Leaf Segmentation and Classification with a Complicated Background Using Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Acquisition
2.2. Segmentation
2.2.1. Annotation
2.2.2. Mask-RCNN
2.3. Classification
3. Results and Discussion
3.1. Segmentation
3.2. Classification
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lei, L.; Qin, Z.; Danfeng, H. A Review of Imaging Techniques for Plant Phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef] [PubMed]
- Achim, W.; Frank, L.; Andreas, H. Plant phenotyping: From bean weighing to image analysis. Plant Methods 2015, 11, 14. [Google Scholar]
- Abdolvahab, E.R. Plant Classification Based on Leaf Recognition. Int. J. Comput. Sci. Inf. Secur. 2010, 8, 78–81. [Google Scholar]
- Pierre, B.; Ben, Y.S.; Kai, F.M.; Volker, S. LeafNet: A computer vision system for automatic plant species identification. Ecol. Inform. 2017, 40, 50–56. [Google Scholar]
- Wang, Z.; Chi, Z.; Feng, D. Shape based leaf image retrieval. IEE Proc. Vis. Image Signal Process. 2003, 150, 34. [Google Scholar] [CrossRef]
- Fu, H.; Wang, Z. Combined thresholding and neural network approach for vein pattern extraction from leaf images. IEE Proc. Vis. Image Signal Process. 2006, 153, 881. [Google Scholar] [CrossRef]
- Wang, X.; Huang, D.; Du, J.; Xu, H.; Heutte, L. Classification of plant leaf images with complicated background. Appl. Math. Comput. 2008, 205, 916–926. [Google Scholar] [CrossRef]
- Alenya, G.; Dellen, B.; Foix, S.; Torras, C. Robotized Plant Probing: Leaf Segmentation Utilizing Time-of-Flight Data. IEEE Robot. Autom. Mag. 2013, 20, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.P.; Domnic, S. Image based leaf segmentation and counting in rosette plants. Inf. Process. Agric. 2019, 6, 233–246. [Google Scholar]
- Aich, S.; Stavness, I. Leaf counting with deep convolutional and deconvolutional networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Itakura, K.; Hosoi, F. Automatic leaf segmentation for estimating leaf area and leaf inclination angle in 3d plant images. Sensors 2018, 18, 3576. [Google Scholar] [CrossRef] [Green Version]
- Turkoglu, M.; Hanbayi, D. Leaf-based plant species recognition based on improved local binary pattern and extreme learning machine. Phys. A Stat. Mech. Appl. 2019, 527, 121297. [Google Scholar] [CrossRef]
- Kuznichov, D.; Zvirin, A.; Honen, Y.; Kimmel, R. Data Augmentation for Leaf Segmentation and Counting Tasks in Rosette Plants. arXiv 2019, arXiv:1903.08583. [Google Scholar]
- Ozguven, M.M.; Adem, K. Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms. Phys. A Stat. Mech. Appl. 2019, 535, 122537. [Google Scholar] [CrossRef]
- Scharr, H.; Minervini, M.; French, A.; Kramer, D. Leaf segmentation in plant phenotyping: A collation study. Mach. Vis. Appl. 2016, 27, 585–606. [Google Scholar] [CrossRef] [Green Version]
- Salvador, A.; Bellver, M.; Campos, V.; Baradad, M.; Marques, F.; Torres, J.; Giro-i-Nieto, X. Recurrent Neural Networks for Semantic Instance Segmentation. arXiv 2017, arXiv:1712.00617. [Google Scholar]
- Bell, J.; Dee, H.M. Leaf segmentation through the classification of edges. arXiv 2019, arXiv:1904.03124. [Google Scholar]
- Viaud, G.; Loudet, O.; Cournde, P. Leaf segmentation and tracking in arabidopsis thaliana combined to an organ-scale plant model for genotypic differentiation. Front. Plant Sci. 2016, 7, 2057. [Google Scholar] [CrossRef] [Green Version]
- Al-Shakarji, N.; Kassim, Y.; Palaniappan, K. Unsupervised learning method for plant and leaf segmentation. In Proceedings of the 2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 10–12 October 2017. [Google Scholar]
- Arvidsson, S.; Prez-Rodrguez, P.; Mueller-Roeber, B. A growth phenotyping pipeline for arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol. 2011, 191, 895–907. [Google Scholar] [CrossRef]
- Camargo, A.; Papadopoulou, D.; Spyropoulou, Z.; Vlachonasios, K.; Doonan, J.; Gay, A. Objective definition of rosette shape variation using a combined computer vision and data mining approach. PLoS ONE 2014, 9, e96889. [Google Scholar] [CrossRef] [Green Version]
- Dobrescu, A.; Giuffrida, M.; Tsaftaris, S. Leveraging multiple datasets for deep leaf counting. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Giuffrida, M.V.; Doerner, P.; Tsaftaris, S.A. Pheno-deep counter: A unified and versatile deep learning architecture for leaf counting. Plant J. 2018, 96, 880–890. [Google Scholar] [CrossRef] [Green Version]
- Giuffrida, M.V.; Minervini, M.; Tsaftaris, S.A. Learning to count leaves in rosette plants. In Proceedings of the Computer Vision Problems in Plant Phenotyping Workshop 2015, Swansea, UK, 10 September 2015. [Google Scholar]
- Giuffrida, M.V.; Scharr, H.; Tsaftaris, S.A. