The Effect of Species and Cultivation Year on Phenolic Acids Content in Ancient Wheat
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Adom, K.K.; Sorrells, M.E.; Rui, H.L. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem. 2005, 53, 2297–2306. [Google Scholar] [CrossRef]
- Vitaglione, P.; Napolitano, A.; Fogliano, V. Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci. Technol. 2008, 19, 451–463. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Longin, C.F.H.; Würschum, T. Back to the Future—Tapping into Ancient Grains for Food Diversity. Trends Plant Sci. 2016, 21, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Winnicki, T.; Żuk-Gołaszewska, K. Agronomic and economic characteristics of common wheat and spelt production in an organic farming system. Acta Sci. Pol. Agric. 2017, 16, 247–254. [Google Scholar]
- Kyptova, M.; Konvalina, P.; Khoa, T.D. Technological and sensory quality of grain and baking products from spelt wheat. Res. Rural Dev. 2017, 2, 46–53. [Google Scholar]
- Shewry, P.R.; Hey, S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 65, 236–243. [Google Scholar] [CrossRef]
- Longin, C.F.H.; Ziegler, J.; Schweiggert, R.; Koehler, P.; Carle, R.; Würschum, T. Comparative Study of Hulled (Einkorn, Emmer, and Spelt) and Naked Wheats (Durum and Bread Wheat): Agronomic Performance and Quality Traits. Crop Sci. 2016, 56, 302–311. [Google Scholar] [CrossRef]
- Góral, T.; Ochodzki, P. Fusarium head blight resistance and mycotoxin profiles of four Triticum species genotypes. Phytopathol. Mediterr. 2017, 56, 175–186. [Google Scholar]
- Bencze, S.; Makádi, M.; Aranyos, T.J.; Földi, M.; Hertelendy, P.; Mikó, P.; Bosi, S.; Negri, L.; Drexler, D. Re-Introduction of Ancient Wheat Cultivars into Organic Agriculture—Emmer and Einkorn Cultivation Experiences under Marginal Conditions. Sustainability 2020, 12, 1584. [Google Scholar] [CrossRef]
- Aslan, D.; Aktaş, H.; Ordu, B.; Zencirci, N. Evaluation of bread and einkorn wheat under in vitro drought stress. J. Anim. Plant Sci. 2017, 27, 1974–1983. [Google Scholar]
- Sugár, E.; Fodor, N.; Sándor, R.; Bónis, P.; Vida, G.; Árendás, T. Spelt Wheat: An Alternative for Sustainable Plant Production at Low N-Levels. Sustainability 2019, 11, 6726. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef] [PubMed]
- Leváková, L.; Lacko-Bartošová, M. Phenolic acids and antioxidant activity of wheat species: A review. Agriculture 2017, 63, 92–101. [Google Scholar] [CrossRef]
- Dinu, M.; Whittaker, A.; Pagliai, G.; Benedettelli, S.; Sofi, F. Ancient wheat species and human health: Biochemical and clinical implications. J. Nutr. Biochem. 2018, 52, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.; Pihlava, J.M.; Hellström, J. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 2005, 53, 8290–8295. [Google Scholar] [CrossRef] [PubMed]
- Dicko, M.H.; Gruppen, H.; Barro, C.; Traore, A.S.; van Berkel, W.J.H.; Voragen, A.G.J. Impact of Phenolic Compounds and Related Enzymes in Sorghum Varieties for Resistance and Susceptibility to Biotic and Abiotic Stresses. J. Chem. Ecol. 2005, 31, 2671–2688. [Google Scholar] [CrossRef]
- Verma, B.; Hucl, P.; Chibbar, R.N. Phenolic Content and Antioxidant Properties of Bran in 51 Wheat Cultivars. Cereal Chem. 2008, 85, 544–549. [Google Scholar] [CrossRef]
- Sevgi, K.; Tepe, B.; Sarikurkcu, C. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem. Toxicol. 2015, 77, 12–21. [Google Scholar] [CrossRef]
- Laddomada, B.; Durante, M.; Minervini, F.; Garbetta, A.; Cardinali, A.; D’Antuono, I.; Caretto, S.; Blanco, A.; Mita, G. Phytochemical Composition and Anti-Inflammatory Activity of Extracts from the Whole-Meal Flour of Italian Durum Wheat Cultivars. Int. J. Mol. Sci. 2015, 16, 3512–3527. [Google Scholar] [CrossRef]
- Sánchez-Maldonado, A.F.; Schieber, A.; Gänzle, M.G. Structure–function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J. Appl. Microbiol. 2011, 111, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- McRae, M.P. Health Benefits of Dietary Whole Grains: An Umbrella Review of Meta-analyses. J. Chiropr. Med. 2017, 16, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Călinoiu, L.F.; Vodnar, D.C. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [PubMed]
- Brandolini, A.; Castoldi, P.; Plizzari, L.; Hidalgo, A. Phenolic acids composition, total polyphenols content and antioxidant activity of Triticum monococcum, Triticum turgidum and Triticum aestivum: A two-years evaluation. J. Cereal Sci. 2013, 58, 123–131. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Dimberg, L.; Åman, P.; Landberg, R. Recent findings on certain bioactive components in whole grain wheat and rye. J. Cereal Sci. 2014, 59, 294–311. [Google Scholar] [CrossRef]
- Li, Y.; Ma, D.; Sun, D.; Wang, C.; Zhang, J.; Xie, Y.; Guo, T. Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. Crop J. 2015, 3, 328–334. [Google Scholar] [CrossRef]
- Lachman, J.; Miholová, D.; Pivec, V.; Jírů, K.; Janovská, D. Content of phenolic antioxidants and selenium in grainof einkorn (Triticum monococcum), emmer (Triticum dicoccum) and spring wheat (Triticum aestivum) varieties. Plant Soil Environ. 2011, 57, 235–243. [Google Scholar] [CrossRef]
- Benincasa, P.; Galieni, A.; Manetta, A.C.; Pace, R.; Guiducci, M.; Pisante, M.; Stagnari, F. Phenolic compounds in grains, sprouts and wheatgrass of hulled and non-hulled wheat species. J. Sci. Food Agric. 2015, 95, 1795–1803. [Google Scholar] [CrossRef]
- Engert, N.; Honermeier, B. Characterization of grain quality and phenolic acids in ancient wheat species (Triticum sp.). J. Appl. Bot. Food Qual. 2011, 84, 33–39. [Google Scholar]
- Rempelos, L.; Almuayrifi, A.M.; Baranski, M.; Tetard-Jones, C.; Eyre, M.; Shotton, P.; Cakmak, I.; Ozturk, L.; Cooper, J.M.; Volakakis, N.; et al. Effects of agronomic management and climate on leaf phenolic profiles, disease severity and grain yield in organic and conventional wheat production systems. J. Agric. Food Chem. 2018, 66, 10369–10379. [Google Scholar] [CrossRef]
- Lee, K.S.; Choe, Y.C.; Park, S.H. Measuring the environmental effects of organic farming: A meta-analysis of structural variables in empirical research. J. Environ. Manag. 2015, 162, 263–274. [Google Scholar] [CrossRef]
- Li, L.; Shewry, P.R.; Ward, J.L. Phenolic acids in wheat varieties in the healthgrain diversity screen. J. Agric. Food Chem. 2008, 56, 9732–9739. [Google Scholar] [CrossRef]
- Lacko-Bartošová, M.; (Slovak University of Agriculture in Nitra, Nitra, Slovakia). Personal communication, 2018.
- Wang, L.; Yao, Y.; He, Z.; Wang, D.; Liu, A.; Zhang, Y. Determination of phenolic acid concentrations in wheat flours produced at different extraction rates. J. Cereal Sci. 2013, 57, 67–72. [Google Scholar] [CrossRef]
- Lopes, M.S.; El-Basyoni, I.; Baenziger, P.S.; Singh, S.; Royo, C.; Ozbek, K.; Aktas, H.; Ozer, E.; Ozdemir, F.; Manickavelu, A.; et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J. Exp. Bot. 2015, 66, 3477–3486. [Google Scholar] [CrossRef]
- Costanzo, A.; Amos, C.D.; Dinelli, G.; Sferrazza, E.R.; Accorsi, G.; Negri, L.; Bosi, S. Performance and Nutritional Properties of Einkorn, Emmer and Rivet Wheat in Response to Different Rotational Position and Soil Tillage. Sustainability 2019, 11, 6304. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Hucl, P.; Sosulski, F.W.; Graf, R.; Gillott, C.; Pietrzak, L. Screening spring wheat for midge resistance in relation to ferulic acid content. J. Agric. Food Chem. 2001, 49, 3559–3566. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Yao, Y.; Yan, J.; He, Z. Phenolic acid profiles of Chinese wheat cultivars. J. Cereal Sci. 2012, 56, 629–635. [Google Scholar] [CrossRef]
- Zrcková, M.; Capouchová, I.; Paznocht, L.; Eliášová, M.; Dvořák, P.; Konvalina, P.; Janovská, D.; Orsák, M.; Bečková, L. Variation of the total content of polyphenols and phenolic acids in einkorn, emmer, spelt and common wheat grain as a function of genotype, wheat species and crop year. Plant Soil Environ. 2019, 65, 260–266. [Google Scholar] [CrossRef]
- Kerienė, I.; Mankevičienė, A.; Bliznikas, S.; Jablonskytė-Raščė, D.; Maikštėnienė, S.; Česnulevičienė, R. Biologically active phenolic compounds in buckwheat, oats and winter spelt wheat. Zemdirbyste 2015, 102, 289–296. [Google Scholar] [CrossRef]
- Şahin, Y.; Yıldırım, A.; Yücesan, B.; Zencirci, N.; Erbayram, Ş.; Gürel, E. Phytochemical content and antioxidant activity of einkorn (Triticum monococcum ssp. monococcum), bread (Triticum aestivum L.), and durum (Triticum durum Desf.) wheat. Prog. Nutr. 2018, 19, 450–459. [Google Scholar]
- Shewry, P.R.; Piironen, V.; Lampi, A.-M.; Edelmann, M.; Kariluoto, S.; Nurmi, T.; Fernandez-Orozco, R.; Ravel, C.; Charmet, G.; Andersson, A.A.M.; et al. The HEALTHGRAIN Wheat Diversity Screen: Effects of Genotype and Environment on Phytochemicals and Dietary Fiber Components. J. Agric. Food Chem. 2010, 58, 9291–9298. [Google Scholar] [CrossRef]
- Mallick, S.A.; Gupta, M.; Mondal, S.K.; Sinha, B.K. Characterization of wheat (Triticum aestivum) genotypes on the basis of metabolic changes associated with water stress. Indian J. Agric. Sci. 2011, 81, 767–771. [Google Scholar]
