira, C.S.; Oliveira, M.D.F. Urban agriculture, a tool towards more resilient urban communities? Curr. Opin. Environ. Sci. Health 2018, 5, 93–97. [Google Scholar] [CrossRef]
- Opitz, I.; Berges, R.; Piorr, A.; Krikser, T. Contributing to food security in urban areas: Differences between urban agriculture and peri-urban agriculture in the Global North. Agric. Hum. Values 2015, 33, 341–358. [Google Scholar] [CrossRef] [Green Version]
- Dieleman, H. Urban agriculture in Mexico City; balancing between ecological, economic, social and symbolic value. J. Clean. Prod. 2017, 163, S156–S163. [Google Scholar] [CrossRef]
- Grebitus, C.; Printezis, I.; Printezis, A. Relationship between Consumer Behavior and Success of Urban Agriculture. Ecol. Econ. 2017, 136, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Duvernoy, I.; Zambon, I.; Sateriano, A.; Salvati, L. Pictures from the other side of the fringe: Urban growth and peri-urban agriculture in a post-industrial city (Toulouse, France). J. Rural Stud. 2018, 57, 25–35. [Google Scholar] [CrossRef]
- Boente, C.; Matanzas, N.; García-González, N.; Rodríguez-Valdés, E.; Gallego, J.; Gallego, J. Trace elements of concern affecting urban agriculture in industrialized areas: A multivariate approach. Chemosphere 2017, 183, 546–556. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Najmeddin, A.; Moore, F.; Moghaddam, P.A. Risk-based assessment of soil pollution by potentially toxic elements in the industrialized urban and peri-urban areas of Ahvaz metropolis, southwest of Iran. Ecotoxicol. Environ. Saf. 2018, 167, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Joimel, S.; Cortet, J.; Jolivet, C.; Saby, N.; Chenot, E.; Branchu, P.; Consalès, J.; Lefort, C.; Morel, J.-L.; Schwartz, C. Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Sci. Total Environ. 2016, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delelegn, Y.T.; Purahong, W.; Blazevic, A.; Yitaferu, B.; Wubet, T.; Göransson, H.; Godbold, D.L. Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia. Sci. Rep. 2017, 7, 13602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P. Land use change and soil organic carbon dynamics. Nutr. Cycl. Agroecosyst. 2007, 81, 169–178. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis. Glob. Chang. Biol. 2010, 17, 1658–1670. [Google Scholar] [CrossRef] [Green Version]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Van Wesemael, B.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone - carbon response functions as a model approach. Glob. Chang. Biol. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Demestihas, C.; Plénet, D.; Génard, M.; Raynal, C.; Lescourret, F. Ecosystem services in orchards. A review. Agron. Sustain. Dev. 2017, 37, 581. [Google Scholar] [CrossRef]
- Biddoccu, M.; Ferraris, S.; Pitacco, A.; Cavallo, E. Temporal variability of soil management effects on soil hydrological properties, runoff and erosion at the field scale in a hillslope vineyard, North-West Italy. Soil Tillage Res. 2017, 165, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Bogunović, I.; Muñoz-Rojas, M.; Brevik, E.C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- St-Hilaire, A.; Duchesne, S.; Rousseau, A.N. Floods and water quality in Canada: A review of the interactions with urbanization, agriculture and forestry. Can. Water Resour. J. / Rev. Can. des ressources hydriques 2015, 41, 273–287. [Google Scholar] [CrossRef]
- Douglas, I. The challenge of urban poverty for the use of green infrastructure on floodplains and wetlands to reduce flood impacts in intertropical Africa. Landsc. Urban Plan. 2018, 180, 262–272. [Google Scholar] [CrossRef]
- Zinia, N.J.; McShane, P. Ecosystem services management: An evaluation of green adaptations for urban development in Dhaka, Bangladesh. Landsc. Urban Plan. 2018, 173, 23–32. [Google Scholar] [CrossRef]
- Clark, K.M.; Boardman, D.L.; Staples, J.S.; Easterby, S.; Reinbott, T.M.; Kremer, R.J.; Kitchen, N.R.; Veum, K.S. Crop Yield and Soil Organic Carbon in Conventional and No-till Organic Systems on a Claypan Soil. Agron. J. 2017, 109, 588–599. [Google Scholar] [CrossRef]
- Ghimire, R.; Lamichhane, S.; Acharya, B.S.; Bista, P.; Sainju, U.M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. J. Integr. Agric. 2017, 16, 1–15. [Google Scholar] [CrossRef]
- Bernat, S.; Arbanas, S.M.; Krkač, M. Inventory of Precipitation Triggered Landslides in the Winter of 2013 in Zagreb (Croatia, Europe). In Landslide Science for a Safer Geoenvironment; Springer: Berlin, Germany, 2014; pp. 829–835. [Google Scholar]
- Lončar, J. Spatial structure of some business activities in the area of small and mid-size cities (peri-urban area) in the county of Zagreb. Analele Universităţii din Oradea, Seria Geografie 2017, 2, 280–291. [Google Scholar]
- Husnjak, S.; Vrhovec, D.; Romić, M.; Borošić, J.; Mirošević, N.; Čmelik, Z.; Pospišil, M.; Kušan, V. Inventory of Agricultural Land in the City of Zagreb and Recommendations for Agricultural Production. 2008, p. 137. Available online: https://www.zagreb.hr/UserDocsImages/Poljoprivreda-poljoprivredno%20zemljiste/Inventarizacija%20poljoprivrednog%20zemlji%C5%A1ta-cijeli%20rad%20u%20jednom-Iva-za%20web-pdf.pdf (accessed on 6 August 2020).
