Seedling Growth and Phosphorus Uptake in Response to Different Phosphorus Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Plant Material and Growth Conditions
2.2. Sampling and Measurements
2.3. P Analysis
2.4. Mycorrhiza Analyses
2.5. Statistics
3. Results
3.1. Growth-Related Traits and P Content of Shoots
3.2. Soil pH and Mycorrhiza
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lambers, H.; Shane, M.W.; Cramber, M.D.; Pearse, S.J.; Veneklaas, E.J. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Ann. Bot. 2006, 98, 693–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hable, M. Mycorrhizal fungi and plant nutrition. In Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture; Silva, J.A., Uchida, R., Eds.; College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa: Honolulu, HI, USA, 2000; pp. 127–132. [Google Scholar]
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S.A. Recycling sludge on cropland as fertilizer—Advantages and risks. Resour. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Syers, J.K.; Johnston, A.E.; Curtin, D. Efficiency of soil and fertilizer phosphorus use. In FAO Fertilizer and Plant Nutrition Bulletin 18; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Grant, C.A.; Flaten, D.N.; Tomasiewicz, D.J.; Sheppard, S.C. The importance of early season phosphorus nutrition. Can. J. Plant Sci. 2001, 81, 211–224. [Google Scholar] [CrossRef]
- Grant, C.A.; Bailey, L.D. Fertility management in canola production. Can. J. Plant Sci. 1993, 73, 651–670. [Google Scholar] [CrossRef]
- Veneklaas, E.J.; Lambers, H.; Bragg, J.; Finnegan, P.M.; Lovelock, C.E.; Plaxton, W.C.; Price, C.A.; Scheible, W.R.; Shane, M.W.; White, P.J.; et al. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 2012, 195, 306–320. [Google Scholar] [CrossRef]
- Lynch, J.P.; Brown, K.M. Topsoil foraging—An architectural adaptation of plants to low phosphorus availability. Plant Soil 2001, 237, 225–237. [Google Scholar] [CrossRef]
- Chen, Y.P.; Rekha, P.D.; Arun, A.B.; Shen, F.T.; Lai, W.-A.; Young, C.C. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 2006, 34, 33–41. [Google Scholar] [CrossRef]
- Grant, C.; Bittman, S.; Montreal, M.; Plenchette, C.; Morel, C. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Can. J. Plant Sci. 2005, 85, 3–14. [Google Scholar] [CrossRef]
- Bolan, N.S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 1991, 134, 189–207. [Google Scholar] [CrossRef]
- Gavito, M.E.; Miller, M.H. Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize. Plant Soil 1998, 199, 177–186. [Google Scholar] [CrossRef]
- Zhu, J.; Lynch, J.P. The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings. Funct. Plant Biol. 2004, 31, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Amann, C.; Amberger, A. Phosphorus efficiency of buckwheat (Fagopyrum esculentum). J. Plant Nutr. Soil Sci. 1989, 152, 181–189. [Google Scholar] [CrossRef]
- Talboys, P.J.; Heppell, J.; Roose, T.; Healey, J.R.; Jones, D.L.; Withers, P.J. Struvite: A slow-release fertiliser for sustainable phosphorus management? Plant Soil 2016, 401, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Watt, M.; Evans, J.R. Proteoid roots. Physiology and development. Plant Phys. 1999, 121, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Gödde, V.; Niehaus, K.; Zörb, C. Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency. Front. Plant Sci. 2015, 6, 1014. [Google Scholar] [CrossRef] [Green Version]
- Tommerup, I.C. Development of infection by a vesicular-arbuscular mycorrhizal fungus in Brassica napus L. and Trifolium subterraneum L. New Phytol. 1984, 98, 487–495. [Google Scholar] [CrossRef]
- Miller, M.H. Arbuscular mycorrhizae and the phosphorus nutrition of maize: A review of Guelph studies. Can. J. Plant Sci. 2000, 80, 47–52. [Google Scholar] [CrossRef]
- Evans, J.; Neeson, R.; Burnett, V.; Luckett, D.J.; Fettell, N.A. Phosphorus-use efficiency, growth and yield of spelt wheat (Triticum aestivum ssp. spelta) compared with standard wheat (T. aestivum ssp. vulgare) in south-eastern Australia. J. Org. Syst. 2014, 9, 63–78. [Google Scholar]
- Sarapatka, B.; Dudová, L.; Kršková, M.E. Effect of pH and phosphate supply on acid phosphatase activity in cereal roots. Biologia 2003, 59, 127–131. [Google Scholar]
- Tammeorg, P.; Simojoki, A.; Mäkelä, P.; Stoddard, F.L.; Alakukku, L.; Helenius, J. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand. Agric. Ecosyst. Environ. 2014, 191, 108–116. [Google Scholar] [CrossRef]
- HSY Water Treatment Laboratory. Average Water Quality at Pitkäkoski and Vanhankaupunki Water Treatment Plants. Available online: https://vanha.hsy.fi/en/experts/water-services/drinking-water-quality/Documents/Water%20quality%202020_1.pdf (accessed on 25 May 2020).