- Shewry, P.R.; Hawkesford, M.J.; Piironen, V.; Lampi, A.-M.; Gebruers, K.; Boros, D.; Andersson, A.A.M.; Åman, P.; Rakszegi, M.; Bedo, Z.; et al. Natural Variation in Grain Composition of Wheat and Related Cereals. J. Agric. Food Chem. 2013, 61, 8295–8303. [Google Scholar] [CrossRef]
- González-Sarrías, A.; Espín, J.C.; Tomás-Barberán, F.A. Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends Food Sci. Technol. 2017, 69, 281–288. [Google Scholar] [CrossRef]
- Mateo Anson, N.; van den Berg, R.; Havenaar, R.; Bast, A.; Haenen, G.R.M.M. Bioavailability of ferulic acid is determined by its bioaccessibility. J. Cereal Sci. 2009, 49, 296–300. [Google Scholar] [CrossRef]
- Arzani, A.; Ashraf, M. Cultivated Ancient Wheats (Triticum spp.): A Potential Source of Health-Beneficial Food Products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef]
- Kucek, L.K.; Veenstra, L.D.; Amnuaycheewa, P.; Sorrells, M.E. A Grounded Guide to Gluten: How Modern Genotypes and Processing Impact Wheat Sensitivity. Compr. Rev. Food Sci. Food Saf. 2015, 14, 285–302. [Google Scholar] [CrossRef]
- Antognoni, F.; Mandrioli, R.; Bordoni, A.; Di Nunzio, M.; Viadel, B.; Gallego, E.; Villalba, M.P.; Tomás-Cobos, L.; Taneyo Saa, D.L.; Gianotti, A. Integrated Evaluation of the Potential Health Benefits of Einkorn-Based Breads. Nutrients 2017, 9, 1232. [Google Scholar] [CrossRef]
- Saa, D.T.; Di Silvestro, R.; Dinelli, G.; Gianotti, A. Effect of sourdough fermentation and baking process severity on dietary fibre and phenolic compounds of immature wheat flour bread. LWT Food Sci. Technol. 2017, 83, 26–32. [Google Scholar] [CrossRef]
Year | Month | t (°C) | Δt (°C) | c1 | p (mm) | n (%) | c1 |
---|---|---|---|---|---|---|---|
normal | May | 15.1 | - | - | 58 | - | - |
(1961–1990) | June | 18 | - | - | 66 | - | - |
July | 19.8 | - | - | 52 | - | - | |
2013 | May | 15.1 | 0.0 | N | 65.6 | 113.1 | N |
June | 18.5 | 0.5 | N | 54.8 | 83.0 | N | |
July | 22.2 | 2.4 | VW | 2.2 | 4.2 | ED | |
2014 | May | 15.2 | 0.1 | N | 57.6 | 99.3 | N |
June | 19.3 | 1.3 | W | 52.5 | 79.6 | N | |
July | 21.8 | 2.0 | W | 64.1 | 123.3 | N | |
2015 | May | 15.1 | 0.0 | N | 69.5 | 119.8 | N |
June | 19.9 | 1.9 | W | 10.2 | 15.5 | ED | |
July | 23.6 | 3.8 | EW | 17.2 | 33.1 | VD |
Free PAs | Bound PAs | Total PAs | |
---|---|---|---|
Triticum spelta L. | 35.24 ± 6.11 b | 564.6 ± 91.9 b | 599.8 ± 96.1 b |
Triticum dicoccon Schrank | 35.17 ± 4.69 b | 555.4 ± 96.0 b | 590.6 ± 100.4 b |
Triticum monococcum L. | 45.81 ± 4.92 a | 682.4 ± 84.1 a | 728.2 ± 85.6 a |
p wheat species | *** | *** | *** |
2013 | 36.52 ± 8.21 | 578.2 ± 106.9 | 614.7 ± 112.0 |
2014 | 37.57 ± 3.83 | 579.7 ± 78.8 | 617.2 ± 82.4 |
2015 | 34.44 ± 6.00 | 558.0 ± 108.1 | 592.4 ± 113.8 |
