Tillage, Crop Rotation and Crop Residue Management Effects on Nutrient Availability in a Sweet Sorghum-Based Cropping System in Marginal Soils of South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.1.1. Study Site Description
2.1.2. Treatments and Experimental Design
2.1.3. Management of Non-Experimental Variables
2.2. Soil Sampling
2.3. Analysis
2.3.1. Electrical Conductivity and pH
2.3.2. Total N and Inorganic N
2.3.3. Available P
2.3.4. Cation Exchange Capacity (CEC) and Extractable Bases
2.3.5. Statistical Analysis
3. Results
3.1. pH and Electrical Conductivity (EC)
3.2. Total, Organic and Inorganic (Ammonium (NH4+-N) and Nitrate (NO3−-N)) Nitrogen
3.3. P-Bray1 (Available P)
3.4. Cation Exchange Capacity (CEC) and Extractable Bases
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barnard, R.O.; Du Preez, C.C. Soil fertility in South Africa: The last twenty five years. S. Afr. J. Plant Soil 2004, 21, 301–315. [Google Scholar] [CrossRef] [Green Version]
- Ncube, B.; Twomlow, S.J.; Dimes, J.P.; Van Wijk, M.T.; Giller, K.E. Resource flows, crops and soil fertility management in smallholder farming systems in semi-arid Zimbabwe. Soil Use Manag. 2009, 25, 78–90. [Google Scholar] [CrossRef]
- Fanadzo, M.; Chiduza, C.; Mnkeni, P.N.; Van der Stoep, L.; Steven, J. Crop production management practices as a cause for low water productivity at Zanyokwe Irrigation Scheme. Water SA 2010, 36, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Njoloma, J.P.; Sileshi, W.G.; Sosola, B.G.; Nalivata, P.C.; Nyoka, B.I. Soil fertility status under smallholder farmers’ fields in Malawi. Afr. J. Agric. Res. 2016, 11, 1679–1687. [Google Scholar]
- Mandiringana, O.T.; Mnkeni, P.N.; Mkile, Z.; Van Averbeke, W.; Van Ranst, E.; Verplancke, H. Mineralogy and fertility status of selected soils of the Eastern Cape Province, South Africa. Commun. Soil Sci. Plant Anal. 2005, 36, 2431–2446. [Google Scholar] [CrossRef]
- Diwani, T.N.; Asch, F.; Becker, M.; Mussgnug, F. Characterizing farming systems around Kakamega Forest, Western Kenya, for targeting soil fertility–enhancing technologies. J. Plant Nutr. Soil Sci. 2013, 176, 585–594. [Google Scholar] [CrossRef]
- Khapayi, M.; Celliers, P.R. Factors limiting and preventing emerging farmers to progress to commercial agricultural farming in the King William’s Town area of the Eastern Cape Province, South Africa. S. Afr. J. Agric. Ext. 2016, 44, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Bleam, W. Ion Exchange. In Soil and Environmental Chemistry, 2nd ed.; Academic Express: Madison, WI, USA, 2017; pp. 147–187. [Google Scholar] [CrossRef]
- Thapa, B.; Pande, K.R.; Khanal, B.; Marahatta, S. Effect of Tillage, Residue Management and Cropping System on the Properties of Soil. Int. J. Appl. Sci. Biotechnol. 2018, 6, 164–168. [Google Scholar] [CrossRef]
- Rahman, M.H.; Okubo, A.; Sugiyama, S.; Mayland, H.F. Physical, chemical and microbiological properties of an Andisol as related to land use and tillage practice. Soil Tillage Res. 2008, 101, 10–19. [Google Scholar] [CrossRef]
- Jiang, X.; Wright, A.L.; Wang, J.; Li, Z. Long-term tillage effects on the distribution patterns of microbial biomass and activities within soil aggregates. Catena 2011, 87, 276–280. [Google Scholar] [CrossRef]
- Dube, E.; Chiduza, C.; Muchaonyerwa, P. Conservation agriculture effects on soil organic matter on a Haplic Cambisol after four years of maize–oat and maize–grazing vetch rotations in South Africa. Soil Tillage Res. 2012, 123, 21–28. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Margenot, A.J.; Paul, B.K.; Sommer, R.R.; Pulleman, M.M.; Parikh, S.J.; Jackson, L.E.; Fonte, S.J. Can conservation agriculture improve phosphorus (P) availability in weathered soils? Effects of tillage and residue management on soil P status after 9 years in a Kenyan Oxisol. Soil Tillage Res. 2017, 166, 157–166. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, A.; Xin, X.; Yang, W.; Zhang, J.; Ding, S. Tillage and residue management for long-term wheat-maize cropping in the North China Plain: I. Crop yield and integrated soil fertility index. Field Crops. Res. 2018, 221, 157–165. [Google Scholar] [CrossRef]
