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Abstract: The lack of urban sustainability is a widespread deficiency in urban agglomerations. To
achieve adequate land use, we present a methodology that allows for: 1) the identification of the
impacts caused by urban expansion since 1956 to the present in Salamanca (Spain); and 2) the promotion
of a more sustainable future in urban development. A multi-temporal assessment of land use was
made by remote sensing, while sustainability criteria were analyzed using the multicriteria analysis
(MCA) with Geographical Information Systems (GIS). In addition, we established recommendations
for soil carbon management in semi-arid ecosystem soils that contribute to climate change mitigation.
The results show an increase of the urbanized area from 3.8% to 22.3% in the studied period, identifying
up to 15% of buildings in zones with some type of restriction. In 71% of the cases, urbanization
caused the sealing of productive agricultural soils (2519 Ha), almost 20% of which were of the highest
quality. In last few decades, an excessive increase of built-up areas in comparison to population
dynamics was identified, which causes unnecessary soil sealing that affects the food production and
the capacity to mitigate climate change by managing the carbon cycle in the soil.
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1. Introduction

The progressive increase of population and its agglomeration in cities [1], which by 2050 is
estimated at 68% [2] and by the end of the twenty-first century at 90% [3], is one of the important current
challenges for humanity. Unmeasured and unplanned urbanization causes multiple negative impacts
on society and economy (for example, sealing of fertile soil [4], deaths related to pollution and heat [5,6],
problems of urban mobility [7], or greater exposure to natural risks, this being further enhanced by
climate change [8,9]) and in the environment (loss or alteration of areas of ecological quality and
reduction of biodiversity [10], air, soil and water pollution [11–14], or alteration of precipitation
patterns [15] and local temperature [16]). The impact of urban agglomerations on climate change is
evident due these agglomerations being the largest greenhouse gases emitting and resource consuming
group, which may compromise economic development, food security and/or social justice [17–19].

Historically, cities have generally spread without planning or restriction criteria, linked to economic
development that originated in disorganized cities as a result of a massive unplanned experiment
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in landscape change [20]. Soon after, the first effects on the population and the environment linked
to the binomial industrialization–urbanization were manifested. Gradually, society demanded more
respectful and responsible practices with the environment, which caused the acceptance of sustainable
development being the only development model that guarantees social welfare, which requires
adequate and sustainable urban development [21–23].

Sustainable urban planning has been a topic that has gained increasing interest in recent years [24].
To understand the expansion that cities have undergone, many authors have used satellite image
(especially Landsat images) interpretation techniques to monitor changes in land uses linked to
urbanization [25–28]. Regarding how to face the problem related to urban sustainability, there are
many approaches and themes studied in literature. The multicriteria analysis (MCA) is widely used
and accepted due to the fact that it integrates diverse environmental and socioeconomic parameters as
decision factors into the study, being very useful in the early stages of urban planning [29–31]. Other
studies are based on improving specific aspects with a relevant contribution to urban sustainability.
Rode et al. [32] evaluated the impact of transport network accessibility on the sustainability of a city,
focusing on the relationship between urban typology and respective cost. In relation to this, other
authors gave a broader sense to this idea, and addressed the "networked city" [33], including the
relationship between sustainability and urban growth in the city, and infrastructure and basic services’
spatial configurations [34]. Energy optimization is another block of the urban sustainability pillar,
hence, there is abundant literature on multiple topics such as buildings’ energy efficiency or renewable
energy network implementation [35–37]. Green spaces and their contribution to sustainability have
also been widely studied [38–40]. Other studies propose to take into account the factors that will be
affected by climate change in urbanization processes and may cause future risks for the population,
for example Berry et al. [41], who considered sea level rise as a key element in coastal cities. Finally,
some authors have developed tools to assess and verify the sustainability of different elements of the
city, such as buildings and green architecture [42,43], transport networks [44] and water supply [45],
among other aspects, such as social justice [46].

However, advancing in the field of sustainability through the execution of different creative,
ambitious and innovative measures has been the main handicap of governments and planners, generally
linked to "more classic" planning procedures [47]. Nevertheless, it is increasingly common for some
cities and countries to implement innovative measures and designs covering different factors such
as public health [48] and sewerage [49], energy [50] or green area [51] management. In addition,
multiple concepts have been developed that aim to achieve a sustainable city model, well cataloged by
De Jong et al. [52], who provide an interesting analysis of each one, as well as the synergies between
sustainable city models and their weaknesses and uncertainties.

Soil occupation and soil sealing are indissoluble phenomena in city expansion, being one of the
main soil degradation causes. Both are accepted as necessary for human development, but have serious
negative environmental and socioeconomic effects with long-term consequences. Soil sealing is the
most intense form of land occupation and it causes an irreversible environmental impact [53]:

• Pressure on water resources: Soil water supports plants, saves irrigation costs, reduces the incidence
of droughts and reduces the risk of flooding. When the earth is covered with impermeable
materials, the amount of rain that the soil is capable of absorbing is reduced. Instead of filtering
through the soil and replenishing aquifers and groundwater, heavy rain causes surface runoff and
increased surface water flow. Soil sealing in natural flood zones is another problem, because the
water retention capacity in alluvial plains is reduced. Soil sealing can also have consequences for
the local climate due to the reduction of evapotranspiration areas (much of the volume of rain that
the land receives depends, in turn, on the evaporation of water into the atmosphere from the soil
and plants) [54,55].

