Mechanical Pruning and Soil Fertilization with Distinct Organic Amendments in Vineyards of Syrah: Effects on Vegetative and Reproductive Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Sites and Experimental Layout
- The organic amendments were spread over the soil and incorporated with a light disk harrow, before bud burst. The nutrients supplied by each organic amendment are the following:
- Bioc—72.0 kg ha−1 year−1 of total N, 7.2 kg ha−1 year−1 of total P and 43.8 kg ha−1 year−1 of total K;
- MSWC—226.0 kg ha−1 year−1 of total N, 110.4 kg ha−1 year−1 of total P and 124.9 kg ha−1 year−1 of total K;
- Manure—179.4 kg ha−1 year−1 of total N, 101.9 kg ha−1 year−1 of total P and 432.2 kg ha−1 year−1 of total K;
- Sludge—503.7 kg ha−1 year−1 of total N, 460.5 kg ha−1 year−1 of total P and 108.6 kg ha−1 year−1 of total K.
2.2. Reproductive and Vegetative Growth
2.3. Statistical Analysis
3. Results
3.1. Shoot and Cluster Number
3.2. Cluster and Berry Weight
3.3. Yield
3.4. Vegetative Growth
3.5. Dry Matter Production and Ravaz Index
4. Discussion
4.1. Shoot and Cluster Number
4.2. Cluster Weight
4.3. Yield
4.4. Vegetative Growth
4.5. Dry Matter Production and Partitioning
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Poni, S.; Tombesi, S.; Palliotti, A.; Ughinia, V.; Gatti, M. Mechanical winter pruning of grapevine: Physiological bases and applications. Sci. Hortic. 2016, 204, 88–98. [Google Scholar] [CrossRef]
- Ashley, R.M. Integrated Irrigation and Canopy Management Strategies for Vitis Vinifera cv. Shiraz. Ph.D. Thesis, School of Agriculture and Wine, University of Adelaide, Adelaide, Australia, 2004. [Google Scholar]
- Freeman, B.M.; Lee, T.H.; Turkington, C.R. Interaction of Irrigation and Pruning Level on Growth and Yield of Shiraz Vines. Am. J. Enol. Vitic. 1979, 30, 218–223. [Google Scholar]
- Clingeleffer, P.R. Production and growth of minimal pruned Sultana vines. Vitis 1984, 23, 42–54. [Google Scholar]
- Gatti, M.; Civardi, S.; Bernizzoni, F.; Poni, S. Long-Term Effects of Mechanical Winter Pruning on Growth, Yield, and Grape Composition of Barbera Grapevines. Am. J. Enol. Vitic. 2011, 62, 199–206. [Google Scholar] [CrossRef]
- Keller, M.; Mills, L.J.; Wample, R.L.; Spayd, S.E. Crop Load Management in Concord Grapes Using Different Pruning Techniques. Am. J. Enol. Vitic. 2004, 55, 35–49. [Google Scholar]
- Lopes, C.; Melicias, J.; Aleixo, A.; Laureano, O.; Castro, R. Effect of mechanical hedge pruning on growth, yield and quality of Cabernet Sauvignon grapevines. Acta Hortic. 2000, 526, 261–268. [Google Scholar] [CrossRef]
- Toda, F.M.; Sancha, J.C. Long-term Effects of Simulated Mechanical Pruning on Grenache Vines Under Drought Conditions. Am. J. Enol. Vitic. 1999, 50, 87–90. [Google Scholar]
- Wessner, L.F.; Kurtural, S.K. Pruning Systems and Canopy Management Practice Interact on the Yield and Fruit Composition of Syrah. Am. J. Enol. Vitic. 2013, 64, 134–138. [Google Scholar] [CrossRef]
- Poni, S.; Intrieri, S.; Magnanini, E. Seasonal growth and gas exchange of conventionally and minimally pruned Chardonnay canopies. Vitis 2000, 39, 13–18. [Google Scholar]
- Smithyman, R.P.; Howell, G.S.; Miller, D.P. Influence of Canopy Configuration on Vegetative Development, Yield and Fruit Composition of Seyval blanc Grapevines. Am. J. Enol. Vitic. 1997, 48, 482–491. [Google Scholar]
- Poni, S.; Intrieri, C. Grapevine photosynthesis: Effects linked to light radiation and leaf age. Adv. Hortic. Sci. 2001, 15, 5–15. [Google Scholar]
- Clingeleffer, P.R.; Krake, L.R. Light (minimal) pruning enhances expression of higher yield from clones of Vitis vinifera L. cv. Sultana following thermotherapy for virus attenuation. Aust. J. Grape Wine Res. 2002, 8, 95–100. [Google Scholar] [CrossRef]
- Morris, J.R.; Cawthon, D.L. Yield and Quality Response of Concord Grapes (Vitis labrusca L.) to Mechanized Vine Pruning. Am. J. Enol. Vitic. 1981, 32, 280–282. [Google Scholar]
- Santos, J.Q. Fertilização—Fundamentos da Utilização dos Adubos e Corretivos; Publicações Europa-América: Mem Martins, Portugal, 2012. [Google Scholar]
- Fraga, H.; Santos, J.A.; Malheiro, A.C.; Moutinho-Pereira, J. Climate change projections for the Portuguese viticulture using a multi-model ensemble. Cienc. Tec. Vitivinic. 2012, 27, 39–48. [Google Scholar]
- Longbottom, M.L.; Petrie, P.R. Role of vineyard practices in generating and mitigating greenhouse gas emissions. Aust. J. Grape Wine Res. 2015, 21, 522–536. [Google Scholar] [CrossRef]
- Kosmas, C.; Danalatos, N.; Cammeraat, L.H.; Chabart, M.; Diamantopoulos, J.; Farand, R.; Gutierrez, L.; Jacob, A.; Marques, H.; Martinez-Fernandez, J.; et al. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 1997, 29, 45–59. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Fangueiro, D.; Ribeiro, H.M.; Vasconcelos, R.; Coutinho, J.; Cabral, F. Influence of animal slurries composition and relative particle size fractions on the C and N mineralization following soil incorporation. Biomass Bioenergy 2012, 47, 50–61. [Google Scholar] [CrossRef]
- Amlinger, F.; Götz, B.; Dreher, P.; Geszti, J.; Weissteiner, C. Nitrogen in biowaste and yard waste compost: Dynamics of mobilisation and availability—A review. Eur. J. Soil Biol. 2003, 39, 107–116. [Google Scholar] [CrossRef]
- Morlat, R. Long-Term Additions of Organic Amendments in a Loire Valley Vineyard on a Calcareous Sandy Soil. II. Effects on Root System, Growth, Grape Yield, and Foliar Nutrient Status of a Cabernet franc Vine. Am. J. Enol. Vitic. 2008, 59, 364–374. [Google Scholar]
- Schreiner, R.P.; Lee, J.; Skinkis, P.A. N, P, and K Supply to Pinot noir Grapevines: Impact on Vine Nutrient Status, Growth, Physiology, and Yield. Am. J. Enol. Vitic. 2013, 64, 26–38. [Google Scholar] [CrossRef]
- Conradie, W.J.; Saayman, D. Effects of Long-Term Nitrogen, Phosphorus, and Potassium Fertilization on Chenin blanc Vines. I. Nutrient Demand and Vine Performance. Am. J. Enol. Vitic. 1989, 40, 85–90. [Google Scholar]
- Spayd, S.E.; Wample, R.L.; Stevens, R.G.; Evans, R.G.; Kawakami, A.K. Nitrogen Fertilization of White Riesling in Washington: Effects on Petiole Nutrient Concentration, Yield, Yield Components, and Vegetative Growth. Am. J. Enol. Vitic. 1993, 44, 378–386. [Google Scholar]
- Morris, J.R.; Spayd, S.E.; Cawthon, D.L. Effects of Irrigation, Pruning Severity and Nitrogen Levels on Yield and Juice Quality of Concord Grapes. Am. J. Enol. Vitic. 1983, 34, 229–233. [Google Scholar]
