Spatial and Temporal Distribution of Cattle Dung and Nutrient Cycling in Integrated Crop–Livestock Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization and History of the Experimental Area
2.2. Experimental Design, Treatments and Performance of the Experiment
2.3. Sampling and Chemical Analyses
2.4. Spatial and Temporal Distribution of the Cattle Dung
2.5. Geostatistics Analysis
2.6. Statistical Analysis
3. Results
3.1. Residual Shoot Biomass and Animal Production
3.2. Distribution of Cattle Dung
3.3. Initial Dry Matter of the Cattle Dung and its Quality
3.4. Dry Matter Decomposition of the Cattle Dung Residues and Nutrient Release
4. Discussion
4.1. Pasture and Animal Production
4.2. Distribution of Cattle Dung
4.3. Dry matter Decomposition and Nutrient Release of Cattle Dung Residues
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 2018, 362, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, G.; Dupraz, C.; Watté, J. Can Silvoarable Systems Maintain Yield, Resilience, and Diversity in the Face of Changing Environments? In Agroecosystem Diversity; Elsevier: Amsterdam, The Netherlands, 2019; pp. 145–168. ISBN 978-0-12-811050-8. [Google Scholar]
- De Faccio Carvalho, P.C.; Anghinoni, I.; de Moraes, A.; de Souza, E.D.; Sulc, R.M.; Lang, C.R.; Flores, J.P.C.; Terra Lopes, M.L.; da Silva, J.L.S.; Conte, O.; et al. Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems. Nutr. Cycl. Agroecosyst. 2010, 88, 259–273. [Google Scholar] [CrossRef]
- Neely, C.; Fynn, A. Critical Choices for Crop and Livestock Production Systems That Enhance Productivity and Build Ecosystem Resilience; SOLAW Background Thematic Report–TR11; FAO: Rome, Italy, 2012; p. 38. [Google Scholar]
- Bélanger, J.; Pilling, D. The State of the World’s Biodiversity for Food and Agriculture; Commission on Genetic Resources for Food and Agriculture: Rome, Italy; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; ISBN 978-92-5-131270-4. [Google Scholar]
- De Notaro, K.A.; de Medeiros, E.V.; Duda, G.P.; Silva, A.O.; de Moura, P.M. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude. Sci. Agric. 2014, 71, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Cavagnaro, J.B.; Trione, S.O. Physiological, morphological and biochemical responses to shade of Trichloris crinita, a forage grass from the arid zone of Argentina. J. Arid Environ. 2007, 68, 337–347. [Google Scholar] [CrossRef]
- Da Pontes, L.S.; Giostri, A.F.; Baldissera, T.C.; Barro, R.S.; Stafin, G.; Porfírio-da-Silva, V.; Moletta, J.L.; César de Faccio Carvalho, P. Interactive Effects of Trees and Nitrogen Supply on the Agronomic Characteristics of Warm-Climate Grasses. Agron. J. 2016, 108, 1531–1541. [Google Scholar] [CrossRef]
- Guo, L.B.; Sims, R.E.H. Effects of light, temperature, water and meatworks effluent irrigation on eucalypt leaf litter decomposition under controlled environmental conditions. Appl. Soil Ecol. 2001, 17, 229–237. [Google Scholar] [CrossRef]
- Quinkenstein, A.; Wöllecke, J.; Böhm, C.; Grünewald, H.; Freese, D.; Schneider, B.U.; Hüttl, R.F. Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ. Sci. Policy 2009, 12, 1112–1121. [Google Scholar] [CrossRef]
- Assmann, J.M.; Martins, A.P.; Anghinoni, I.; de Oliveira Denardin, L.G.; de Holanda Nichel, G.; de Andrade Costa, S.E.V.G.; Pereira e Silva, R.A.; Balerini, F.; de Faccio Carvalho, P.C.; Franzluebbers, A.J. Phosphorus and potassium cycling in a long-term no-till integrated soybean-beef cattle production system under different grazing intensities insubtropics. Nutr. Cycl. Agroecosyst. 2017, 108, 21–33. [Google Scholar] [CrossRef]