• Food security threat: Historically, cities were built near the most fertile soils to guarantee enough
food. However, conversely, urban explosion has devoured these high-quality areas. There is
even a tendency to stop cultivating the unsealed land in urban surroundings. The reduction of
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available arable land imposes greater pressure on agricultural production. In addition, the world
population grows and increases the demand for food, which must be solved with limited and
shrinking arable land [56].

• An obstacle to manage the soil carbon cycle: Soil contains more organic carbon than the atmosphere
and vegetation put together (760 and 560 Gt, respectively), and is estimated to accumulate around
75% of terrestrial organic carbon [57]. Every year, the soil captures a part of human CO2 emissions.
Carbon storage depends on the balance between gains and losses, which are dominated by biotic
factors, such as biomass production, microbial abundance, environmental variables (climate),
soil characteristics, including texture and lithology as well as soil management. The destruction
of the upper soil horizon in urbanization causes the release of part of the organic carbon in
the form of greenhouse gases due to mineralization, and ruins centuries of work of natural
processes which form arable land. Because of this, attention to soil organic carbon (SOC) cycle is
increasing [58–60]. The reforestation of degraded forest lands and the adoption of recommended
management practices (RMP) in farmland and cropland have been argued as effective options for
carbon sequestration in soils, and both generate additional environmental and socioeconomic
benefits [61]. The option of carbon sequestration and improvement in soil productivity through the
implementation of RMP in croplands can be economically and environmentally more profitable
than reforestation, unless reforestation is carried out in deep soils of marginal areas. Certain
changes in agricultural practices (conservation tillage) or the conversion of some unproductive
croplands into grasslands or forests can increase carbon sequestration in soils [62]. In the studied
area, RMP were adopted, such as minimum tillage techniques, conservation tillage, covert crops,
mulch, fallow with vegetation, crop rotation, the addition of exogenous organic matter, the use of
high yield varieties and greater biomass, and the responsible use of chemical fertilizers or the
conversion of some unproductive farmland into grasslands or forests, which can increase carbon
sequestration in soils.

In conclusion, the correct soil management and the adaptation of the urban system for
environmental protection and climate change mitigation objectives are necessary if we want to
preserve our environment and well-being, and avoid the adverse scenarios that are foreseen in relation
to global warming. Therefore, the objectives of this work are: (1) to analyze the urban expansion
sustainability since the period 1956 to 2018 in the study area; (2) to find the most suitable areas for the
urbanization and extension of Salamanca and its surroundings; (3) to study the land capability of soils
and evaluate the urban dynamics and their repercussions on food production; (4) to determine the SOC
present in the studied soils in order to recommend an adequate soil management in croplands that help
mitigate climate change; (5) to propose a method based on Geographical Information Systems (GIS) that
through (i) the multi-temporal analysis of satellite images, (ii) the study of sustainable interest criteria
(ecological, agricultural, cultural and population protection) by means of a multi-criteria analysis and
(iii) the knowledge of the soils, allows to achieve the previous objectives.

2. Materials and Methods

2.1. Study Area

Salamanca is located in Western Spain (Figure 1) which, together with its surroundings (Santa
Marta de Tormes, Carbajosa de la Sagrada, Villamayor, Villares de la Reina and Cabrerizos are the main
municipalities of the Salamanca outskirts), houses around 200,000 inhabitants [63]. It is the largest
urban agglomeration of its environment, eminently agricultural and livestock, and in the last few
decades has featured an aging population, with rural exodus to the city, hence Salamanca has been
continuously gaining population since the middle of the last century, in contrast to the strong and
prolonged decline at the regional scale. The study area (with an extension of 15.899 Ha) has progressed
from housing 20% of the province population at the start of the study period to almost 60% today,
that is to say that the population has multiplied by 2.5, rising from 80,000 inhabitants to the current
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190,000 [63]. In addition, the city of Salamanca has a great historical, artistic and cultural heritage,
which led it to be declared a World Heritage Site by UNESCO [64], and a prestigious University
(University of Salamanca) with 8 centuries of history, which allows the city to have great activity and a
cultural mix, making it versatile and cosmopolitan.
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Figure 1. Study area: (a) Location of Salamanca province in Spain; (b) Study area situation in Salamanca
Province; (c) Salamanca and suburbs with the most relevant local elements.

2.2. General Methodology

The proposed methodology consists of three main parts (multi-temporal study of satellite images,
multi-criteria analysis and evaluation of soil SOCs), whose particular methodologies and materials
used are detailed below in their respective sub-sections. Figure 2 shows a flow chart of the established
methodology. After the collection of satellite images, the supervised classifications are carried out
and the multi-temporal evolution of land use is analyzed. Through field work, the multi-criteria
analysis is designed and carried out and the carbon stock in soils is estimated. With the results of the
multi-temporal evolution and the multi-criteria analysis, we can evaluate the sustainability of urban
expansion in the past and establish guidelines for sustainable growth of urban areas in the future, as
well as evaluate the impact of soil sealing according to its agricultural quality. Finally, based on the
SOCs study, recommended management actions are proposed for agricultural soils that will allow for
the mitigation of climate change.
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2.3. Supervised Classification and Multi-Temporal Land Cover Changes Evolution

Using multi-temporal remote sensing techniques, the urban expansion of Salamanca and the
associated land use changes in the 1956–2018 period were evaluated. To this end, we used Landsat
images of the United States Geological Survey (USGS) [65] dated July 27, 1985 (Landsat 5), August
27, 1999 (Landsat 7) and August 7, 2018 (Landsat 8). For the year 1956, aerial photography at scale
1:33.000 obtained from the Agricultural and Technological Institute of Castilla–León [66] was used.