- Rusu, T. Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage. Int. Soil Water Conser. Res. 2014, 2, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Liu, E.; Chen, B.; Yan, C.; Zhang, Y.; Mei, X.; Wang, J. Seasonal changes and vertical distributions of soil organic carbon pools under conventional and no-till practices on Loess Plateau in China. Soil Sci. Soc. Am. J. 2015, 79, 517–526. [Google Scholar] [CrossRef]
- Dang, Y.P.; Moody, P.W.; Bell, M.J.; Seymour, N.P.; Dalal, R.C.; Freebairn, D.M.; Walker, S.R. Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: II. Implications for agronomy, soil and environment. Soil Tillage Res. 2015, 152, 115–123. [Google Scholar] [CrossRef]
- Büchi, L.; Wendling, M.; Amossé, C.; Jeangros, B.; Sinaj, S.; Charles, R. Long and short term changes in crop yield and soil properties induced by the reduction of soil tillage in a long term experiment in Switzerland. Soil Tillage Res. 2017, 174, 120–129. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Wang, H.; Wang, R.; Wang, X.; Li, J. Crop yield and soil properties of dryland winter wheat-spring maize rotation in response to 10-year fertilization and conservation tillage practices on the Loess Plateau. Field Crops. Res. 2018, 225, 170–179. [Google Scholar] [CrossRef]
- Houx III, J.H.; Wiebold, W.J.; Fritschi, F.B. Long-term tillage and crop rotation determines the mineral nutrient distributions of some elements in a Vertic Epiaqualf. Soil Tillage Res. 2011, 112, 27–35. [Google Scholar] [CrossRef]
- Deubel, A.; Hofmann, B.; Orzessek, D. Long-term effects of tillage on stratification and plant availability of phosphate and potassium in a loess chernozem. Soil Tillage Res. 2011, 117, 85–92. [Google Scholar] [CrossRef]
- Alam, M.; Islam, M.; Salahin, N.; Hasanuzzaman, M. Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions. Sci. World J. 2014, 2014, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, I.; Chervet, A.; Weisskopf, P.; Sturny, W.G.; Etana, A.; Stettler, M.; Forkman, J.; Keller, T. Two decades of no-till in the Oberacker long-term field experiment: Part I. Crop yield, soil organic carbon and nutrient distribution in the soil profile. Soil Tillage Res. 2016, 163, 141–151. [Google Scholar] [CrossRef]
- Shokati, B.; Ahangar, A.G. Effect of conservation tillage on soil fertility factors: A review. Int. J. Biol. 2014, 4, 144–156. [Google Scholar]
- Sainju, U.M.; Allen, B.L.; Caesar-TonThat, T.; Lenssen, A.W. Dryland soil chemical properties and crop yields affected by long-term tillage and cropping sequence. SpringerPlus 2015, 4, 320. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.S.; Saleque, M.A.; Hossain, M.M.; Islam, A.A. Effect of Conservation Tillage on Soil Chemical Properties in Rice-Maize Cropping System. Agriculturists 2015, 13, 62–73. [Google Scholar] [CrossRef]
- Mazzoncini, M.; Antichi, D.; Di Bene, C.; Risaliti, R.; Petri, M.; Bonari, E. Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions. Eur. J. Agron. 2016, 77, 156–165. [Google Scholar] [CrossRef]
- Zheng, C.; Jiang, Y.; Chen, C.; Sun, Y.; Feng, J.; Deng, A.; Song, Z.; Zhang, W. The impacts of conservation agriculture on crop yield in China depend on specific practices, crops and cropping regions. Crop J. 2014, 2, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.P.; Shrestha, A.; Mathesius, K.; Scow, K.M.; Southard, R.J.; Haney, R.L.; Schmidt, R.; Munk, D.S.; Horwath, W.R. Cover cropping and no-tillage improve soil health in an arid irrigated cropping system in California’s San Joaquin Valley, USA. Soil Tillage Res. 2017, 165, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, V.C.; Jordan, D. Nitrogen recovery by corn from nitrogen-15 labeled wheat residues and intact roots and soil. Soil Sci. Soc. Am. J. 1996, 60, 1405–1410. [Google Scholar] [CrossRef]
- Department of Minerals and Energy. Biofuel Industrial Strategy of the Republic of South Africa; Department of Minerals and Energy: Pretoria, South Africa, 2007.