p year | ns | ns | ns |
p species × year | ns | *** | *** |
Ferulic Acid | p-HBA 1 | Caffeic Acid | p-Coumaric Acid | Salicylic Acid | Sinapic Acid | Syringic Acid | |
---|---|---|---|---|---|---|---|
Free phenolic acids | |||||||
Triticum spelta L. | 25.19 ± 5.87 b | 1.96 ± 0.77 a | 0.58 ± 0.27 b | 1.10 ± 0.38 c | 1.64 ± 0.54 a | 1.52 ± 0.78 c | 3.25 ± 1.37 a |
Triticum dicoccon Schrank | 25.84 ± 4.14 b | 1.54 ± 0.77 b | 0.95 ± 0.41 a | 1.66 ± 0.52 b | 0.99 ± 0.38 b | 1.96 ± 0.69 b | 2.23 ± 0.85 b |
Triticum monococcum L. | 34.03 ± 4.10 a | 1.60 ± 0.88 ab | 1.10 ± 0.63 a | 2.01 ± 0.72 a | 1.40 ± 0.73 a | 2.45± 0.30 a | 3.20 ± 1.13 a |
p wheat species | *** | ** | *** | *** | *** | *** | *** |
2013 | 27.04 ± 7.53 a | 1.21 ± 0.71 b | 0.86 ± 0.60 a | 1.43 ± 0.75 a | 1.48± 0.49 a | 1.79 ± 0.87 a | 2.71 ± 1.22 |
2014 | 26.32 ± 4.09 ab | 2.13 ± 0.59 a | 0.75 ± 0.20 ab | 1.34 ± 0.35 c | 1.45 ± 0.57 a | 2.08 ± 0.54 a | 3.50 ± 0.95 |
2015 | 25.34 ± 4.90 b | 1.98 ± 0.77 a | 0.67 ± 0.33 b | 1.39 ± 0.56 b | 1.22 ± 0.68 b | 1.42 ± 0.74 b | 2.42 ± 1.38 |
p year | * | *** | *** | *** | *** | * | ns |
p species × year | ns | *** | *** | *** | *** | ns | *** |
Bound phenolic acids | |||||||
Triticum spelta L. | 538.0 ± 90.9 b | 2.99 ± 1.42 a | 2.09 ± 0.97 | 13.54 ± 4.88 c | 1.98 ± 0.78 a | 1.67 ± 0.86 c | 4.27 ± 1.95 a |
Triticum dicoccon Schrank | 524.5 ± 96.6 b | 1.60 ± 0.77 c | 1.85 ± 0.74 | 21.26 ± 8.34 b | 1.02 ± 0.38 c | 2.55 ± 0.99 b | 2.67 ± 1.05 b |
Triticum monococcum L. | 644.7± 86.0 a | 2.17 ± 1.40 b | 2.17 ± 0.37 | 25.18 ± 9.58 a | 1.47 ± 0.55 b | 3.38 ± 0.42 a | 3.36 ± 1.17 b |
p wheat species | *** | *** | ns | *** | *** | *** | *** |
2013 | 546.5 ± 108.7 | 2.73 ± 1.74 a | 2.11 ± 1.02 | 20.13± 10.59 a | 1.93 ± 0.88 a | 2.07 ± 1.25 | 2.67 ± 1.32 c |
2014 | 549.7 ± 80.4 | 2.95 ± 0.99 a | 2.11 ± 0.73 | 16.12 ± 4.17 b | 1.45 ± 0.57 b | 2.53 ± 0.72 | 4.80 ± 1.78 a |
2015 | 532.1 ± 102.9 | 1.55 ± 0.80 b | 1.82 ± 0.79 | 15.96 ± 7.52 b | 1.37 ± 0.77 b | 1.83 ± 0.99 | 3.35 ± 1.51 b |
p year | ns | *** | ns | *** | *** | ns | *** |
p species × year | *** | *** | *** | *** | ns | * | *** |
2013 | 2014 | 2015 | |||||||
---|---|---|---|---|---|---|---|---|---|
T. spelta L. | T. dicoccon Schrank | T. mono-coccum L. | T. spelta L. | T. dicoccon Schrank | T. mono-coccum L. | T. spelta L. | T. dicoccon Schrank | T. mono-coccum L. | |
Phenolic acids sums | |||||||||
Bound PAs | 623 ± 97 a | 498 ± 88 b | 627 ± 16 a | 535 ± 42 c | 618 ± 72 b | 698 ± 84 a | 536 ± 98 b | 550 ± 91 b | 722 ± 110 a |
Total PAs | 659 ± 102 a | 532 ± 91 b | 678 ± 18 a | 571 ± 44 c | 656 ± 75 b | 742 ± 89 a | 570 ± 103 b | 584 ± 97 b | 765 ± 115 a |
Free phenolic acids | |||||||||