First, we process the satellite images, in which we make the atmospheric correction using the
DOS1/CHAVEZ Method with the QSIG SCP plugin [67], and the reflectance values are obtained.
Subsequently, we made the natural color composition (using the composite of bands 3,2,1 with Landsat
5 and Landsat 7 images, and 4,3,2 with Landsat 8 images; all of them with 30 m resolution) that will
serve to train the model and then develop the supervised classification corresponding to each period
by means of the Maximum Likelihood Classification Method. With the aerial image of 1956, urbanized
areas were digitized to date by employing ArcMap v.10.5 of ESRI, easily discriminated from the rest
of ground covers. The multitemporal cartography shows the land use transformations linked to the
urbanization of the city and outskirts from 1956 to 2018.

According to the characteristics of the studied sector (mainly agricultural), for the supervised
classification, we establish five land cover categories (water, grassland, cereal-growing crops, irrigated
crops and built-up areas), in line with the type and number of classes used in similar studies [68]. To
train the model, 40 training areas were generated for each category. The accuracy of the classifications
was evaluated with the Kappa statistic, for which the following levels of agreement are considered [69]:
poor (<0.00); slight (0.00–0.20); fair (0.21–0.40); moderate (0.41–0.60); substantial/very good (0.61–0.80);
and almost perfect/excellent (0.81–1). To verify the accuracy of the classification, the Kappa index
obtains one hundred land cover random points from the supervised classification, which are compared
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with aerial images (source: Geographic Institute of Spain [70]) taken on a similar date that the aerial
image used for classification.

2.4. Multi-Criteria Analysis through Analytic Hierarchy Process (AHP)

The areas that could entail restrictions to urbanization due to their environmental, agricultural
and cultural characteristics, as well as those that may pose a risk to the population, are delimited by
means of a Restrictive Areas Identification Index (RAII), which is calculated through MCA based on
Analytic Hierarchy Process (AHP) [71–73]. Four criteria (C1, C2, C3 and C4) are studied to calculate the
RAII (Equation (1)). Firstly, based on the field work, the different factors that make up each criterion
are classified internally (0–5) according to their characteristics, assigning high weights to the areas
with the highest environmental, agricultural or cultural quality or those with the highest risk for the
population. The lowest weights are given to the areas with the lowest quality and risk. This is carried
out with the aim of incorporating the spatial variation experienced by each factor throughout the study
area into the evaluation. Secondly, using the AHP, the relative weights of each criterion (k1, k2, k3 and
k4) are obtained in relation to the rest of the criteria:

RAII = k1 * C1 + k2 * C2 + k3 * C3 + k4 * C4 (1)

where ki is the relative importance weight for each criterion as a result of the AHP, and C1, C2, C3 and
C4 represent the ecological criterion, agrological criterion, cultural criterion and population protection
criterion, respectively.

The ecological criterion (C1) identifies the areas of highest quality in ecological, environmental
and landscape terms. These spaces keep the qualities of the autochthonous ecosystems and conserve
the natural processes in the vicinity of urban areas, contributing, in addition, to the reduction of global
warming by retaining the carbon in the vegetation and avoiding the oxidation of soil carbon [74]. To do
this, the area was studied and natural habitats were mapped [75]. The areas where natural habitats are
conserved received the highest weighting (5), while the rest received the lowest (0). On the other hand,
the landscape is increasingly taken into account in territorial planning due to the multiple benefits it
provides [76]. The areas of Salamanca and its surroundings were scored according to their landscape
quality (Very high: 5; High: 4; Moderate: 3; Low: 2; Very low: 1).

The agrological criterion (C2) evaluates the agricultural quality of the soils, as it is important
that the most fertile soils are protected for an irreversible use such as the urbanization process [77].
According to the Land Capability Classification [78], soils are scored according to their agricultural
quality: Class II (5); Class III (3); Class IV (2); Class V-VI (1) and Class VII (0).

The historical, artistic and cultural heritage conservation must be another priority in urban
planning due to its intrinsic value [79]. Through the cultural criterion (C3), archaeological sites and
areas or goods of cultural interest were mapped. These areas received a weight of 5, while the rest
received 0.

The population protection criterion (C4) assesses the natural risks that society are exposed to, and
are increasingly vulnerable to, in a way that restricts the urbanization of those areas where these risks
may occur. In Salamanca and its surroundings, the natural risks are flooding, and to a lesser extent,
rockfall. To establish the areas affected by flood risk, the data from a previous study are used [80],
while the areas affected by rockfall are delimited by field work and the study of the slopes and dips of
the terrain. These areas were weighted according to risk: (Very high: 5; High: 4; Moderate: 3; Low: 2;
Very low: 1; Non-existent: 0).