- Edrisi, S.A.; Abhilash, P.C. Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario. Renew. Sustain. Energy Rev. 2016, 54, 1537–1551. [Google Scholar] [CrossRef]
- Flammini, A.; Puri, M.; Pluschke, L.; Dubois, O. Walking the Nexus Talk: Assessing the Water-Energy-Food Nexus in the Context of the Sustainable Energy for all Initiative; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i3959e.pdf (accessed on 19 April 2020).
- Sinyolo, S.; Mudhara, M. Farmer groups and inorganic fertiliser use among smallholders in rural South Africa. S. Afr. J. Sci. 2018, 114, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Malobane, M.E.; Nciizah, A.D.; Wakindiki, I.I.C.; Mudau, F.N. Sustainable production of sweet sorghum for biofuel production through conservation agriculture in South Africa. Food Energy Secur. 2018, 7, e00129. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.S.; Prasad, J.V.N.S.; Umakanth, A.V.; Reddy, B.V. Sweet sorghum (Sorghum bicolor (L.) Moench)-A new generation water use efficient bioenergy crop. Indian J. Dryland Agric. Res. Dev. 2011, 26, 65–71. [Google Scholar]
- Lal, R. Climate change and soil degradation mitigation by sustainable management of soils and other natural resources. Agric. Res. 2012, 1, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Schröder, P.; Beckers, B.; Daniels, S.; Gnädinger, F.; Maestri, E.; Marmiroli, N.; Mench, M.; Millan, R.; Obermeier, M.M.; Oustriere, N.; et al. Intensify production, transform biomass to energy and novel goods and protect soils in Europe-A vision how to mobilize marginal lands. Sci. Total Environ. 2018, 616, 1101–1123. [Google Scholar] [CrossRef] [PubMed]
- Shahid, S.A.; Al-Shankiti, A. Sustainable food production in marginal lands-Case of GDLA member countries. Int. Soil Water Conserv. Res. 2013, 1, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Mabhaudhi, T.; Chimonyo, V.G.; Modi, A.T. Status of underutilised crops in South Africa: Opportunities for developing research capacity. Sustainability 2017, 9, 1569. [Google Scholar] [CrossRef] [Green Version]
- Sithole, N.J.; Magwaza, L.S.; Mafongoya, P.L. Conservation agriculture and its impact on soil quality and maize yield: A South African perspective. Soil Tillage Res. 2016, 162, 55–67. [Google Scholar] [CrossRef] [Green Version]
- FAO. Conservation Agriculture; FAO: Rome, Italy; Available online: http://www.fao.org/3/y4690e/y4690e0a.htm (accessed on 19 April 2020).