- Wolf, T.K.; Pool, R.M. Effects of Rootstock and Nitrogen Fertilization on the Growth and Yield of Chardonnay Grapevines in New York. Am. J. Enol. Vitic. 1988, 39, 29–37. [Google Scholar]
- Eghball, B.; Wienhold, B.J.; Gilley, J.E.; Eigenberg, R.A. Mineralization of manure nutrients. J. Soil Water Conserv. 2002, 57, 470–473. [Google Scholar]
- Ribeiro, H.M.; Vasconcelos, E.; Cabral, F.; Ribeiro, D. Fertilization of Pinus pinea L. seedlings with a sewage sludge-based compost. Waste Manag. Res. 2009, 27, 112–118. [Google Scholar] [CrossRef]
- Delgado, R.; Martín, P.; Álamo, M.; González, M.R. Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilisation rates. J. Sci. Food Agric. 2004, 84, 623–630. [Google Scholar] [CrossRef]
- Kliewer, W.M.; Freeman, B.M.; Hosssom, C. Effect of Irrigation, Crop Level and Potassium Fertilization on Carignane Vines. I. Degree of Water Stress and Effect on Growth and Yield. Am. J. Enol. Vitic. 1983, 34, 186–196. [Google Scholar]
- Liu, H.; Wang, Y.; Huang, W.D.; Lei, M. Response of wine grape growth, development and the transfer of copper, lead, and cadmium in soil-fruit system to sludge compost amendment. Environ. Sci. Pollut. Res. 2016, 23, 24230–24236. [Google Scholar] [CrossRef]
- Pinamonti, F. Compost mulch effects on soil fertility, nutritional status and performance of grapevine. Nutr. Cycl. Agroecosyst. 1998, 51, 239–248. [Google Scholar] [CrossRef]
- Messiga, A.J.; Gallant, K.S.; Sharifi, M.; Hammermeister, A.; Fuller, K.; Tango, M.; Fillmore, S. Grape Yield and Quality Response to Cover Crops and 3 Amendments in a Vineyard in Nova Scotia, Canada. Am. J. Enol. Vitic. 2015, 67, 77–85. [Google Scholar] [CrossRef]
- Gaiotti, F.; Marcuzzo, P.; Belfiore, N.; Lovat, L.; Fornasier, F.; Tomasi, D. Influence of compost addition on soil properties, root growth and vine performances of Vitis vinifera cv Cabernet sauvignon. Sci. Hortic. 2017, 225, 88–95. [Google Scholar] [CrossRef]
- Baronti, S.; Vaccaria, F.P.; Miglietta, F.; Calzolari, C.; Lugato, E.; Orlandini, S.; Pini, R.; Zulian, C.; Genesio, L. Impact of biochar application on plant water relations in Vitis vinifera (L.). Eur. J. Agron. 2014, 53, 38–44. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-Char sequestration in terrestrisal ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Genesio, L.; Miglietta, F.; Baronti, S.; Vaccari, F.P. Biochar increases vineyard productivity without affecting grape quality: Results from a four years field experiment in Tuscany. Agric. Ecosyst. Environ. 2015, 201, 20–25. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Kammann, C.; Niggli, C.; Evangelouc, M.W.H.; Mackie, K.A.; Abiven, S. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agric. Ecosyst. Environ. 2014, 191, 117–123. [Google Scholar] [CrossRef]
- USS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; FAO: Rome, Italy, 2015; Volume 106. [Google Scholar]
- Egnér, H.; Riehm, H.; Domingo, W.R. Untersuchhungen uber die chemische boden: Analyse als grundlage fur die beurteilung der nahrstoffzustandes der boden. II. Chemique extractions, methoden zur phosphor, und kalium-bestimmung. Kungl. Lantbrukshögskolans Ann. 1960, 26, 199–215. [Google Scholar]
- IPMA. Available online: http://www.ipma.pt/pt/oclima/normais.clima/ (accessed on 2 May 2020).