The AHP is a structured technique for the organization and analysis of complex decisions. The
evaluation of indicators and their weights must be determined according to their importance using
paired comparisons. The AHP is composed of several steps [71–73]. Firstly, the problem is decomposed
into its components in a hierarchy of goal, criteria and factors. Secondly, consultations are held to
obtain the views of local experts regarding the hierarchy structure that occurs between the criteria in
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the pairwise comparison. To this end, two experts from each stakeholder group, all of whom belong
to public bodies, were surveyed. The average results of the survey were employed to determine the
importance of each criterion. The comparison was described regarding integer values from 1 to 4
(Table 1), where a higher number means that the chosen criterion is considered more important against
another criterion. Thirdly, the pairwise comparison of the four criteria generated at the second stage
is organized into a square matrix: the pairwise comparison matrix (Table 2). Fourthly, the pairwise
comparison matrix is normalized and the relative weights (ki) of each criterion are calculated. Fifthly,
the consistency of the normalized comparison matrix assessments is evaluated using the consistency
ratio (CR). The CR is composed of a consistency index (CI) and a random index (RI). The CI is calculated
using the consistency measure (CM) (Equation (2)). The RI is estimated by Equation (3). The CR is the
relation between CI and RI (Equation (4)). In Table 2, the column ki contains the relative weights for
each criterion. In the CM column is the consistency measure valor for each criterion, from which the
CI s derived, whose value was 0.004 (λmax = 4.0125). The RI was 0.99. Finally, the CR is 0.004, a value
very close to 0, indicating the high consistency of the judgements made in the MCA.

CI = (λmax − n) / (n − 1) (2)

RI = 1.98*(n−2) / n (3)

CR = CI / RI (4)

where λmax is the sum of the consistency measure (CM) divided by n, and n is the number of criteria.

Table 1. Quantification of importance based on concordance between the criteria.

Level of Prevalence Definition Description

1 Similar prevalence Criteria (x, j) contribute equally to urban
sustainability

2 Moderate prevalence Criterion (x) slightly prevails over criterion (j) in
urban sustainability

3 High prevalence Criterion (x) dominates criterion (j) in urban
sustainability

4 Total prevalence Criterion (x) contributes exclusively to urban
sustainability with respect to the other criterion (j)

Table 2. Determination of the weights of each criterion using the Analytic Hierarchy Process (AHP)
pairwise comparison matrix.

Analytical Hierarchy
Method

(j)
(x)

C1:
Ecological

C2: Land
Capability

C3:
Cultural

C4:
Population
Protection

Σ (x,jj)/n
Relative Weight

(ki)
Σ (x,jj)/n

Σ (x,j)

CM

C1:Ecological 1 2 3 1 7 0.35 4.00

C2: Land Capability 0.5 1 2 0.5 4 0.20 3.75

C3: Cultural 0.33 0.5 1 0.33 2.16 0.10 4.30

C4:Population protection 1 2 3 1 7 0.35 4.00

Σ (x,j) 20.16 −

Finally, the RAII, used to identify the restrictive areas, was calculated using the relative weights
obtained from the MCA (Equation (5)). The RAI Index is reclassified into 4 degrees, and the degree
that contains the high values is considered in the grouping of the areas of interest, that is, those that
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present environmental, cultural or agricultural interest or a risk to the population. These are therefore
considered restrictive for urbanization.

RAII = 0.35 * C1 + 0.20 * C2 + 0.10 * C3 + 0.35 * C4 (5)

2.5. Evaluation of the Soil Organic Carbon Stock

As a complement to this analysis of sustainable expansion of the city, we also intend to establish
guidelines for a more adequate management of soil that contributes to climate change mitigation and
food production assurance. For this purpose, the potential of the study area soils was analyzed, for
which 75 soil samples from the surroundings of Salamanca were collected. We carried out routine
analyses of the soil samples, determining the types and associations of soil, and the main agricultural
interest soil parameters. From the soil map, a land capability map that allows evaluating the agricultural
soil sealing and its relationship with the urban expansion and food production was completed. On the
other hand, to determine the relationship between land use and climate change, the soil organic carbon
content (SOC) and the bulk density of the soil samples (0–30 cm) were analyzed to estimate the soil
organic carbon stock (SOCs). The SOCs organic carbon stock (MgC ·ha-1) was calculated as follows
(Equation (6)):

SOCs = SOC/100*BD*D*10000 (6)

where SOC is the organic carbon concentration (%), BD is the bulk density (Mg·m−3) and D is the
thickness of the stratum (0.30 m). Organic carbon was analyzed by oxidizing carbon with dichromate
acid [81]. Bulk density was determined with the paraffin method [82].