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants. BBCH Monograph, 2nd ed.; Federal Biological Research Centre for Agriculture and Forestry: Berlin, Germany, 2001. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Santanen, A.; Stoddard, F.L.; Mäkelä, P.S.A. Feedstock quality and growth of bioenergy crops fertilized with sewage sludge. Chemosphere 2012, 89, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.F.; Moore, T.S.; Christensen, J.R.M. Growth of vesicular-arbuscular mycorrhizal and non-mycorrhizal Bouteloua gracilis in a defined medium. Mycologia 1979, 71, 666–669. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Brundrett, M. Mycorrhizal Associations. The Web Resource. Available online: http://mycorrhizas.info/index.html (accessed on 29 May 2020).
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–163. [Google Scholar] [CrossRef]
- Grace, C.; Stribley, D.P. A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol. Res. 1991, 95, 1160–1162. [Google Scholar] [CrossRef]
- Inamullah, S.G.; Ayub, M.; Ali Khan, A.; Anwar, S.; Alam Khan, S. Response of common buckwheat to nitrogen and phosphorus fertilization. Sarhad J. Agric 2012, 28, 171–178. [Google Scholar]
- Neumann, G.G.; Massonneau, A.; Martinoia, E.; Römheld, V. Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 1999, 208, 373–382. [Google Scholar] [CrossRef]
- Weisskoppf, L.; Abou-Mansour, E.; Fromin, N.; Tomasi, N.; Santelia, D.; Edelkott, I.; Neumann, G.; Arango, M.; Tabacchi, R.; Martinoia, E. White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant Cell Environ. 2006, 29, 919–927. [Google Scholar] [CrossRef] [Green Version]
- Lambers, H.; Clements, J.C.; Nelson, M.N. How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). Am. J. Bot. 2013, 100, 263–288. [Google Scholar] [CrossRef]
- Sulieman, S.; Ha, C.V.; Schulze, I.; Tran, I.S.P. Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. J. Exp. Bot. 2013, 64, 2701–2712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulieman, S.; Tran, I.S.P. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Sci. 2015, 239, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Schulze, I.; Temple, G.; Temple, S.I.; Beschow, H.; Vance, C.P. Nitrogen fixation by white lupin under phosphorus deficiency. Ann. Bot. 2006, 98, 731–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.-G.; He, Y.-Q.; Smith, S.E.; Smith, F.A. Buckwheat (Fagopyrum esculentum Moench) has high capacity to take up phosphorus (P) from a calcium (Ca)-bound source. Plant Soil 2001, 239, 1–8. [Google Scholar] [CrossRef]
- Nogalska, A.; Zalewska, M. The effect of meat and bone meal on phosphorus concentrations in soil and crop plants. Plant Soil Environ. 2013, 59, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Warren, G.P.; Robinson, J.S.; Someus, E. Dissolution of phosphorus from animal bone char in 12 soils. Nutr. Cycl. Agroecosyst. 2009, 84, 167–178. [Google Scholar] [CrossRef]
- Toljander, J.F.; Santos-González, J.C.; Tehler, A.; Finlay, R.D. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microb. Ecol. 2008, 65, 323–338. [Google Scholar] [CrossRef] [Green Version]