- Mupambwa, H.A.; Wakindiki, I.I.C. Winter cover crops effects on soil strength, infiltration and water retention in a sandy loam Oakleaf soil in Eastern Cape, South Africa. S. Afr. J. Plant Soil 2012, 29, 121–126. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources, 2nd ed.; World Soil Resources Reports No. 103; FAO: Rome, Italy, 2006. [Google Scholar]
- Nciizah, A.D.; Wakindiki, I.I.C. Aggregate stability and strength of a hardsetting soil amended with cattle manure. Afr. J. Agric. Res. 2012, 7, 68–73. [Google Scholar]
- Malobane, M.E.; Nciizah, A.D.; Mudau, F.N.; Wakindiki, I.I.C. Discrimination of soil aggregates using micro-focus X-ray computed tomography in a five-year-old no-till natural fallow and conventional tillage in South Africa. Heliyon 2019, 5, e01819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengistu, M.G.; Steyn, J.M.; Kunz, R.P.; Doidge, I.; Hlophe, H.B.; Everson, C.S.; Jewitt, G.P.W.; Clulow, A.D. A preliminary investigation of the water use efficiency of sweet sorghum for biofuel in South Africa. Water SA 2016, 42, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, S.; Fu, M.; Cai, J.; Zhang, Y.; Wang, R.; Xu, Z.; Bai, Y.; Jiang, Y. Sheep manure application increases soil exchangeable base cations in a semi-arid steppe of Inner Mongolia. J. Arid Land 2015, 7, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Mulvaney, R.L. Nitrogen-inorganic forms. In Methods of Soil Analysis: Chemical Methods; Sparks, D.L., Ed.; Part 3. Soil Sci. Soc. Amer. Madison Wis; Springer: Berlin/Heidelberg, Germany, 1996; pp. 1123–1184. [Google Scholar]
- Kuo, S. Phosphorus. In Methods of Soil Analysis: Part 3: Chemical Methods; Sparks, D.L., Ed.; SSSA Book Series 5; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 869–919. [Google Scholar]
- Sumner, M.E.; Miller, W.P. Cation Exchange Capacity and Exchange Coefficients. In Methods of Soil Analysis Part 3: Chemical Methods; Sparks, D.L., Ed.; SSSA Book Series 5; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 1201–1230. [Google Scholar]
- Stockdale, E.A.; Shepherd, M.A.; Fortune, S.; Cuttle, S.P. Soil fertility in organic farming systems–fundamentally different? Soil Use Manag. 2002, 18, 301–308. [Google Scholar] [CrossRef]
- Kibet, L.C.; Blanco-Canqui, H.; Jasa, P. Long-term tillage impacts on soil organic matter components and related properties on a Typic Argiudoll. Soil Tillage Res. 2016, 155, 78–84. [Google Scholar] [CrossRef]
- Gura, I.; Mnkeni, P.N.S. Crop rotation and residue management effects under no till on the soil quality of a Haplic Cambisol in Alice, Eastern Cape, South Africa. Geoderma 2019, 337, 927–934. [Google Scholar] [CrossRef]
- Mtyobile, M.; Muzangwa, L.; Mnkeni, P.N.S. Tillage and Crop Rotation Effects on Selected Soil Chemical Properties and Wheat Yield in a Sandy Loam Oakleaf Soil in the Eastern Cape, South Africa. Int. J. Agric. Biol. 2019, 21, 367–374. [Google Scholar]
- Kotuby-Amacher, J.; Koenig, R.; Kitchen, B. Salinity and Plant Tolerance. Electronic Publishing. AG-SO-03. 2000. Available online: http://digitalcommons.usu.edu/extension_histall/43 (accessed on 2 May 2020).
- Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Laghrour, M.; Moussadek, R.; Mrabet, R.; Dahan, R.; El-Mourid, M.; Zouahri, A.; Mekkaoui, M. Long and midterm effect of conservation agriculture on soil properties in dry areas of Morocco. Appl. Environ. Soil Sci. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- López-Fando, C.; Pardo, M.T. Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil Tillage Res. 2009, 104, 278–284. [Google Scholar] [CrossRef]
- Agbede, T.M. Tillage and fertilizer effects on some soil properties, leaf nutrient concentrations, growth and sweet potato yield on an Alfisol in southwestern Nigeria. Soil Tillage Res. 2010, 110, 25–32. [Google Scholar] [CrossRef]
- Tan, C.; Cao, X.; Yuan, S.; Wang, W.; Feng, Y.; Qiao, B. Effects of long-term conservation tillage on soil nutrients in sloping fields in regions characterized by water and wind erosion. Sci. Rep. 2015, 5, 17592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.; Su, Y.; Kong, J. Effect of tillage, cropping, and mulching pattern on crop yield, soil C and N accumulation, and carbon footprint in a desert oasis farmland. Soil Sci. Plant Nutr. 2017, 63, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yang, X.; Cui, S.; Yang, Q.; Yang, X.; Li, J.; Shen, Y. Developing sustainable cropping systems by integrating crop rotation with conservation tillage practices on the Loess Plateau, a long-term imperative. Field Crops Res. 2018, 222, 164–179. [Google Scholar] [CrossRef]
- Verhulst, N.; Govaerts, B.; Nelissen, V.; Sayre, K.D.; Crossa, J.; Raes, D.; Deckers, J. The effect of tillage, crop rotation and residue management on maize and wheat growth and development evaluated with an optical sensor. Field Crops Res. 2011, 120, 58–67. [Google Scholar] [CrossRef]
- Pu, C.; Kan, Z.R.; Liu, P.; Ma, S.T.; Qi, J.Y.; Zhao, X.; Zhang, H.L. Residue management induced changes in soil organic carbon and total nitrogen under different tillage practices in the North China Plain. J. Integr. Agric. 2018, 18, 1337–1347. [Google Scholar] [CrossRef]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical and biological properties and yield. Front. Sustain. Food Syst. 2020, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Godde, C.M.; Thorburn, P.J.; Biggs, J.S.; Meier, E.A. Understanding the impacts of soil, climate, and farming practices on soil organic carbon sequestration: A simulation study in Australia. Front. Plant Sci. 2016, 7, 661. [Google Scholar] [CrossRef] [Green Version]
- Murphy, R.P.; Montes-Molina, J.A.; Govaerts, B.; Six, J.; van Kessel, C.; Fonte, S.J. Crop residue retention enhances soil properties and nitrogen cycling in smallholder maize systems of Chiapas, Mexico. Appl. Soil Ecol. 2016, 103, 110–116. [Google Scholar] [CrossRef]
- Singh, R.K.; Sharma, G.K.; Kumar, P.; Singh, S.K.; Singh, R. Effect of Crop Residues Management on Soil Properties and Crop Productivity of Rice-wheat System in Inceptisols of Seemanchal Region of Bihar. Curr. J. Appl. Sci. Techn. 2019, 37, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hiel, M.P.; Barbieux, S.; Pierreux, J.; Olivier, C.; Lobet, G.; Roisin, C.; Garré, S.; Colinet, G.; Bodson, B.; Dumont, B. Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils. PeerJ 2018, 6, e4836. [Google Scholar] [CrossRef] [Green Version]