- Braz, S.P.; do Nascimento Junior, D.; Cantarutti, R.B.; Regazzi, A.J.; Martins, C.E.; da Fonseca, D.M. Disponibilização dos Nutrientes das Fezes de Bovinos em Pastejo para a Forragem. Rev. Bras. Zootec. 2002, 31, 1614–1623. [Google Scholar] [CrossRef] [Green Version]
- Dubeux, J.C.B.; Sollenberger, L.E.; Vendramini, J.M.B.; Interrante, S.M.; Lira, M.A. Stocking Method, Animal Behavior, and Soil Nutrient Redistribution: How are They Linked? Crop Sci. 2014, 54, 2341–2350. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Cecato, U.; Fukumoto, N.M.; Galbeiro, S.; dos Santos, G.T.; Barbero, L.M. Concentrações e quantidades de macronutrientes na excreção de animais em pastagem de capim-mombaça fertilizada com fontes de fósforo. Rev. Bras. Zootec. 2008, 37, 990–997. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, V.B.; da Silva, A.P.; de Dias, B.O.; Araujo, J.L.; Santos, D.; Franco, R.P. Decomposição e liberação de N, P e K de esterco bovino e de cama de frango isolados ou misturados. Rev. Bras. Ciência Solo 2014, 38, 1537–1546. [Google Scholar] [CrossRef] [Green Version]
- Souto, P.C.; Souto, J.S.; Santos, R.V.; Araújo, G.T.; Souto, L.S. Decomposição de estercos dispostos em diferentes profundidades em área degradada no semi-árido da Paraíba. Rev. Bras. Ciência Solo 2005, 29, 125–130. [Google Scholar] [CrossRef]
- Sun, Y.; He, X.Z.; Hou, F.; Wang, Z.; Chang, S. Grazing Elevates Litter Decomposition But Slows Nitrogen Release in an Alpine Meadow. Biogeosci. Discuss 2018. under review. [Google Scholar] [CrossRef] [Green Version]
- Vendramini, J.M.B.; Silveira, M.L.A.; Dubeux, J.C.B., Jr.; Sollenberger, L.E. Environmental impacts and nutrient recycling on pastures grazed by cattle. Rev. Bras. Zootec. 2007, 36, 139–149. [Google Scholar] [CrossRef]
- Ferreira, L. The effect of different shading availabilities dispersion of feces of cattle in the pastures. Rev. Bras. Agroecol. 2011, 6, 137–146. [Google Scholar]
- White, S.L.; Sheffield, R.E.; Washburn, S.P.; King, L.D.; Green, J.T. Spatial and Time Distribution of Dairy Cattle Excreta in an Intensive Pasture System. J. Environ. Qual. 2001, 30, 2180–2187. [Google Scholar] [CrossRef]
- Da Silva, F.D.; Amado, T.J.C.; Bredemeier, C.; Bremm, C.; Anghinoni, I.; de Faccio Carvalho, P.C. Pasture grazing intensity and presence or absence of cattle dung input and its relationships to soybean nutrition and yield in integrated crop–livestock systems under no-till. Eur. J. Agron. 2014, 57, 84–91. [Google Scholar] [CrossRef]
- Carnevalli, R.A.; de Mello, A.C.T.; Shozo, L.; Crestani, S.; Coletti, A.J.; Eckstein, C. Spatial distribution of dairy heifers’ dung in silvopastoral systems. Ciência Rural 2019, 49, 1–9. [Google Scholar] [CrossRef]
- Giro, A.; Pezzopane, J.R.M.; Barioni Junior, W.; de Pedroso, A.F.; Lemes, A.P.; Botta, D.; Romanello, N.; do Barreto, A.N.; Garcia, A.R. Behavior and body surface temperature of beef cattle in integrated crop-livestock systems with or without tree shading. Sci. Total Environ. 2019, 684, 587–596. [Google Scholar] [CrossRef]
- USDA. United States Department of Agriculture Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; USDA: Washington, DC, USA, 1999.