- Seleiman, M.F.; Santanen, A.; Kleemola, J.; Stoddard, F.L.; Mäkelä, P.S.A. Improved sustainability of feedstock production with sludge and interacting mycorrhiza. Chemosphere 2013, 91, 1236–1242. [Google Scholar] [CrossRef]
- Demars, B.G.; Boerner, R.E.J. Vesicular arbuscular mycorrhizal development in the Brassicacea in relation to plant life span. Flora 1996, 191, 179–189. [Google Scholar] [CrossRef]
- Lay, C.-Y.; Hamel, C.; St-Arnaud, M. Taxonomy and pathogenity of Olpidium brassicae and its allied species. Fungal Biol. 2018, 122, 837–846. [Google Scholar] [CrossRef]
- McArthur, D.A.I.; Knowles, N.R. Resistance responses of potato to vesicular arbuscular mycorrhizal fungi under varying abiotic phosphorus levels. Plant Physiol. 1992, 100, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Ban, Y.; Tang, M.; Chen, H.; Xu, Z.; Zhang, H.; Yang, H. The response of dark septate endophytes (DES) to heavy metals in pure culture. PLoS ONE 2012, 7, e47968. [Google Scholar] [CrossRef] [PubMed]
- Yakti, W.; Kowacs, G.M.; Vagi, P.; Franken, P. Impact of dark septate endophytes on tomato growth and nutrient uptake. Plant Ecol. Divers. 2018, 11, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Douds, D.D.; Schenck, N.C. Relationship of colonization and sporulation by VA mycorrhizal fungi to plant nutrient and carbohydrate contents. New Phytol. 1990, 116, 621–627. [Google Scholar] [CrossRef]
- Vance, C.P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Phys. 2001, 127, 390–397. [Google Scholar] [CrossRef]
- Römer, W.; Schilling, G. Phosphorus requirements of the wheat plant in various stages of its life cycle. Plant Soil 1986, 91, 221–229. [Google Scholar] [CrossRef]
- Makádi, M.; Tomócsik, A.; Orosz, V. Digestate: A new nutrient source—Review. In Biogas; Kumar, S., Ed.; IntechOpen: London, UK, 2012; pp. 295–310. [Google Scholar] [CrossRef]
Crop Species | P Source | Shoot Biomass, g/plant | Shoot P Content, g/kg DM | P Uptake, mg/shoo | SPAD Value |
---|---|---|---|---|---|
Buckwheat | No fertilizer | 0.18 ef | 6.09 h | 1.06 fg | 18 a |
Synthetic fertilizer | 0.29 gh | 4.71 f | 1.41 gh | 32 cde | |
Digestate | 0.26 gh | 4.47 f | 1.16 g | 31 cde | |
Meat bone meal | 0.31 hi | 5.42 g | 1.66 h | 29 cd | |
White lupine | No fertilizer | 0.32 hi | 4.80 f | 1.52 gh | 46 f |
Synthetic fertilizer | 0.23 gh | 4.98 f | 1.09 fg | 50 f | |
Digestate | 0.24 gh | 4.67 f | 1.12 fg | 45 f | |
Meat bone meal | 0.23 gh | 4.78 f | 1.08 fg | 47 f | |
Maize | No fertilizer | 0.29 gh | 3.43 cd | 0.95 f | 18 a |
Synthetic fertilizer | 0.39 j | 2.13 ab | 0.82 e | 21 ab | |
Digestate | 0.36 ij | 1.75 a | 0.62 d | 22 ab | |
Meat bone meal | 0.37 ij | 2.07 ab | 0.76 de | 22 ab | |
Oilseed rape | No fertilizer | 0.03 a | 3.61 e | 0.11 a | 29 cd |
Synthetic fertilizer | 0.20 fg | 3.95 ef | 0.79 de | 37 e | |
Digestate | 0.15 cd | 3.47 cd | 0.50 d | 34 de | |
Meat bone meal | 0.20 fg | 3.88 ef | 0.76 de | 35 de | |
Spelt wheat | No fertilizer | 0.08 ab | 2.62 bc | 0.20 ab | 16 a |