- Corine Land Cover. CLCCro Home Page. Available online: http://corine.haop.hr/dash-county/21 (accessed on 20 August 2020).
- Bathrellos, G.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef]
- Degórska, B.; Degórski, M. Influence of Climate Change on Environmental Hazards and Human Well-Being in the Urban Areas—Warsaw Case Study Versus General Problems. In Climate Change, Extreme Events and Disaster Risk Reduction; Sustainable Development Goals Series; Mal, S., Singh, R., Huggel, C., Eds.; Springer: Cham, Switzerland, 2018; pp. 43–57. [Google Scholar]
- Pan, H.; Page, J.; Zhang, L.; Cong, C.; Ferreira, C.S.; Jonsson, E.; Näsström, H.; Destouni, G.; Deal, B.; Kalantari, Z. Understanding interactions between urban development policies and GHG emissions: A case study in Stockholm Region. Ambio 2019, 49, 1313–1327. [Google Scholar] [CrossRef] [Green Version]
- Köppen, W. Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geographische Zeitschrift 1900, 6, 593–611. Available online: https://www.jstor.org/stable/27803924 (accessed on 4 September 2020).
- Croatian Bureau of Statistics. Population estimate of Republic of Croatia. 2018. Available online: https://www.dzs.hr/Hrv_Eng/publication/2019/07-01-03_01_2019.htm (accessed on 17 May 2020).
- Gotovac, A.S.; Zlatar, J. Urban Processes in Zagreb. Residential and Commercial Developments. Hrvat. Geogr. Glas. Geogr. Bull. 2015, 77, 29–45. [Google Scholar] [CrossRef]
- Garcia-Ayllon, S. Urban transformations as indicators of economic change in post-communist Eastern Europe: Territorial diagnosis through five case studies. Habitat Int. 2018, 71, 29–37. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 188. [Google Scholar]
- Reynolds, W.D.; Elrick, D.E. Ponded Infiltration From a Single Ring: I. Analysis of Steady Flow. Soil Sci. Soc. Am. J. 1990, 54, 1233–1241. [Google Scholar] [CrossRef]
- Method of Soil Analysis, Part 2, Chemical and Microbiological Properties; Black, C.A. (Ed.) American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Diaz-Zorita, M.; Perfect, E.; Grove, J.H. Disruptive methods for assessing soil structure. A review. Soil Tillage Res. 2002, 64, 3–22. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5; Gee, G.W., Bauder, J.W., Klute, A., Eds.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Matsuda, K.; Ito, S. Adsorption strength of zinc for soil humus. Soil Sci. Plant Nutr. 1970, 16, 1–10. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis, 2nd ed.; M.L. Jackson: Madison, WI, USA, 1969; p. 895. [Google Scholar]
- Hoffmann, U.; Jurasinski, G.; Glatzel, S.; Kuhn, N.J.; Hoffmann, T.O. Assessing the spatial variability of soil organic carbon stocks in an alpine setting (Grindelwald, Swiss Alps). Geoderma 2014, 232, 270–283. [Google Scholar] [CrossRef]
- Plotly. Chart Studio. Available online: https://chart-studio.plotly.com/create/ (accessed on 13 April 2020).