- Carbonneau, A.; Cargnello, G. Architectures de la Vigne et Systèmes de Conduit; Dunod: Paris, France, 2003. [Google Scholar]
- Intrieri, C.; Poni, S.; Lia, G.; Campo, M.G. Vine performance and leaf physiology of conventionally and minimally pruned Sangiovese grapevines. Vitis 2001, 40, 123–130. [Google Scholar]
- Champagnol, F. Elements de Physiologie de la Vigne et de Viticulture Générale; François Champagnol: Montpellier, France, 1984. [Google Scholar]
- Keller, M.; Koblet, W. Dry matter and leaf area partitioning, bud fertility and second season growth of Vittis vinifera L.: Responses to nitrogen supply and limiting irradiance. Vitis 1995, 34, 77–83. [Google Scholar]
- Bell, S.J.; Robson, A. Effect of Nitrogen Fertilization on Growth, Canopy Density, and Yield of Vitis vinifera L. cv. Cabernet Sauvignon. Am. J. Enol. Vitic. 1999, 50, 351–358. [Google Scholar]
- Geller, J.P.; Kurtural, S.K. Mechanical Canopy and Crop-Load Management of Pinot gris in a Warm Climate. Am. J. Enol. Vitic. 2013, 64, 65–73. [Google Scholar] [CrossRef]
- Poni, S.; Bernizzoni, F.; Presutto, P.; Rebucci, B. Performance of Croatina under Short-Cane Mechanical Hedging: A Successful Case of Adaptation. Am. J. Enol. Vitic. 2004, 55, 379–388. [Google Scholar]
- Wolpert, J.A.; Howell, G.S.; Mansfield, T.K. Sampling Vidal Blanc Grapes. I. Effect of Training System, Pruning Severity, Shoot Exposure, Shoot Origin, and Cluster Thinning on Cluster Weight and Fruit Quality. Am. J. Enol. Vitic. 1983, 34, 72–76. [Google Scholar]
- Clingeleffer, P.R. Plant management research: Status and what it can offer to address challenges and limitations. Aust. J. Grape Wine Res. 2009, 16, 25–32. [Google Scholar] [CrossRef]
- Zheng, W.; Galdo, V.; García, J.; Balda, P.; Toda, F.M. Use of Minimal Pruning to Delay Fruit Maturity and Improve Berry Composition under Climate Change. Am. J. Enol. Vitic. 2017, 68, 136–140. [Google Scholar] [CrossRef]
- Cruz, A.; Botelho, M.; Silvestre, J.; Castro, R. Soil management: Introduction of tillage in a vineyard with a long-term natural cover. Cienc. Tec. Vitivinic. 2012, 27, 27–38. [Google Scholar]
- Castro, R.; Claro, A.; Rodrigues, A.; Teixeira, A.; Machado, J.; Piovene, C.; Cruz, A. Poda mecânica na vinha. Efeitos no rendimento e na qualidade. In Proceedings of the 8th Simpósio de Vitivinicultura do Alentejo, Évora, Portugal, 5–7 May 2010; pp. 167–176. [Google Scholar]
- Freeman, B.M.; Cullis, B.R. Effect of Hedge Shape for Mechanical Pruning of Vinifera Vines. Am. J. Enol. Vitic. 1981, 32, 21–25. [Google Scholar]
- Clingeleffer, P.R. Response of Riesling clones to mechanical hedging and minimal pruning of cordon trained vines (MPCT)—Implications for clonal selection. Vitis 1988, 27, 87–93. [Google Scholar]
- Main, G.L.; Morris, J.R. Impact of Pruning Methods on Yield Components and Juice and Wine Composition of Cynthiana Grapes. Am. J. Enol. Vitic. 2008, 59, 179–187. [Google Scholar]
- Jackson, D.I.; Steans, G.F.; Hemmings, P.C. Vine Response to Increased Node Numbers. Am. J. Enol. Vitic. 1984, 35, 161–163. [Google Scholar]