Synthetic fertilizer | 0.10 bc | 2.72 bc | 0.27 b | 28 bc | |
Digestate | 0.11 bc | 2.30 ab | 0.25 b | 28 bc | |
Meat bone meal | 0.15 cd | 2.12 ab | 0.31 bc | 31 cde | |
Significance (p) | Crop species (C) | <0.001 | <0.001 | <0.001 | <0.001 |
P source (P) | <0.001 | <0.01 | <0.05 | <0.001 | |
C x P | <0.001 | <0.05 | <0.001 | <0.001 |
Crop Species | P Source | Soil pH | Mycorrhizal Spores, No | Mycorrhizal Colonization, % | |||
---|---|---|---|---|---|---|---|
Bulk | Rhizosphere | Type 1 | Type 2 | Total | |||
Buckwheat | No fertilizer | 4.88 ab | 4.90 | 416 ab | 58 ab | 474 a | 11.5 |
Synthetic fertilizer | 4.84 ab | 4.56 | 319 a | 200 abc | 519 ab | 7.5 | |
Digestate | 5.07 ab | 5.03 | 350 ab | 184 abc | 533 ab | 17.6 | |
Meat bone meal | 5.39 ab | 5.20 | 416 ab | 177 abc | 592 ab | 26.2 | |
White lupine | No fertilizer | 5.54 b | 5.70 | 424 ab | 41 ab | 465 a | 10.5 |
Synthetic fertilizer | 5.84 b | 5.37 | 330 a | 403 bc | 733 ab | 8.3 | |
Digestate | 5.97 b | 5.64 | 383 ab | 382 abc | 764 ab | 5.6 | |
Meat bone meal | 5.84 b | 5.63 | 357 ab | 113 ab | 470 a | 12.7 | |
Maize | No fertilizer | 5.52 ab | 5.63 | 417 ab | 27 a | 444 a | 8.8 |
Synthetic fertilizer | 4.89 ab | 5.13 | 405 ab | 516 c | 921 b | 21.4 | |
Digestate | 5.87 b | 5.69 | 559 b | 89 ab | 647 ab | 29.2 | |
Meat bone meal | 5.34 ab | 5.50 | 293 a | 74 ab | 367 a | 27.8 | |
Oilseed rape | No fertilizer | 5.97 b | 5.80 | 335 a | 64 ab | 399 a | 14.4 |
Synthetic fertilizer | 4.75 ab | 5.39 | 277 a | 95 ab | 372 a | 17.5 | |
Digestate | 5.85 b | 5.98 | 301 a | 89 ab | 389 a | 8.9 | |
Meat bone meal | 5.89 b | 5.71 | 322 a | 89 ab | 411 a | 23.2 | |
Spelt wheat | No fertilizer | 5.30 ab | 5.70 | 440 ab | 37 ab | 477 ab | 16.7 |
Synthetic fertilizer | 4.26 a | 4.78 | 319 a | 230 abc | 549 ab | 31.8 | |
Digestate | 6.01 b | 5.17 | 438 ab | 86 ab | 524 ab | 32.9 | |
Meat bone meal | 5.46 ab | 5.34 | 282 a | 106 ab | 388 a | 36.7 | |
Significance (p) | Crop species (C) | <0.01 | <0.001 | <0.05 | <0.05 | <0.01 | NA |
P source (P) | <0.001 | <0.01 | <0.01 | <0.001 | <0.01 | NA | |
C x P | <0.05 | 0.898 | <0.05 | <0.05 | <0.05 | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mäkelä, P.S.A.; Wasonga, D.O.; Solano Hernandez, A.; Santanen, A. Seedling Growth and Phosphorus Uptake in Response to Different Phosphorus Sources. Agronomy 2020, 10, 1089. https://doi.org/10.3390/agronomy10081089
Mäkelä PSA, Wasonga DO, Solano Hernandez A, Santanen A. Seedling Growth and Phosphorus Uptake in Response to Different Phosphorus Sources. Agronomy. 2020; 10(8):1089. https://doi.org/10.3390/agronomy10081089
Chicago/Turabian StyleMäkelä, Pirjo S. A., Daniel O. Wasonga, Ainhoa Solano Hernandez, and Arja Santanen. 2020. "Seedling Growth and Phosphorus Uptake in Response to Different Phosphorus Sources" Agronomy 10, no. 8: 1089. https://doi.org/10.3390/agronomy10081089
APA StyleMäkelä, P. S. A., Wasonga, D. O., Solano Hernandez, A., & Santanen, A. (2020). Seedling Growth and Phosphorus Uptake in Response to Different Phosphorus Sources. Agronomy, 10(8), 1089. https://doi.org/10.3390/agronomy10081089