3. Results

3.1. Land Use Changes

The supervised classifications in which the evolution of the five land uses is defined show adequate
levels of agreement: very good for the classifications of 1985 (Kappa = 0.71) and 1998 (Kappa = 0.78)
and excellent for that of 2018 (Kappa = 0.85). Land cover maps corresponding to each studied period
can be found in Figure 3. Table 3 summarizes the space–time evolution of each cover class. Two
trends are clearly observed: 1) a progressive increase of built-up areas; 2) a decrease of croplands.
Built-up extension increased from 3.8% to 22.3% from 1956 to the present. On the other hand, crop area
decreased from 72.9% in 1985 to 60.8% in 2018, so much so that the cropland extension losses would
be greater if we could compare them for the period 1956–2018. There was greater waste of cropland
area for the period 1985–2018 in cereal-growing crops (10.0% of the study area) than in irrigated crops
(2.1%), with 1583 Ha and 339 Ha, respectively. Grasslands and wastelands show little variation over
time, and interactions with cereal crops were observed. The water extension, belonging exclusively to
the Tormes River, is relatively similar, although we detect extension decreases over time, which may be
due to the riverbank forest’s improvement, which covers more and more riverbed areas.

Table 3. Extension (Ha) and percentage of different land cover categories in each period.

Water Grassland Cereal-Growing Crops Irrigated Crops Urban/Built-up

Area % Area % Area % Area % Area %

1956 − − − − − − − − 596 3.8

1985 238 1.5 2423 15.3 9288 58.5 2290 14.4 1630 10.3

1998 230 1.4 2604 16.4 8755 55.2 2059 13.0 2219 14.0

2018 226 1.4 2455 15.5 7705 48.5 1951 12.3 3532 22.3
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As for the sealing of soils in the main municipalities, this increased considerably, being more
pronounced in the surroundings of Salamanca from 2000. Over the period of study, the sealed soil
progressed from 13.3% (519 ha) to 41.7% (1634 ha) in the municipality of Salamanca; from 0.6% (6 ha)
to 33.3% (333 ha) in Santa Marta de Tormes; in Carbajosa from 0.8% (7 Ha) to 34.6% (296 Ha); from 8.5
Ha (0.5%) to 296 Ha (18.4%) in Villamayor; from 16.5 Ha (0.8%) to 302 (15.1%) in Villares de la Reina;
while in Cabrerizos it increased from 0.4% (4.1 Ha) to 11.8% (120 Ha).

The most significant transformations in land use are summarized in Figure 4 and Table 4. For the
period 1985–1998, there was a land cover transformation in almost 7% of the area (1088 Ha), while
in the 1998–2018 period, the affected area was 1935 Ha (12% of the study area), thus in the last three
decades about 20% of the studied area would have suffered land cover changes. The main changes are
related to croplands and grasslands, which were generally built-up. It highlights, in both periods, the
transformation of cereal-growing crops in urban areas, which signify the 36% of total transformations
(1089 Ha). In addition to this, 253 Ha (8%) previously dedicated to irrigated crops were built. A total
of 510 Ha of grasslands and wastelands were built in this period (17% of land cover changes). The rest
of the significant transformations take place between the crops and grasslands areas, especially the
conversion of cereal-growing crops in grasslands and wastelands with 664 Ha (22%), which is related
to the lower quality and production that croplands zones leave.
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Table 4. Main land cover transformations in each period: 1985 to 1998 (left) and 1998 to 2018 (right).

Land Cover Water Grassland Cereal Crops Irrigated Crops Built up

Water − NR 1 NR 2 NR 1 NR 2 NR 1 NR 2 NR 1 NR 2

Grassland NR1 NR2 − 96 1 135 2 NR 1 NR 2 68 1 442 2

Cereal crops NR 1 NR 2 241 1 423 2 − 6 1 71 2 414 1 684 2

Irrigated crops NR 1 NR 2 95 1 8 2 29 1 14 2 − 117 1 136 2

Built up NR 1 NR 2 NR 1 NR 2 NR 1 NR 2 NR 1 NR 2 −

1 Land cover changes (1985–1998); 2 Land cover changes (1998–2018); NR: No representative land cover change.
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3.2. Urban Sustainability Analysis

After analyzing the land cover evolution, it is appropriate to evaluate the urban expansion: 1) it
was in agreement with the highest quality environment elements (natural habitats, land capability,
high landscapes quality areas and cultural interest spaces); and 2) it took into account the population
protection criteria (natural risks). It also identified the areas that should not be built in future city
extensions to guarantee these objectives. Figure 5 represents the different factors evaluated by the RAII
to delimit the areas with limitations to urbanization. The natural habitats have an extension of 683 Ha
and are related to Tormes riverbed riparian formations, and to Mediterranean grasslands and forests
(Figure 5a). Highest landscape quality spaces (981 Ha) are located in areas of greater natural vegetation
and orography (Figure 5a). Figure 5b shows the soils according to their land capability, where the
1872 Ha occupied by the highest quality soils stand out. Figure 5c delimits the historical, artistic and
cultural interest spaces (471 Ha), where the old city of Salamanca and the Roman road "Ruta de la
Plata" stand out. Finally, 1552 Ha were identified as flood risk zones, and areas with rockfall risks (145
Ha) were associated exclusively with river scarps (Figure 5d).Remote Sens. 2020, 11, x FOR PEER REVIEW 12 of 24 
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Figure 5. Multicriteria analysis studied factors: (a) natural habitats and landscape quality; (b) land
capability of the soils; (c) areas with cultural protection; (d) flood risk and rock fall risk spaces.