- Carpinelli, S.; da Fonseca, A.F.; Assmann, T.S.; da Pontes, L.S. Effects of trees and nitrogen supply on macronutrient cycling in integrated crop–livestock systems. Agron. J. 2020, 112, 1377–1390. [Google Scholar] [CrossRef]
- Porfírio-da-Silva, V.; de Moraes, A.; Moletta, J.L.; da Pontes, L.S.; de Oliveira, E.B.; Pelissari, A.; de Carvalho, P.C.F. Danos causados por bovinos em diferentes espécies arbóreas recomendadas para sistemas silvipastoris. Pesqui. Florest. Bras. 2012, 32, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Mott, G.O.; Lucas, H.L. The design, conduct and interpretation of grazing trials on cultivated and improved pastures. In Proceedings of the Sixth International Grassland Congress, State College, PA, USA, 17–23 August 1952; Volume 6, pp. 1380–1395. [Google Scholar]
- Da Pontes, L.S.; Barro, R.S.; Savian, J.V.; Berndt, A.; Moletta, J.L.; Porfírio-da-Silva, V.; Bayer, C.; de Faccio Carvalho, P.C. Performance and methane emissions by beef heifer grazing in temperate pastures and in integrated crop-livestock systems: The effect of shade and nitrogen fertilization. Agric. Ecosyst. Environ. 2018, 253, 90–97. [Google Scholar] [CrossRef]
- Abreu, M.F.; Silva, F.C.; Coscione, A.R.; Andrade, C.A.; Andrade, J.C.; Santos, G.C.G.; Abreu Junior, C.H.; Gomes, T.F. Análise Química de Fertilizantes Orgânicos (urbanos). In Manual de Análises Químicas de Solos; Da Silva, F.C., Ed.; Plantas e Fertilizantes: Brasília, Brazil, 2009; ISBN 978-85-7383-430-7. [Google Scholar]
- Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Auerswald, K.; Mayer, F.; Schnyder, H. Coupling of spatial and temporal pattern of cattle excreta patches on a low intensity pasture. Nutr. Cycl. Agroecosyst. 2010, 88, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Fanchi, J. Integrated Reservoir Asset Management: Principles and Best Practices, 1st ed.; Gulf Professional Publishing: Houston, TX, USA, 2010; ISBN 0-12-382089-8. [Google Scholar]
- Beltrame, R.A.; Lopes, J.C.; de Lima, J.S.S.; Quinto, V.M. Spatial distribution of physiological quality of Joannesia princeps Vell. SEEDS1. Rev. Árvore 2018, 41. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Lopes, M.L.T.; de Carvalho, P.C.F.; Anghinoni, I.; dos Santos, D.T.; Kuss, F.; de Freitas, F.K.; Flores, J.P.C. Sistema de integração lavoura-pecuária: Desempenho e qualidade da carcaça de novilhos superprecoces terminados em pastagem de aveia e azevém manejada sob diferentes alturas. Ciência Rural 2008, 38, 178–184. [Google Scholar] [CrossRef]
- Carvalho, P.C.D.F. Harry Stobbs Memorial Lecture: Can grazing behavior support innovations in grassland management? Trop. Grassl. Forrajes Trop. 2013, 1, 137. [Google Scholar] [CrossRef]
- Da Pontes, L.S.; Carpinelli, S.; Stafin, G.; Porfírio-da-Silva, V.; dos Santos, B.R.C. Relationship between sward height and herbage mass for integrated crop-livestock systems with trees. Grassl. Sci. 2017, 63, 29–35. [Google Scholar] [CrossRef]