- Turmel, M.S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop residue management and soil health: A systems analysis. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, P.; Wang, K.; Ding, R.; Yang, B.; Nie, J.; Jia, Z.; Han, Q. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS ONE 2015, 10, e0120994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbah, C.N.; Nneji, R.K. Effect of different crop residue management techniques on selected soil properties and grain production of maize. Afr. J. Agric. Res. 2011, 6, 4149–4152. [Google Scholar]
- Ogbodo, E.N. Effect of crop residue on soil chemical properties and rice yield on an Ultisol at Abakaliki, Southeastern Nigeria. World J. Agric. Sci. 2011, 7, 13–18. [Google Scholar]
- Mohanty, A.; Mishra, K.N.; Roul, P.K.; Dash, S.N.; Panigrahi, K.K. Effects of conservation agriculture production system (CAPS) on soil organic carbon, base exchange characteristics and nutrient distribution in a tropical rainfed agro-ecosystem. Int. J. Plant Anim. Environ. Sci. 2015, 5, 310–314. [Google Scholar]
- Haruna, S.I.; Nkongolo, N.V. Tillage, Cover Crop and Crop Rotation Effects on Selected Soil Chemical Properties. Sustainability 2019, 11, 2770. [Google Scholar] [CrossRef] [Green Version]
- Loke, P.F.; Kotzé, E.; Du Preez, C.C. Long-term effects of wheat production management practices on exchangeable base cations and cation exchange capacity of a Plinthosol in semi-arid South Africa. Commun. Soil Sci. Plan 2014, 45, 1083–1105. [Google Scholar] [CrossRef]
- Yadav, A.S.; Arora, S. Crop residue management in diverse agro-ecosystems for improving soil health—An overview. J. Soil Water Conserv. 2018, 17, 387–392. [Google Scholar] [CrossRef]
Parameters | Units | Values |
---|---|---|
Sand | % | 60.0 |
Silt | % | 18.0 |
Clay | % | 22.0 |
Texture | - | Sandy clay loam |
pH (H2O) | - | 6.98 |
Soil organic carbon (SOC) | g kg−1 | 11.5 |
Electrical conductivity | mS m−1 | 62 |
EC | pH | Total N | TON | NH4+-N | NO3−-N | Available P | CEC | Ca | Mg | K | Na | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Till. | 0.080 | 0.330 | <0.0001 | <0.0001 | 0.132 | 0.054 | 0.399 | 0.191 | 0.366 | 0.029 | 0.088 | 0.008 |
Rot. | 0.371 | 0.112 | 0.945 | 0.980 | 0.004 | 0.033 | 0.886 | 0.340 | 0.111 | 0.317 | 0.300 | 0.147 |
Res. man. | 0.490 | 0.901 | 0.273 | 0.371 | <0.0001 | <0.0001 | 0.008 | <0.0001 | 0.0004 | 0.0002 | 0.018 | 0.325 |
Till. × Rot. | 0.155 | 0.531 | 0.227 | 0.227 | 0.790 | 0.686 | 0.567 | 0.301 | 0.595 | 0.751 | 0.221 | 0.092 |
Till. × Res. Man. | 0.652 | 0.301 | 0.824 | 0.824 | 0.047 | 0.911 | 0.625 | 0.752 | 0.748 | 0.466 | 0.042 | 0.549 |
Rot. × Res. Man. | 0.611 | 0.391 | 0.703 | 0.713 | 0.331 | 0.277 | 0.406 | 0.816 | 0.923 | 0.373 | 0.505 | 0.463 |
Till. × Rot. × Res. Man | 0.702 | 0.901 | 0.541 | 0.540 | 0.680 | 0.526 | 0.216 | 0.6785 | 0.903 | 0.933 | 0.209 | 0.413 |
Treatment | pH | EC (µS cm−1) | Total N (mg kg−1) | TON (mg kg−1) | NH4+-N (mg kg−1) | NO3−-N (mg kg−1) | Available P (mg kg−1) |
---|---|---|---|---|---|---|---|
Tillage | |||||||
NT | 6.46 a | 167.79 a | 1064.56 a | 1037.25 a | 12.29 a | 15.01 a | 66.48 a |
CT | 6.53 a | 143.81 a | 918.89 b | 892.56 b | 12.08 a | 14.24 a | 65.12 a |
NS | NS | p < 0.001 | p < 0.001 | NS | NS | NS | |
Rotation | |||||||
SVS | 6.44 a | 161.72 a | 992.61 a | 965.16 a | 12.39 a | 15.05 a | 65.92 a |