- Morris, J.R.; Sims, C.A.; Bourque, J.E.; Oakes, J.L. Influence of Training System, Pruning Severity, and Spur Length on Yield and Quality of Six French-American Hybrid Grape Cultivars. Am. J. Enol. Vitic. 1984, 35, 23–27. [Google Scholar]
- Fawzi, M.I.F.; Laila, F.H.; Shahin, M.F.M.; Merwad, M.A.; Genaidy, E.A.E. Effect of Vine Bud Load on Bud Behavior, Yield, Fruit Quality and Wood Ripening of Superior Grape Cultivar. J. Agric. Sci. Technol. 2015, 11, 1275–1284. [Google Scholar]
- Heazlewood, J.E.; Wilson, S.; Clark, R.J.; Gracie, A.J. Pruning effects on Pinot Noir vines in Tasmania (Australia). Vitis 2006, 45, 165–171. [Google Scholar]
- Byrne, M.E.; Howell, G.S. Initial Response of Baco Noir Grapevines to Pruning Severity, Sucker Removal and Weed Control. Am. J. Enol. Vitic. 1978, 29, 192–198. [Google Scholar]
- Bates, T. Pruning Level Affects Growth and Yield of New York Concord on Two Training Systems. Am. J. Enol. Vitic. 2008, 59, 276–286. [Google Scholar]
- Botelho, M.; Cruz, A.; Silva, E.B.; Mexia, A.; Ricardo-da-Silva, J.; Castro, R.; Ribeiro, H. Mechanical pruning in non-irrigated vineyards: Effects on yield and grape composition of cultivar‘Syrah’ (Vitis vinifera L.). Acta Hortic. 2020, 1276, 125–130. [Google Scholar] [CrossRef]
- Lehmann, J.; Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Hale, C.R.; Weaver, R.J. The effect of developmental stage on direction of translocation of photosynthate in Vitis vinifera. Hilgardia 1962, 33, 89–131. [Google Scholar] [CrossRef] [Green Version]
- Skinner, P.W.; Matthews, M.A. Reproductive Development in Grape (Vitis vinifera L.) under Phosphorus-limited Conditions. Sci. Hortic. 1989, 38, 49–60. [Google Scholar] [CrossRef]
- Christensen, P. Long-term responses of ‘Thompson Seedless’ vines to Potassium fertilizer treatment. Am. J. Enol. Vitic. 1975, 26, 179–183. [Google Scholar]
- Cruz, A.; Piovene, C.; Claro, A.; Rodrigues, A.; Castro, R. Mechanical pruning on a vertical shoot positioning system in Dão Region. In Proceedings of the 17th International Symposium GiESCO, Asti, Italy, 29 August–1 September 2011; pp. 575–577. [Google Scholar]
- Botelho, M.; Cruz, A.; Castro, R. Canopy density on the vine variety ‘Alfrocheiro’ (Vitis vinifera L.) I. Effects on canopy structure, microclimate, vigour and vegetative growth. Cienc. Tec. Vitivinic. 2012, 27, 103–114. [Google Scholar]
- Edson, C.E.; Howell, G.S.; Flore, J.A. Influence of Crop Load on Photosynthesis and Dry Matter Partitioning of Seyval Grapevines I. Single Leaf and Whole Vine Response Pre- and Post-harvest. Am. J. Enol. Vitic. 1993, 44, 139–147. [Google Scholar]
- Conradie, W.J. Timing of Nitrogen Fertilization and the Effect of Poultry Manure on the Performance of Grapevines on Sandy Soil. I. Soil Analysis, Grape Yield and Vegetative Growth. S. Afr. J. Enol. Vitic. 2001, 22, 53–59. [Google Scholar]
- Branas, J. Viticulture; Dehan: Montpellier, France, 1974. [Google Scholar]
Bioc | MSWC | Manure | Sludge | |
---|---|---|---|---|
fresh matter basis | ||||
pH | 8.99 | 7.71 | 7.00 | 9.64 |
Electrical conductivity (mS/m) | 69.1 | 413.7 | 522.0 | 263.3 |