- Pang, K.; Van Sambeek, J.W.; Navarrete-Tindall, N.E.; Lin, C.-H.; Jose, S.; Garrett, H.E. Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. I. Forage yield and its species-level plasticity. Agrofor. Syst. 2019, 93, 11–24. [Google Scholar] [CrossRef]
- Da Pontes, L.S.; Stafin, G.; Moletta, J.L.; Porfírio-da-Silva, V. Performance of Purunã beef heifers and pasture productivity in a long-term integrated crop-livestock system: The effect of trees and nitrogen fertilization. Agrofor. Syst. 2020. [Google Scholar] [CrossRef]
- Haynes, R.J.; Williams, P.H. Nutrient Cycling and Soil Fertility in the Grazed Pasture Ecosystem. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1993; Volume 49, pp. 119–199. ISBN 978-0-12-000749-3. [Google Scholar]
- Braz, S.P.; do Nascimento Júnior, D.; Cantarutti, R.B.; Martins, C.E.; da Fonseca, D.M.; Barbosa, R.A. Caracterização da distribuição espacial das fezes por bovinos em uma pastagem de Brachiaria decumbens. Rev. Bras. Zootec. 2003, 32, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Braz, S.P.; do Nascimento Junior, D.; Cantarutti, R.B.; Regazzi, A.J.; Martins, C.E.; da Fonseca, D.M.; Barbosa, R.A. Aspectos quantitativos do processo de reciclagem de nutrientes pelas fezes de bovinos sob pastejo em pastagem de Brachiaria decumbens na Zona da Mata de Minas Gerais. Rev. Bras. Zootec. 2002, 31, 858–865. [Google Scholar] [CrossRef]
- Bailey, D.W.; Welling, G.R.; Miller, E.T. Cattle use of foothills rangeland near dehydrated molasses supplement. JRM 2006, 54, 338–347. [Google Scholar] [CrossRef]
- Eghball, B.; Wienhold, B.J.; Gilley, J.E.; Eigenberg, R.A. Mineralization of manure nutrients. J. Soil Water Conserv. 2002, 57, 470–473. [Google Scholar]
- Semmartin, M.; Garibaldi, L.A.; Chaneton, E.J. Grazing history effects on above- and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant Soil 2008, 303, 177–189. [Google Scholar] [CrossRef]
- Assmann, J.M.; Anghinoni, I.; Martins, A.P.; de Costa, S.E.V.G.A.; Kunrath, T.R.; Bayer, C.; de Carvalho, P.C.F.; Franzluebbers, A.J. Carbon and nitrogen cycling in an integrated soybean-beef cattle production system under different grazing intensities. Pesqui. Agropecuária Bras. 2015, 50, 967–978. [Google Scholar] [CrossRef] [Green Version]
- Esse, P.C.; Buerkert, A.; Hiernaux, P.; Assa, A. Decomposition of and nutrient release from ruminant manure on acid sandy soils in the Sahelian zone of Niger, West Africa. Agric. Ecosyst. Environ. 2001, 83, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Mathews, B.W.; Sollenberger, L.E.; Nkedi-Kizza, P.; Gaston, L.A.; Hornsby, H.D. Soil Sampling Procedures for Monitoring Potassium Distribution in Grazed Pastures. Agron. J. 1994, 86, 121–126. [Google Scholar] [CrossRef]