p-HBA 1 | 1.69 ± 0.63 a | 0.62 ± 0.14 b | 0.72 ± 0.08 b | 2.04 ± 0.67 | 2.12 ± 0.43 | 2.66 ± 0.43 | 2.15 ± 0.91 | 1.87 ± 0.52 | 1.42 ± 0.23 |
Caffeic acid | 0.47 ± 0.21 c | 1.18 ± 0.55 b | 1.93 ± 0.23 a | 0.77 ± 0.22 | 0.75 ± 0.18 | 0.65 ± 0.11 | 0.49 ± 0.28 b | 0.91 ± 0.29 a | 0.74 ± 0.11 ab |
p-coumaric acid | 0.85 ± 0.21 b | 2.04 ± 0.56 a | 2.47 ± 0.29 a | 1.36 ± 0.28 | 1.39 ± 0.45 | 1.08 ± 0.15 | 1.10 ± 0.44 c | 1.54 ± 0.31 b | 2.49 ± 0.16 a |
Salicylic acid | 1.5 ± 0.47 b | 1.24 ± 0.28 b | 2.27 ± 0.48 a | 1.80 ± 0.53 a | 0.99 ± 0.26 b | 1.22 ± 0.17 b | 1.63 ± 0.61 a | 0.75 ± 0.40 b | 0.72 ± 0.16 b |
Syringic acid | 2.75 ± 1.29 b | 2.23 ± 0.76 b | 4.43 ± 0.61 a | 4.12 ± 0.59 a | 2.9 ± 0.67 b | 2.11 ± 0.57 b | 2.87 ± 1.60 ab | 1.57 ± 0.52 b | 3.06 ± 0.58 a |
Bound phenolic acids | |||||||||
Ferulic acid | 598 ± 96 a | 461 ± 85 b | 583 ± 17 a | 503 ± 43 c | 590 ± 71 b | 671 ± 84 a | 514 ± 94 b | 523 ± 90 b | 680 ± 110 a |
p-HBA 1 | 4.15 ± 0.99 a | 0.99 ± 0.27 b | 1.21 ± 0.25 b | 3.12 ± 1.11 a | 2.44 ± 0.45 b | 3.99 ± 0.64 a | 1.71 ± 0.94 | 1.39 ± 0.61 | 1.32 ± 0.32 |
Caffeic acid | 2.5 ± 1.09 a | 1.46 ± 0.63 b | 2.36 ± 0.40 ab | 2.30 ± 0.66 | 1.86 ± 0.83 | 1.95 ± 0.34 | 1.48 ± 0.83 b | 2.24 ± 0.54 a | 2.21 ± 0.32 ab |
p-coumaric acid | 12.3 ± 3.0 b | 28.7 ± 9.3 a | 32.7 ± 5.0 a | 16.3 ± 3.4 | 16.7 ± 5.4 | 12.9 ± 1.8 | 12 ± 6.4 c | 18.4 ± 3.7 b | 29.9 ± 1.9 a |
Sinapic acid | 1.39 ± 0.80 b | 2.72 ± 1.29 a | 3.57 ± 0.39 a | 2.37 ± 0.41 b | 2.52 ± 0.94 b | 3.51 ± 0.41 a | 1.25 ± 0.82 b | 2.4 ± 0.70 a | 3.06 ± 0.33 a |
Syringic acid | 2.82 ± 1.47 | 2.52 ± 1.25 | 2.33 ± 0.17 | 6.19 ± 0.89 a | 3.12 ± 0.96 b | 3.17 ± 0.86 b | 3.81 ± 1.61 a | 2.36 ± 0.78 b | 4.58 ± 0.87 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barański, M.; Lacko-Bartošová, M.; Rembiałkowska, E.; Lacko-Bartošová, L. The Effect of Species and Cultivation Year on Phenolic Acids Content in Ancient Wheat. Agronomy 2020, 10, 673. https://doi.org/10.3390/agronomy10050673
Barański M, Lacko-Bartošová M, Rembiałkowska E, Lacko-Bartošová L. The Effect of Species and Cultivation Year on Phenolic Acids Content in Ancient Wheat. Agronomy. 2020; 10(5):673. https://doi.org/10.3390/agronomy10050673
Chicago/Turabian StyleBarański, Marcin, Magdaléna Lacko-Bartošová, Ewa Rembiałkowska, and Lucia Lacko-Bartošová. 2020. "The Effect of Species and Cultivation Year on Phenolic Acids Content in Ancient Wheat" Agronomy 10, no. 5: 673. https://doi.org/10.3390/agronomy10050673
APA StyleBarański, M., Lacko-Bartošová, M., Rembiałkowska, E., & Lacko-Bartošová, L. (2020). The Effect of Species and Cultivation Year on Phenolic Acids Content in Ancient Wheat. Agronomy, 10(5), 673. https://doi.org/10.3390/agronomy10050673