Moisture (%) | 23.8 | 44.2 | 63.0 | 78.0 |
dry matter basis | ||||
Organic Matter(%) | 72.3 ± 12.32 | 46.5 ± 10.03 | 67.5 ± 9.48 | 67.8 ± 6.48 |
Total N (%) | 1.0 ± 0.44 | 2.1 ± 0.16 | 2.4 ± 0.72 | 6.8 ± 0.26 |
Total P (g kg−1) | 0.8 ± 0.45 | 6.9 ± 0.46 | 4.2 ± 1.22 | 13.5 ± 1.94 |
Total K (g kg−1) | 5.2 ± 1.44 | 7.8 ± 0.25 | 18 ± 1.36 | 3.2 ± 0.77 |
Total Ca (g kg−1) | 36.3 ± 6.94 | 72.7 ± 18.00 | 16.4 ± 0.55 | 66.5 ± 16.49 |
Total Mg (g kg−1) | 2.2 ± 0.49 | 14.9 ± 3.04 | 4.8 ± 0.44 | 4.6 ± 0.63 |
Total S (g kg−1) | 1.4 ± 0.23 | 2.9 ± 0.16 | 3.3 ± 2.59 | 7.6 ± 0.18 |
Total Na (g kg−1) | 0.5 ± 3.02 | 6 ± 2.65 | 6.6 ± 2.68 | 0.8 ± 5.50 |
Total Fe (g kg−1) | 5.2 ± 0.07 | 8 ± 0.08 | 3.1 ± 0.07 | 9.3 ± 0.06 |
Total Mn (mg kg−1) | 144.9 ± <0.01 | 249.9 ± 0.02 | 223.3 ± 0.04 | 105.4 ± 0.02 |
Total Cu (mg kg−1) | 10.8 ± 0.00 | 132.2 ± 0.08 | 45.2 ± 0.05 | 137.6 ± 0.18 |
Total Zn (mg kg−1) | 18.1 ± 0.01 | 360.8 ± 0.02 | 134.1 ± 0.01 | 831.4 ± <0.01 |
Total B (mg kg−1) | 18.7 ± 1.49 | 26.1 ± 0.93 | 22 ± 0.50 | 28.2 ± 3.19 |
Total Ni (mg kg−1) | 2.9 ± <0.01 | 10 ± 0.01 | 5.2 ± 0.01 | 6 ± 0.01 |
Total Cd (mg kg−1) | 0.03 ± <0.01 | 0.03 ± <0.01 | 0.07 ± <0.01 | 0.05 ± <0.01 |
Total Pb (mg kg−1) | 14.8 ± <0.01 | 79.6 ± 0.07 | 3.4 ± <0.01 | 24.9 ± 0.02 |
Total Cr (mg kg−1) | 8.6 ± 0.01 | 27.8 ± 0.03 | 4.6 ± <0.01 | 20.3 ± 0.02 |
Total Hg (mg kg−1) | 0.01 ± 0.01 | 0.41 ± 0.29 | 0.02 ± 0.01 | 0.51 ± 0.41 |
Bud Load | Shoot Number Per Vine | Water Sprout Number per Vine | Cluster Number Per Vine | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2012 | 2013 | 2014 | 2015 | 2012 | 2013 | 2014 | 2015 | 2012 | 2013 | 2014 | 2015 | |
MAN | 15.0 | 12.1 | 14.0 | 14.3 | 19.2 | 20.3 | 20.4 | 21.6 | 8.63 | 8.19 | 8.16 | 8.23 | 31.6 | 30.9 | 27.8 | 43.5 |
MEC | 43.3 | 49.3 | 64.2 | 62.8 | 26.5 | 33.2 | 36.4 | 34.1 | 0.83 | 0.66 | 0.54 | 0.75 | 57.1 | 68.1 | 72.6 | 81.2 |
Sig.1 | ** | *** | *** | *** | ** | ** | *** | *** | ** | *** | ** | ** | ** | ** | ** | *** |
Ctrl | 29.3 | 30.5 | 39.6 | 38.4 | 23.1 | 26.2 | 26.9 c | 26.7 ab | 5.25 | 4.34 | 4.08 | 4.12 | 42.5 | 50.1 | 45.2 b | 54.5 b |
Bioc | 29.4 | 29.0 | 37.1 | 35.3 | 22.3 | 25.9 | 27.4 bc | 25.4 b | 4.30 | 4.92 | 4.38 | 4.60 | 44.4 | 45.2 | 49.2 ab | 52.7 b |
MSWC | 29.5 | 29.9 | 39.7 | 38.5 | 23.3 | 26.9 | 29.3 ab | 29.0 a | 4.58 | 4.29 | 4.69 | 4.72 | 46.0 | 47.9 | 53.1 a | 65.8 a |
Manure | 29.0 | 32.1 | 38.6 | 38.3 | 22.7 | 27.0 | 28.6 abc | 28.7 a | 5.11 | 4.38 | 3.94 | 4.32 | 45.8 | 51.2 | 50.8 ab | 65.7 a |
Sludge | 28.5 | 30.4 | 40.5 | 40.0 | 22.9 | 27.2 | 29.9 a | 28.7 a | 4.41 | 4.56 | 4.66 | 5.01 | 43.1 | 51.4 | 52.7 ab | 70.6 a |
Sig.1 | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | ** | ** | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | * | *** |
QC | 33.6 | 34.1 | 42.7 | 41.3 | 26.6 | 30.1 | 31.9 | 29.0 | 4.75 | 5.96 | 5.81 | 6.11 | 52.5 | 52.7 | 60.8 | 66.8 |
QG | 24.7 | 26.5 | 35.5 | 35.0 | 19.1 | 23.1 | 24.9 | 26.5 | 4.71 | 2.97 | 2.89 | 3.05 | 36.2 | 45.6 | 39.6 | 57.4 |
Site | * | n.s. | n.s. | n.s. | ** | ** | * | n.s. | n.s. | ** | ** | * | ** | n.s. | * | n.s. |