- Wei, W.; Chen, D.; Wang, L.; Daryanto, S.; Chen, L.; Yu, Y.; Lu, Y.; Sun, G.; Feng, T. Global synthesis of the classifications, distributions, benefits and issues of terracing. Earth-Sci. Rev. 2016, 159, 388–403. [Google Scholar] [CrossRef] [Green Version]
- Camera, C.; Djuma, H.; Bruggeman, A.; Zoumides, C.; Eliades, M.; Charalambous, K.; Abate, D.; Faka, M. Quantifying the effectiveness of mountain terraces on soil erosion protection with sediment traps and dry-stone wall laser scans. Catena 2018, 171, 251–264. [Google Scholar] [CrossRef]
- Bašić, F.; Kisić, I.; Nestroy, O.; Mesic, M.; Butorac, A. Particle Size Distribution (Texture) of Eroded Soil Material. J. Agron. Crop. Sci. 2002, 188, 311–322. [Google Scholar] [CrossRef]
- Bennett, J.M.; Roberton, S.D.; Jensen, T.A.; Antille, D.L.; Hall, J. A comparative study of conventional and controlled traffic in irrigated cotton: I. Heavy machinery impact on the soil resource. Soil Tillage Res. 2017, 168, 143–154. [Google Scholar] [CrossRef]
- Bogunović, I.; Bilandžija, D.; Andabaka, Z.; Stupic, D.; Rodrigo-Comino, J.; Cacic, M.; Brezinscak, L.; Maletic, E.; Pereira, P. Soil compaction under different management practices in a Croatian vineyard. Arab. J. Geosci. 2017, 10, 340. [Google Scholar] [CrossRef]
- López-Vicente, M.; Álvarez, S. Stability and patterns of topsoil water content in rainfed vineyards, olive groves, and cereal fields under different soil and tillage conditions. Agric. Water Manag. 2018, 201, 167–176. [Google Scholar] [CrossRef]
- Shipitalo, M.J.; Protz, R. Comparison of morphology and porosity of a soil under conventional and zero tillage. Can. J. Soil Sci. 1987, 67, 445–456. [Google Scholar] [CrossRef]
- Sarker, J.R.; Singh, B.-; Cowie, A.; Fang, Y.; Collins, D.; Badgery, W.; Dalal, R.C. Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils. Soil Tillage Res. 2018, 178, 209–223. [Google Scholar] [CrossRef]
- Anderson, R.; Brye, K.R.; Wood, L.S. Soil Aggregate Stability as Affected by Landuse and Soil Properties in the Lower Mississippi River Valley. Soil Sci. Soc. Am. J. 2019, 83, 1512–1524. [Google Scholar] [CrossRef]
- Sithole, N.J.; Magwaza, L.S.; Thibaud, G.R. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil Tillage Res. 2019, 190, 147–156. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, D.; Hu, W.; Li, X. Land use dependent variation of soil water infiltration characteristics and their scale-specific controls. Soil Tillage Res. 2018, 178, 139–149. [Google Scholar] [CrossRef]
- Kay, B. Soil Structure and Organic Carbon: A Review. In Soil Processes and the Carbon Cycle; CRC Press: Boca Raton, FL, USA, 2018; pp. 169–197. [Google Scholar]
- Sun, L.; Yang, L.; Chen, L.; Li, S.; Zhao, F.; Sun, S. Tracing the soil water response to autumn rainfall in different land uses at multi-day timescale in a subtropical zone. Catena 2019, 180, 355–364. [Google Scholar] [CrossRef]
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; Van Noordwijk, M.; Wang, M. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 2016, 6, 29987. [Google Scholar] [CrossRef]
- Lewis, T.; Verstraten, L.; Hogg, B.; Wehr, B.J.; Swift, S.; Tindale, N.; Menzies, N.W.; Dalal, R.C.; Bryant, P.; Francis, B.; et al. Reforestation of agricultural land in the tropics: The relative contribution of soil, living biomass and debris pools to carbon sequestration. Sci. Total Environ. 2019, 649, 1502–1513. [Google Scholar] [CrossRef] [Green Version]
- Crittenden, S.; De Goede, R.G. Integrating soil physical and biological properties in contrasting tillage systems in organic and conventional farming. Eur. J. Soil Biol. 2016, 77, 26–33. [Google Scholar] [CrossRef]