The results obtained by the RAI Index show the restriction to urban expansion presented by the
different areas of Salamanca and its surroundings. These limitations are more pronounced when the
value of the index is close to four (Figure 6). Figure 7 shows the extension (3747 Ha) of these restrictive
zones (Figure 7a) and how urbanization has evolved throughout the studied period in these areas.
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The built-up spaces in areas with limitations were shown to be gradually growing: 218 Ha in 1985
(Figure 7b); 347 Ha in 1998 (Figure 7c); and 541 Ha in 2018 (Figure 7d), which means that 15% of the
current buildings are on restrictive areas. In relation to agricultural soils sealing (Class II, III and IV),
2466 Ha have been lost. New buildings have also prospered in areas with natural risks: up to 187 Ha
built in flood zones, compared to six hectares in rock-fall risk areas. The impact on areas with the
highest landscape quality (43 Ha), and on natural habitats (29 Ha, especially pastures of community
interest) is lower.Remote Sens. 2020, 11, x FOR PEER REVIEW 13 of 24 
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1998; (d) built up areas on restrictive zones in 2018.

3.3. Soil Sealing, Food Production and Climate Change

Figure 8 presents the effect of urbanization on soils according to their land capability. Table 5
summarizes both the soil sealing surface in each period and the total sealed extension since the
beginning of the study period according to soils land capability classes. Until 1956, 596 Ha were
occupied, mainly affecting Class IV soils (Figure 8a). In the period 1956–1985, 1034 ha were built-up,
of which 729 Ha had good agricultural aptitude (Figure 8b). In the next study period (1985–1998),
almost 80% (455 Ha) of the new built-up area (589 Ha) corresponded to croplands (Figure 8c). On the
other hand, in the period 1998–2018, 914 Ha of croplands were urbanized, out of a total of 1313 Ha
(Figure 8d). In short, 3532 Ha were occupied in Salamanca and its outskirts, of which 2519 Ha were
agriculturally suitable, and 426 Ha were of the most productive soils. The remaining 1013 Ha that
were built correspond to soils that contain (mainly) grasslands and (hardly ever) forests.
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Table 5. Extension (Ha) of land capability classes affected by urbanization in the studied period.

Time
Land Capability Classes Built up Area (Ha)

I II III IV V VI VII VIII

Until 1956 − 18 6 400 9 163 − − 596

1956−1985 − 128 144 454 45 257 6 − 1034

Until 1985 − 146 150 854 54 420 6 − 1630

1985−1998 − 109 43 303 22 108 4 − 589

Until 1998 − 255 193 1157 76 528 10 − 2219

1998−2018 − 171 139 604 48 340 11 − 1313

Until 2018 − 426 332 1761 124 868 21 − 3532

In relation to the affected soil types, the sealing of fluvisols (426 Ha) in meadow spaces stands
out, since they are the most productive soils due to their great thickness, adequate physicochemical
characteristics and water availability (Class II). In Class III, the luvisols, with good physicochemical
conditions, are demarcated, these being the oldest and most developed and thick soils. Due to urban
expansion, 332 Ha of luvisols were lost. Class IV soils, although they are suitable for tillage, have
certain limitations. These soils are less developed and thicker than the previous ones, belonging to the
cambisols, and are the soils that have had the greatest impact (1761 Ha urbanized). Class V, VI and VII
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are not soils with agricultural aptitude. Class V corresponds to gleysols developed in alluvial deposits
linked to water courses of small size, and its extension is scarce. They usually have different textural
composition and low thickness, the clay content being an important factor in their behavior. An
amount of 124 Ha of Class V was sealed, previously dedicated to wet grasslands. Class VI presents a
considerable extension in the study area and groups together soils of scarce development and thickness
with dry pastures presence. They are mostly regosols and cambisols of scarce development, which
in the studied period, 868 Ha were occupied. Class VII soils are poorly represented in Salamanca
and its surroundings. They are thin and sparsely developed soils, generally located on hard rocks
associated with the mountain areas (Leptosols). Only 21 Ha built on this class have been identified
where the Mediterranean forest and dry pastures are generally developed. No soils of Class I or Class
VIII were identified.

Finally, SOCs assessments are essential in the role of climate change mitigation. In our study
area, the average organic soil carbon stock (Table 6) near the surface (0–30 cm) is 1.7 times higher in
grassland lands (68.31 Mg C ha-1) that in croplands (40.78 Mg C ha-1), thus, a very important reduction
of SOCs can be expected in the upper 30 cm after land use change from grasslands to croplands. Land
management is one of the most important factors that controls the concentration of SOC. There is great
difference between the SOC averages of the superficial horizons of soils under grasslands (2.43%) and of
the crop soils (0.89%), which shows the rapid degradation of the organic matter from grasslands when
it becomes croplands. In addition, in soils with natural vegetation, all the remains are incorporated into
the soil, while in the crop soils, the crops are harvested manually, with the consequent plant material
being a great loss that will not return to the soil.

Table 6. Soil organic carbon stock statistics (SOCs) and organic carbon concentration (SOC) in different
land use soils.