Pruning × O.A. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | * | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | *** |
Site × Pruning | * | n.s. | n.s. | n.s. | * | n.s. | n.s. | n.s. | n.s. | ** | * | * | * | n.s. | ** | ** |
Site × O.A. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | * | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | ** |
Site × Pruning × O.A. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | * | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Berry Weight (g) | Berry Number Per Cluster | Cluster Weight (g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2012 | 2013 | 2014 | 2012 | 2013 | 2014 | 2015 | |
MAN | 1.55 | 1.46 | 2.05 | 91.3 | 92.9 | 78.2 | 141 | 139 | 155 | 140 |
MEC | 1.30 | 1.24 | 1.73 | 72.6 | 62.0 | 58.8 | 95 | 77 | 100 | 82 |
Sig.1 | * | ** | * | * | ** | * | ** | ** | ** | *** |
Ctrl | 1.40 | 1.31 | 1.82 bc | 82.1 | 69.4 b | 64.4 | 117 | 95 b | 117 b | 101 |
Bioc | 1.45 | 1.34 | 1.79 c | 80.8 | 80.8 ab | 68.0 | 119 | 112 ab | 121 b | 113 |
MSWC | 1.42 | 1.34 | 1.92 ab | 81.7 | 77.5 ab | 69.6 | 118 | 108 ab | 132 ab | 114 |
Manure | 1.46 | 1.34 | 1.94 ab | 83.9 | 77.1 ab | 68.3 | 124 | 106 ab | 130 ab | 111 |
Sludge | 1.40 | 1.43 | 1.97 a | 81.2 | 82.9 a | 72.4 | 114 | 122 a | 138 a | 118 |
Sig.1 | n.s. | n.s. | *** | n.s. | ** | n.s. | n.s. | * | ** | n.s. |
QC | 1.40 | 1.21 | 1.65 | 74.5 | 65.5 | 80.7 | 106 | 80 | 134 | 121 |
QG | 1.45 | 1.49 | 2.13 | 89.4 | 90.3 | 56.3 | 130 | 138 | 120 | 102 |
Site | n.s. | * | ** | n.s. | * | * | n.s. | ** | n.s. | n.s. |
Pruning × O.A. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Site × Pruning | n.s. | n.s. | n.s. | n.s. | n.s. | * | n.s. | * | n.s. | n.s. |
Site × O.A. | n.s. | n.s. | ** | n.s. | n.s. | * | n.s. | n.s. | n.s. | n.s. |
Site × Pruning × O.A. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Yield (kg vine−1) | ||||
---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | |
MAN | 4.47 | 4.21 | 4.33 | 5.95 |
MEC | 5.50 | 5.33 | 7.43 | 6.67 |
Sig.1 | n.s. | n.s. | ** | n.s. |
Ctrl | 4.70 | 4.18 b | 4.82 c | 5.03 b |
Bioc | 5.05 | 4.40 b | 5.38 bc | 5.35 b |
MSWC | 5.15 | 4.59 b | 6.31 ab | 6.87 a |
Manure | 5.34 | 4.98 ab | 6.04 ab | 6.61 a |
Sludge | 4.71 | 5.63 a | 6.84 a | 7.56 a |
Sig.1 | n.s. | *** | *** | *** |
QC | 5.44 | 4.05 | 7.26 | 6.98 |
QG | 4.53 | 5.50 | 4.50 | 5.65 |
Site | n.s. | n.s. | ** | ** |
Pruning × O.A. | n.s. | ** | ** | ** |
Site × Pruning | n.s. | n.s. | * | n.s. |
Site × O.A. | n.s. | n.s. | n.s. | * |
Site × Pruning × O.A. | n.s. | n.s. | n.s. | n.s. |
Shoot Weight (g) | Pruning Weight (kg vine−1) | |||||||
---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2012 | 2013 | 2014 | 2015 | |
MAN | 41.8 | 43.5 | 55.0 | 43.9 | 0.802 | 0.888 | 1.087 | 0.945 |
MEC | 26.3 | 21.3 | 24.1 | 17.2 | 0.699 | 0.736 | 0.874 | 0.600 |
Sig.1 | * | * | ** | ** | n.s. | n.s. | n.s. | ** |
Ctrl | 32.8 | 30.2 | 36.5 b | 27.5 b | 0.733 | 0.735 | 0.867 b | 0.680 b |
Bioc | 34.7 | 33.4 | 39.4 ab | 31.4 ab | 0.749 | 0.814 | 0.942 b | 0.727 b |
MSWC | 33.5 | 33.9 | 40.3 ab | 33.6 a | 0.761 | 0.841 | 1.028 ab | 0.881 a |