- Rosa-Schleich, J.; Loos, J.; Mußhoff, O.; Tscharntke, T. Ecological-economic trade-offs of Diversified Farming Systems—A review. Ecol. Econ. 2019, 160, 251–263. [Google Scholar] [CrossRef]
- Sánchez-Navarro, V.; Zornoza, R.; Faz, Á.; Fernandez, J.A. Comparison of soil organic carbon pools, microbial activity and crop yield and quality in two vegetable multiple cropping systems under mediterranean conditions. Sci. Hortic. 2020, 261, 109025. [Google Scholar] [CrossRef]
- Yimer, F.; Messing, I.; Ledin, S.; Abdelkadir, A. Effects of different land use types on infiltration capacity in a catchment in the highlands of Ethiopia. Soil Use Manag. 2008, 24, 344–349. [Google Scholar] [CrossRef]
- Owuor, S.; Butterbach-Bahl, K.; Guzha, A.; Jacobs, S.; Merbold, L.; Rufino, M.C.; Pelster, D.E.; Diaz-Pines, E.; Breuer, L. Conversion of natural forest results in a significant degradation of soil hydraulic properties in the highlands of Kenya. Soil Tillage Res. 2018, 176, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Rojas, M. Soil quality indicators: Critical tools in ecosystem restoration. Curr. Opin. Environ. Sci. Heal. 2018, 5, 47–52. [Google Scholar] [CrossRef]
- Scholz, M. Classification methodology for Sustainable Flood Retention Basins. Landsc. Urban Plan. 2007, 81, 246–256. [Google Scholar] [CrossRef]
- Schubert, J.E.; Burns, M.J.; Fletcher, T.D.; Sanders, B.F. A framework for the case-specific assessment of Green Infrastructure in mitigating urban flood hazards. Adv. Water Resour. 2017, 108, 55–68. [Google Scholar] [CrossRef]
- Endreny, T.; Santagata, R.; Perna, A.; De Stefano, C.; Rallo, R.; Ulgiati, S. Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban wellbeing. Ecol. Model. 2017, 360, 328–335. [Google Scholar] [CrossRef]
- Cooley, C.; Emery, I. Ecosystem Services from Urban Agriculture in the City of the Future. In Sowing Seeds in the City; Springer: Dordrecht, The Netherlands, 2016; pp. 1–22. [Google Scholar]
- Gunnell, K.; Mulligan, M.; Francis, R.A.; Hole, D.G. Evaluating natural infrastructure for flood management within the watersheds of selected global cities. Sci. Total Environ. 2019, 670, 411–424. [Google Scholar] [CrossRef]
- Antolini, F.; Tate, E.; Dalzell, B.; Young, N.; Johnson, K.; Hawthorne, P.L. Flood Risk Reduction from Agricultural Best Management Practices. JAWRA J. Am. Water Resour. Assoc. 2019, 56, 161–179. [Google Scholar] [CrossRef]
- Abdulrazzak, M.; Elfeki, A.; Kamis, A.S.; Kassab, M.; Alamri, N.; Chaabani, A.; Noor, K. Flash flood risk assessment in urban arid environment: Case study of Taibah and Islamic universities’ campuses, Medina, Kingdom of Saudi Arabia. Geomat. Nat. Hazards Risk 2019, 10, 780–796. [Google Scholar] [CrossRef] [Green Version]
- Criado, M.; Santos-Francés, F.; Martínez-Graña, A.M.; Sánchez, Y.; Merchán, L. Multitemporal Analysis of Soil Sealing and Land Use Changes Linked to Urban Expansion of Salamanca (Spain) Using Landsat Images and Soil Carbon Management as a Mitigating Tool for Climate Change. Remote Sens. 2020, 12, 1131. [Google Scholar] [CrossRef] [Green Version]
- Taft, H.E.; Cross, P.A.; Edwards-Jones, G.; Moorhouse, E.R.; Jones, D.L. Greenhouse gas emissions from intensively managed peat soils in an arable production system. Agric. Ecosyst. Environ. 2017, 237, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Garnier, J.; Le Noë, J.; Marescaux, A.; Sanz-Cobena, A.; Lassaletta, L.; Silvestre, M.; Thieu, V.; Billen, G. Long-term changes in greenhouse gas emissions from French agriculture and livestock (1852–2014): From traditional agriculture to conventional intensive systems. Sci. Total Environ. 2019, 660, 1486–1501. [Google Scholar] [CrossRef] [PubMed]