Carbon Land Use Mean Minimum Maximum Standard Deviation Kurtosis Coef. of Variation

SOCs
Grassland 68.31 20.20 362.34 75.69 9.43 110.80

Crop field 40.78 10.73 94.71 16.32 1.16 40.01

SOC
Grassland 2,43 0,53 7,32 1,70 1,77 69,94

Crop field 0.89 0,25 1,72 0,37 −0,37 42,00

4. Discussion

The analysis of the land studies evolution using aerial image processing is considered adequate
and accepted for obtaining knowledge about city expansion, and is useful to carry out sustainability
analyses of land cover changes. The main trend observed in this multitemporal analysis is the expansion
of the urban area on croplands, in line with what has been observed in other similar studies such as the
case of Tokyo, which, in addition to the sealed surface, increased from 10.3% to 23.5% [68]. Urban
expansion and sealed land has also been corroborated in other places in Spain, such as Madrid, whose
area increased from 15% to 24% between 1984 and 2013 [83]; Valencia, which tripled its urban area
between 1956 and 2012 [84], and Cartagena (Region of Murcia), where sealed land increased by 362%
in the period 1981 to 2007 [85].

The comparison between population and land cover transformations, especially up to the
beginning of the twenty-first century, indicates that the urbanized area increases in line with the
population dynamics. In the second decade of this century, the population stagnated, and even began
to decrease slightly, which was related to regional problems. Salamanca is located in an eminently rural
and agricultural–livestock region, with an aging population, and scarce and irregular implantation
of the industrial fabric. This causes a loss of population on a regional scale, leaving a multitude of
small villages with hardly any inhabitants, and causing their abandonment due to the lack of new
professional opportunities. This rural exodus has allowed for a gradual increase in the population of
the study area over the last decades, to the detriment of the rest of the province [63]. However, despite
the observed standstill in the resident population since 2010, the urbanized area has grown significantly,
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from 14.0% to 22.3% in the period 1998–2018, although the population has barely increased by 10,000
inhabitants. This anomaly is related to the good twenty-first century economic situation in the first
decade, which caused an explosion in the construction of single-family homes, duplexes and chalets,
especially in quiet areas far from the city. This demonstrates the growing dynamics that urbanization
still maintains, despite its adverse effects [86].

The study area has moderate and good quality soils [87], therefore being an area of good
agricultural aptitude, which explains why these soils have been cultivated for centuries, being already
one of the main food sources of the Roman Empire after reaching Hispania, who considered these zones
as "the granary of Spain" [88]. However, the abundance of agricultural soils should not be an excuse
to promote the sealing of higher quality soils (Class II). Irregular urban expansion has been detected
along the fertile plain of the river, which has caused the disappearance of the best quality soils (426
Ha). Other authors have also verified this invasion of the alluvial plains and fertile soils in other parts
of Spain such as Madrid [4,89] or Castellon [90]. This is important in the current context of population
growth and rapid urbanization, in which societal food production must be guaranteed. To avoid the
most serious impacts of soil occupation and soil sealing, we propose to protect the high-quality soils
and to guide urban development towards those soils of lower quality, as long as the opportunities
to develop or redevelop the indoor of the urban area are exhausted. On the other hand, natural risk
analyses were not taken into account in the city expansion processes, since up to 187 Ha were identified
and built in flood zones, which was demonstrated in more detail in previous studies [80]. In short,
the urban expansion has not followed rigorous sustainable criteria: the invasion of restrictive areas
(with risks to the population and higher agro-environmental quality) has increased 2.5 times from 1985
to 2018. As an example, Figure 9 shows the construction of new buildings in the last few years in
Salamanca-vicinity floodplains, which have occupied high-quality soils and areas with flood risk
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Regarding the model, we find a part that analyzes the evolution of coverage, and another that
evaluates past impacts, and that also serves to restrict future urbanization. Multitemporal evaluation
has been widely used to study changes in land cover, especially using Landsat image analyses. Recently,
some studies have incorporated higher resolution Sentinel images for researching the most recent
changes, as more accurate results can be obtained [91,92]. In this work, we maintain Landsat images as
a source of data; although its resolution is lower than Sentinel, we consider it adequate for the analysis,
taking into account the extension of our study area. On the other hand, the use of multicriteria analysis
is considered appropriate, as it is used and accepted as a tool in the search for urban sustainability
and sustainable development in multiple studies, highlighting its ability to incorporate different
scenarios for evaluation. In addition, the analysis of the impacts caused by past urbanization is
considered noteworthy, as identifying the defects and impacts of the urbanization process is important
to cement a more sustainable urbanization model. Finally, governments and planners in charge of
urban development will be able to access this methodology of sustainable land management, although
the development of more concrete and sustainable local actions is beyond the scope of this work. We
encourage the implementation of these types of sustainable initiatives, which are complementary to
this work, as well as the soil and SOCs management as a sustainable tool for mitigating climate change.

Soil Organic Carbon Stock Management and Climate Change

The important changes in land use during the historical process of urban growth caused a
significant reduction of SOC in the upper 30 cm of the soil after a change from forest or grassland to
cropland. This reduction in SOC implies an average emission into the atmosphere of 1 t of carbon
(3.66 t of CO2) for every 47 t of soil converted into croplands. This reduction of SOC occurs mainly
by reducing biomass inputs in the soil, increasing the rates of soil erosion and accelerating the soil
organic matter decomposition [93]. It was found that the soils with a very low SOC content are
indicative of their extensive agricultural use that has been employed for centuries [94]. Because of this,
SOC parameters are normally used as an indicator of soil quality [95] and can accumulate in the soil
for decades.