Manure | 36.0 | 30.6 | 36.8 b | 27.0 b | 0.773 | 0.795 | 0.909 b | 0.703 b |
Sludge | 33.2 | 35.0 | 44.6 a | 34.5 a | 0.737 | 0.882 | 1.158 a | 0.881 a |
Sig.1 | n.s. | n.s. | ** | *** | n.s. | n.s. | *** | *** |
QC | 31.4 | 32.7 | 33.5 | 36.3 | 0.833 | 0.947 | 0.954 | 0.926 |
QG | 36.7 | 32.4 | 45.6 | 25.5 | 0.668 | 0.675 | 1.008 | 0.629 |
Site | n.s. | n.s. | * | * | n.s. | n.s. | n.s. | * |
Pruning × O.A. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Site × Pruning | n.s. | n.s. | n.s. | * | n.s. | n.s. | n.s. | * |
Site × O.A. | n.s. | n.s. | * | n.s. | n.s. | n.s. | n.s. | ** |
Site × Pruning × O.A. | n.s. | n.s. | *** | n.s. | n.s. | n.s. | n.s. | n.s. |
Dry Matter Production (kg vine−1) | Ravaz Index | |||||||
---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2012 | 2013 | 2014 | 2015 | |
MAN | 1.30 | 1.29 | 1.41 | 1.66 | 5.98 | 5.25 | 4.39 | 7.01 |
MEC | 1.45 | 1.43 | 1.92 | 1.63 | 7.97 | 8.34 | 9.68 | 11.59 |
Sig. 1 | n.s. | n.s. | ** | n.s. | ** | * | ** | ** |
Ctrl | 1.31 | 1.20b | 1.40c | 1.35c | 6.76 | 6.81 | 6.45 | 8.75 |
Bioc | 1.38 | 1.29b | 1.55bc | 1.43bc | 7.23 | 6.17 | 6.72 | 8.32 |
MSWC | 1.41 | 1.34ab | 1.78ab | 1.82a | 7.06 | 6.43 | 7.75 | 8.90 |
Manure | 1.45 | 1.39ab | 1.66abc | 1.67ab | 7.20 | 7.04 | 7.45 | 10.16 |
Sludge | 1.31 | 1.57a | 1.95a | 1.95a | 6.62 | 7.33 | 6.78 | 10.09 |
Sig. 1 | n.s. | ** | *** | *** | n.s. | n.s. | n.s. | n.s. |
QC | 1.51 | 1.28 | 1.93 | 1.86 | 6.72 | 4.54 | 9.00 | 8.77 |
QG | 1.24 | 1.44 | 1.40 | 1.44 | 7.22 | 9.07 | 5.06 | 9.73 |
Site | n.s. | n.s. | * | ** | n.s. | ** | * | n.s. |
Pruning × O.A. | n.s. | ** | * | * | n.s. | n.s. | * | n.s. |
Site × Pruning | n.s. | n.s. | n.s. | n.s.* | n.s. | n.s. | n.s. | n.s. |
Site × O.A. | n.s. | n.s. | n.s. | * | n.s. | n.s. | n.s. | n.s. |
Site × Pruning × O.A. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botelho, M.; Cruz, A.; Ricardo-da-Silva, J.; de Castro, R.; Ribeiro, H. Mechanical Pruning and Soil Fertilization with Distinct Organic Amendments in Vineyards of Syrah: Effects on Vegetative and Reproductive Growth. Agronomy 2020, 10, 1090. https://doi.org/10.3390/agronomy10081090
Botelho M, Cruz A, Ricardo-da-Silva J, de Castro R, Ribeiro H. Mechanical Pruning and Soil Fertilization with Distinct Organic Amendments in Vineyards of Syrah: Effects on Vegetative and Reproductive Growth. Agronomy. 2020; 10(8):1090. https://doi.org/10.3390/agronomy10081090
Chicago/Turabian StyleBotelho, Manuel, Amândio Cruz, Jorge Ricardo-da-Silva, Rogério de Castro, and Henrique Ribeiro. 2020. "Mechanical Pruning and Soil Fertilization with Distinct Organic Amendments in Vineyards of Syrah: Effects on Vegetative and Reproductive Growth" Agronomy 10, no. 8: 1090. https://doi.org/10.3390/agronomy10081090
APA StyleBotelho, M., Cruz, A., Ricardo-da-Silva, J., de Castro, R., & Ribeiro, H. (2020). Mechanical Pruning and Soil Fertilization with Distinct Organic Amendments in Vineyards of Syrah: Effects on Vegetative and Reproductive Growth. Agronomy, 10(8), 1090. https://doi.org/10.3390/agronomy10081090