SFS | 6.55 a | 149.87 a | 990.83 a | 964.65 a | 11.98 b | 14.20 b | 65.69 a |
NS | NS | NS | NS | p < 0.01 | p < 0.05 | NS | |
Crop residue management | |||||||
0% | 6.50 a | 147.53 a | 972.33 a | 948.23 a | 11.14 c | 12.96 b | 63.03 b |
15% | 6.51 a | 153.30 a | 982.83 a | 956.94 a | 12.08 b | 13.80 b | 64.84 b |
30% | 6.47 a | 166.56 a | 1020.00 a | 989.55 a | 13.34 a | 17.10 a | 69.53 a |
NS | NS | NS | NS | p < 0.001 | p < 0.001 | p < 0.01 | |
Tillage × crop residue interaction | |||||||
NT–30% | 6.39 a | 153.12 a | 1053.70 a | 1022.80 a | 13.47 a | 17.43 a | 70.38 a |
CT–30% | 6.50 a | 141.95 a | 936.83 a | 906.84 a | 13.21 a | 16.78 a | 68.68 a |
NT–15% | 6.48 a | 163.55 a | 1036.83 a | 1010.32 a | 12.38 b | 14.13 a | 66.38 a |
CT–15% | 6.47 a | 143.05 a | 911.83 a | 886.57 a | 11.78 bc | 13.48 a | 63.30 a |
CT–0% | 6.61 a | 146.42 a | 908.00 a | 884.27 a | 11.26 cd | 12.47 a | 63.38 a |
NT–0% | 6.51 a | 186.70 a | 1031.67 a | 1007.19 a | 11.02 d | 13.46 a | 62.69 a |
NS | NS | NS | NS | p < 0.05 | NS | NS |
Treatment | CEC (cmol (+) kg−1) | Ca (cmol (+) kg−1) | Mg (cmol (+) kg−1) | K (cmol (+) kg−1) | Na (cmol (+) kg−1) |
---|---|---|---|---|---|
Tillage | |||||
NT | 13.36 a | 7.12 a | 2.91 a | 0.34 a | 0.29 a |
CT | 12.91 a | 7.08 a | 2.82 b | 0.31 a | 0.20 b |
NS | NS | p < 0.05 | NS | p < 0.01 | |
Rotation | |||||
SVS | 13.30 a | 7.13 a | 2.85 a | 0.32 a | 0.22 a |
SFS | 12.97 a | 7.06 a | 2.88 a | 0.33 a | 0.27 a |
NS | NS | NS | NS | NS | |
Crop residue management | |||||
0% | 11.53 c | 6.98 c | 2.78 b | 0.30 b | 0.28 a |
15% | 13.19 b | 7.08 b | 2.81 b | 0.33 b | 0.23 a |
30% | 14.68 a | 7.23 a | 3.01 a | 0.35 a | 0.23 a |
p < 0.001 | p < 0.001 | p < 0.01 | p < 0.05 | NS | |
Tillage × crop residue interaction | |||||
NT–30% | 15.06 a | 7.27 a | 3.08 a | 0.38 a | 0.26 a |
CT–15% | 13.13 a | 7.07 a | 2.77 a | 0.33 ab | 0.19 a |
NT–15% | 13.26 a | 7.10 a | 2.85 a | 0.32 ab | 0.26 a |
CT–30% | 14.31 a | 7.18 a | 2.93 a | 0.31 ab | 0.20 a |
NT–0% | 11.76 a | 6.98 a | 2.80 a | 0.30 b | 0.35 a |
CT–0% | 11.30 a | 6.97 a | 2.77 a | 0.29 b | 0.21 a |
NS | NS | NS | p < 0.05 | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malobane, M.E.; Nciizah, A.D.; Mudau, F.N.; Wakindiki, I.I.C. Tillage, Crop Rotation and Crop Residue Management Effects on Nutrient Availability in a Sweet Sorghum-Based Cropping System in Marginal Soils of South Africa. Agronomy 2020, 10, 776. https://doi.org/10.3390/agronomy10060776
Malobane ME, Nciizah AD, Mudau FN, Wakindiki IIC. Tillage, Crop Rotation and Crop Residue Management Effects on Nutrient Availability in a Sweet Sorghum-Based Cropping System in Marginal Soils of South Africa. Agronomy. 2020; 10(6):776. https://doi.org/10.3390/agronomy10060776
Chicago/Turabian StyleMalobane, Mashapa E., Adornis D. Nciizah, Fhatuwani N. Mudau, and Isaiah I.C Wakindiki. 2020. "Tillage, Crop Rotation and Crop Residue Management Effects on Nutrient Availability in a Sweet Sorghum-Based Cropping System in Marginal Soils of South Africa" Agronomy 10, no. 6: 776. https://doi.org/10.3390/agronomy10060776
APA StyleMalobane, M. E., Nciizah, A. D., Mudau, F. N., & Wakindiki, I. I. C. (2020). Tillage, Crop Rotation and Crop Residue Management Effects on Nutrient Availability in a Sweet Sorghum-Based Cropping System in Marginal Soils of South Africa. Agronomy, 10(6), 776. https://doi.org/10.3390/agronomy10060776