In the studied area, with a semi-arid Mediterranean climate, the soils used for grassland and
forests are usually limited to mountainous areas, in which the soil capacity for carbon sequestration is
restricted to shallow soil profiles due to the limitation of bedrock. In addition, a reduction in rainfall
would lead to a decrease in SOC in forest soils, and an increase in average annual temperature would
adversely affect the SOC in cropland and pasture.

According to recent climate change forecasts, agricultural lands in the Salamanca province could
act as potential carbon sinks. This is because the potential capacity for additional carbon sequestration
is greater in crop soils than in grass soils, since agricultural soils are deeper and have lower carbon
saturation. Therefore, it is necessary to promote agricultural techniques that favor the conservation
and increase of carbon. The agricultural management practices favorable to an accumulation of organic
carbon in soils are those that increase the entry of organic matter into the soil, and/or decrease the rate
of degradation of organic matter.

In addition to the positive impact of carbon sequestration as a measure of mitigation and adaptation
to climate change, it also improves food security. A 1 t increase in the carbon stock in degraded farmland
soils can increase crop yields by 20–40 kg ha−1 for wheat [96], thus, the restoration of soil-degraded
farmland is key to achieving sustainable development. Several studies have shown that it is possible
to restore lost organic carbon in degraded soils [97–99]. The RMPs that can favor the accumulation of
organic carbon in agricultural soils in the study area include:

Conservation tillage: the erosion is generally reduced, the accumulation of organic matter in the soil
is favored, energy saving is also associated with reduced machinery use and biological soil dynamics
are favored, with an increase in soil microfauna and soil microflora.
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Mulch, covert crops and fallows with vegetation: these are agricultural management practices that
protect the soil from erosion, increase water retention capacity and provide plant residues to the soil. In
addition, they decrease the soil temperature and, therefore, the rate of organic matter mineralization.

Exogenous organic matter addition: these must not involve risks to human or animal health, or to the
environment. The addition of manure is an effective method to increase the levels of organic carbon in
agricultural soils. The use of urban organic waste as a practice to increase carbon sequestration in soils
is less effective than the use of manure, unless they are composted. The application of organic waste
(exogenous) is recommended, as long as the limits established by environmental legislation to protect
the water and soil quality are taken into account. We recommend establishing a clear distinction of this
type of waste, taking their quality into account too.

5. Conclusions

Socioeconomic dynamics are causing an overcrowding and accelerated expansion of cities
worldwide. Commonly observed problems include pollution, mobility, vulnerability to extreme
phenomena and more, which affect society due to the absence of urban planning. Therefore, achieving
the sustainability of cities must be a priority for governments, since the well-being of a large part of the
population depends on it, as well as the fight against climate change.

Urban sustainability searches must be carried out at all levels and scales. This study provides a
guiding methodology that allows for the sustainable use of the land. The environment and population
protection are especially considered in this work, as they are considered key to achieving social
welfare and sustainability. Planners can use this simple, low cost and adaptable tool, that combines
GIS and remote sensing techniques, to: 1) identify the impacts caused by the urbanization process;
and 2) establish the areas with the best conditions for future city expansion. Likewise, leaders are
encouraged to design and implement complementary, concrete and ambitious actions to promote
urban sustainability. However, it is recommended, whenever possible, to exhaust the possibilities
of urbanization (empty and abandoned spaces or potential built-up areas) located inside the urban
framework, and promote vertical growth rather than horizontal growth that consumes soil resources.

In Salamanca, land-use evolution linked to the urban expansion process shows a clear consumption
of croplands that were built. The urban area has increased by 635% in the period 1956–2018, while
the population has increased by 238%. The largest increase in built-up areas has occurred in recent
years (coinciding with a population deceleration), which is due to the proliferation of single-family
homes in areas far off the urban center. In addition, 193 urbanized Ha threatened by natural hazards
were counted, as well as the sealing of 2466 Ha of croplands, of which 426 corresponded to the highest
quality soils. Through multicriteria analysis, areas with restrictive conditions were identified (5960
Ha), in which future urban expansion is not recommended.

In relation to soil management, proper management of these contributions to carbon sequestration
is recommended, which is why soils are currently a tool with great potential to combat climate change.
A series of recommendations are proposed to increase the carbon stock in Salamanca soils, especially
in agricultural soils, as they are the majority in extension, have a greater storage potential and they are
the most vulnerable to carbon oxidation due to tillage work. These practices consist of reforestation of
marginal arable lands, compost/biochar application, sustainable use of chemical fertilizers, conservation
tillage, use of higher biomass and yield species, crop rotation and mulch, covert crops and fallows
with vegetation.

We can conclude that the interaction between GIS techniques in combination with the
multitemporal analysis of satellite images and the implementation of a multicriteria analysis of
sustainable interest (ecological, agricultural, cultural and population protection) and soil knowledge
allows us to establish the sustainability of the urban expansion from the period 1956 to 2018, finding
the most suitable areas to urbanize, understanding the capacity of the land and taking into account
urban dynamics and their impact on food production, as well as soil management recommendations
regarding organic carbon content and climate change.
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