- Purwanto, B.H.; Alam, S. Impact of intensive agricultural management on carbon and nitrogen dynamics in the humid tropics. Soil Sci. Plant Nutr. 2019, 66, 50–59. [Google Scholar] [CrossRef]
- Omondi, S.O.; Jirström, M.; Oluoch-Kosura, W. The role of urban-based agriculture on food security: Kenyan case studies. Geogr. Res. 2017, 55, 231–241. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Galic, M.; Bilandzija, D.; Kisic, I. Tillage system and farmyard manure impact on soil physical properties, CO2 emissions, and crop yield in an organic farm located in a Mediterranean environment (Croatia). Environ. Earth Sci. 2020, 79, 1–11. [Google Scholar] [CrossRef]
- Stubenrauch, J.; Garske, B.; Ekardt, F. Sustainable Land Use, Soil Protection and Phosphorus Management from a Cross-National Perspective. Sustainability 2018, 10, 1988. [Google Scholar] [CrossRef] [Green Version]
- Bezbradica, L.; Pantić, M.; Gajić, A. The land use and soil protection: Planning and legal regulations in Serbia. Zemljiste i Biljka 2019, 68, 51–71. [Google Scholar] [CrossRef]
- Jenkins, M.; Schaap, B. Forest Ecosystem Services. Background Analytical Study. Global Forest Goals. United Nations Forum on Forests. 2018, p. 41. Available online: https://www.un.org/esa/forests/wp-content/uploads/2018/05/UNFF13_BkgdStudy_ForestsEcoServices.pdf (accessed on 26 March 2020).
- SDSN & IEEP. The 2019 Europe Sustainable Development Report; Sustainable Development Solutions Network and Institute for European Environmental Policy: Paris, France; Brussels, Belgium, 2019; Available online: https://ieep.eu/uploads/articles/attachments/3af13d3d-41a6-47d5-8199-405052fd620f/Europe%20Sustainable%20Development%20Report%202019.pdf?v=63741369539 (accessed on 28 March 2020).
- Toth, G.L.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Monitoring soil for sustainable development and land degradation neutrality. Environ. Monit. Assess. 2018, 190, 57. [Google Scholar] [CrossRef] [Green Version]
Soil Properties/Land Use Soil Description | Vineyard Anthrosols | Orchard Anthrosols | Forest Stagnosols | Cropland Dystric Cambisols |
---|---|---|---|---|
Organic matter (g kg−1) | 1.34 | 1.68 | 5.34 | 1.17 |
pH in H20 (w w−1 1:5) | 6.3 | 5.9 | 6.3 | 5.6 |
EC (µs cm−1) | 54 | 40 | 38 | 73 |
P (g kg−1) | 37 | 29 | 17 | 132 |
K (g kg−1) | 180 | 150 | 150 | 215 |
Bulk density (g cm−3) | 1.40 | 1.33 | 0.99 | 1.41 |
Clay (g kg−1) | 232 | 315 | 120 | 95 |
Silt (g kg−1) | 420 | 410 | 418 | 338 |
Sand (g kg−1) | 348 | 275 | 462 | 567 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogunovic, I.; Viduka, A.; Magdic, I.; Telak, L.J.; Francos, M.; Pereira, P. Agricultural and Forest Land-Use Impact on Soil Properties in Zagreb Periurban Area (Croatia). Agronomy 2020, 10, 1331. https://doi.org/10.3390/agronomy10091331
Bogunovic I, Viduka A, Magdic I, Telak LJ, Francos M, Pereira P. Agricultural and Forest Land-Use Impact on Soil Properties in Zagreb Periurban Area (Croatia). Agronomy. 2020; 10(9):1331. https://doi.org/10.3390/agronomy10091331
Chicago/Turabian StyleBogunovic, Igor, Antonio Viduka, Ivan Magdic, Leon Josip Telak, Marcos Francos, and Paulo Pereira. 2020. "Agricultural and Forest Land-Use Impact on Soil Properties in Zagreb Periurban Area (Croatia)" Agronomy 10, no. 9: 1331. https://doi.org/10.3390/agronomy10091331
APA StyleBogunovic, I., Viduka, A., Magdic, I., Telak, L. J., Francos, M., & Pereira, P. (2020). Agricultural and Forest Land-Use Impact on Soil Properties in Zagreb Periurban Area (Croatia). Agronomy, 10(9), 1331. https://doi.org/10.3390/agronomy10091331