- Department of Soil Science and Agricultural Chemistry, College of Cgriculture, PJTSAU; Venugopal, G. Release Pattern of Available Sulphur and Sulphur Fractions Influenced by Elemental Sulphur and Poultry Manure in Different Soils of Norther Telangana. Int. J. Pure Appl. Biosci. 2017, 5, 1606–1610. [Google Scholar] [CrossRef]
- Whitehead, D.C. Nutrient Elements in Grassland: Soil-Plant-Animal Relationships; Cabi: Wallingford, UK, 2000; ISBN 0-85199-938-7. [Google Scholar]
- Bernardon, A.; Assmann, T.S.; Brugnara Soares, A.; Franzluebbers, A.; Maccari, M.; de Bortolli, M.A. Carryover of N-fertilization from corn to pasture in an integrated crop-livestock system. Arch. Agron. Soil Sci. 2020, 1–16. [Google Scholar] [CrossRef]
Months | Temperature (°C) | Total Rainfall (mm) | ||
---|---|---|---|---|
2018 | HM (1998–2018) | 2018 | HM (1998–2018) | |
January | 17.1–26.1 | 17.5–27.3 | 337.4 | 164.1 |
February | 15.5–26.0 | 17.4–27.6 | 97.8 | 162.1 |
March | 17.6–27.8 | 16.7–27.1 | 184.2 | 123.1 |
April | 14.5–26.6 | 14.7–25.3 | 18.2 | 92.2 |
May | 11.6–22.8 | 11.0–20.9 | 37.0 | 93.7 |
June | 9.7–19.4 | 9.9–20.3 | 109.6 | 105.0 |
July | 9.6–22.1 | 9.2–20.1 | 11.0 | 98.6 |
August | 8.8–20.1 | 10.0–22.0 | 43.6 | 74.4 |
September | 12.5–23.5 | 12.0–23.3 | 43.4 | 128.1 |
October | 14.1–23.4 | 14.2–24.9 | 238.6 | 172.1 |
November | 14.9–26.4 | 15.2–26.1 | 26.8 | 123.1 |
December | 16.5–29.7 | 16.6–27.3 | 162.4 | 150.1 |
CL | CLT | P | |
---|---|---|---|
Stocking rate, SR (kg ha−1) | 720 ± 267 | 393 ± 180 | 0.052 |
Average daily gain, ADG (kg day−1) | 0.8 ± 0.3 | 0.5 ± 0.7 | 0.018 |
Gha (kg ha−1) | 228 ± 23 | 109 ± 15 | 0.042 |
Herbage mass (kg ha−1) | 988 ± 429 | 408 ± 303 | 0.002 |
Herbage accumulation rate (kg ha−1) | 26 ± 13 | 24 ± 10 | 0.376 |
Sward height (cm) | 23 ± 3 | 14 ± 4 | 0.007 |
Systems | Sampling (Days−1) | Total | Means | |||||
---|---|---|---|---|---|---|---|---|
1 | 20 | 40 | 60 | 80 | 104 | |||
CL | ||||||||
Animals per ha | 4 | 4 | 3 | 2 | 2 | 4 | 3 | |
n | 38 | 603 | 461 | 346 | 409 | 795 | 2652 | |
n/a/d | 10 | 7 | 8 | 9 | 9 | 9.5 | 9 | |
CLT | ||||||||
Animals per ha | 3 | 3 | 2 | 1 | 1 | 1 | 2 | |
n | 30 | 643 | 565 | 177 | 195 | 200 | 1810 | |
n/a/d | 10 | 9 | 8.5 | 9 | 9 | 10 | 9 |
Systems | Sampling | Model | C0 1 | C0 + C1 2 | DSD 3 | Range (m) |
---|---|---|---|---|---|---|
CL | 1 | Gaussian | 0.0 | 50000.0 | 1.00 | 53 |
2 | Gaussian | 0.0 | 880.2 | 1.00 | 23 | |
3 | Gaussian | 15.9 | 1426.1 | 0.99 | 22 | |
4 | Gaussian | 12.8 | 5729.8 | 0.99 | 51 | |
5 | Gaussian | 60.7 | 2429.5 | 0.98 | 55 | |
6 | Gaussian | 20.0 | 338.3 | 0.94 | 25 | |
CLT | 1 | Gaussian | 0.0 | 50000.0 | 1.00 | 84 |
2 | Exponential | 0.0 | 285.4 | 1.00 | 12 | |
3 | Gaussian | 91.4 | 583.4 | 0.84 | 35 | |
4 | Gaussian | 272.6 | 4273.3 | 0.94 | 16 | |
5 | Gaussian | 191.3 | 1498.1 | 0.87 | 16 | |
6 | Exponential | 0.0 | 1376.9 | 1.00 | 17 |
Source of Variation | DM Cattle Dung (g) | ||||||
---|---|---|---|---|---|---|---|
System | 1 day | 7 days | 14 days | 21 days | 28 days | 56 days | 84 days |
CL | 177 ± 84 | 153 ± 26 | 142 ± 22 | 133 ± 29 | 131 ± 34 | 124 ± 37 | 117 ± 30 |
CLT | 161 ± 81 | 143 ± 28 | 141 ± 35 | 132 ± 33 | 127 ± 36 | 127 ± 39 | 118 ± 34 |
W 1 | 0.93 | 0.86 | 0.86 | 0.89 | 0.85 | 0.67 | 0.92 |
P 2 | 0.014 | 0.003 | 0.004 | 0.012 | 0.002 | 4.088 | 0.056 |
Nitrogen (g kg−1) | |||||||
System | 1 day | 7 days | 14 days | 21 days | 28 days | 56 days | 84 days |
CL | 19 ± 6 | 17 ± 6 | 17 ± 3 | 17 ± 2 | 14 ± 6 | 13 ± 3 | 10 ± 3 |
CLT | 19 ± 5 | 18 ± 5 | 18 ± 6 | 15 ± 6 | 15 ± 4 | 13 ± 3 | 10 ± 4 |
W 1 | 0.86 | 0.89 | 0.97 | 0.86 | 0.89 | 0.96 | 0.89 |
P 2 | 0.052 | 0.128 | 0.853 | 0.051 | 0.133 | 0.733 | 0.101 |
Phosphorus (g kg−1) | |||||||
System | 1 day | 7 days | 14 days | 21 days | 28 days | 56 days | 84 days |
CL | 9 ± 1 | 9 ± 0.3 | 8 ± 1 | 8 ± 0.4 | 8 ± 0.3 | 7 ± 1 | 7 ± 0.4 |
CLT | 9 ± 1 | 9 ± 0.4 | 8 ± 0.4 | 8 ± 1 | 8 ± 1 | 7 ± 1 | 7 ± 0.2 |
W 1 | 0.92 | 0.97 | 0.98 | 0.92 | 0.96 | 0.93 | 0.95 |
P 2 | 0.289 | 0.838 | 0.979 | 0.277 | 0.769 | 0.423 | 0.567 |
Potassium (g kg−1) | |||||||
System | 1 day | 7 days | 14 days | 21 days | 28 days | 56 days | 84 days |
CL | 15 ± 2 | 12 ± 3 | 11 ± 2 | 10 ± 2 | 9 ± 1 | 8 ± 0.3 | 7 ± 1 |
CLT | 16 ± 3 | 13 ± 3 | 11 ± 1 | 10 ± 3 | 9 ± 1 | 8 ± 0.4 | 6 ± 0.4 |
W 1 | 0.97 | 0.94 | 0.91 | 0.96 | 0.80 | 0.86 | 0.91 |
P 2 | 0.852 | 0.451 | 0.231 | 0.768 | 0.010 | 0.048 | 0.184 |
Sulphur (g kg−1) | |||||||
System | 1 day | 7 days | 14 days | 21 days | 28 days | 56 days | 84 days |
CL | 8 ± 1 | 7 ± 0.1 | 7 ± 1 | 7 ± 0.4 | 7 ± 0.57 | 7 ± 0.4 | 6 ± 1 |
CLT | 8 ± 1 | 8 ± 0.4 | 7 ± 0.3 | 7 ± 0.4 | 7 ± 0.89 | 7 ± 0.2 | 6 ± 1 |
W 1 | 0.93 | 0.93 | 0.93 | 0.98 | 0.89 | 0.96 | 0.90 |
P 2 | 0.396 | 0.365 | 0.362 | 0.966 | 0.133 | 0.736 | 0.167 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpinelli, S.; da Fonseca, A.F.; Weirich Neto, P.H.; Dias, S.H.B.; Pontes, L.d.S. Spatial and Temporal Distribution of Cattle Dung and Nutrient Cycling in Integrated Crop–Livestock Systems. Agronomy 2020, 10, 672. https://doi.org/10.3390/agronomy10050672
Carpinelli S, da Fonseca AF, Weirich Neto PH, Dias SHB, Pontes LdS. Spatial and Temporal Distribution of Cattle Dung and Nutrient Cycling in Integrated Crop–Livestock Systems. Agronomy. 2020; 10(5):672. https://doi.org/10.3390/agronomy10050672
Chicago/Turabian StyleCarpinelli, Sandoval, Adriel Ferreira da Fonseca, Pedro Henrique Weirich Neto, Santos Henrique Brant Dias, and Laíse da Silveira Pontes. 2020. "Spatial and Temporal Distribution of Cattle Dung and Nutrient Cycling in Integrated Crop–Livestock Systems" Agronomy 10, no. 5: 672. https://doi.org/10.3390/agronomy10050672
APA StyleCarpinelli, S., da Fonseca, A. F., Weirich Neto, P. H., Dias, S. H. B., & Pontes, L. d. S. (2020). Spatial and Temporal Distribution of Cattle Dung and Nutrient Cycling in Integrated Crop–Livestock Systems. Agronomy, 10(5), 672. https://doi.org/10.3390/agronomy10050672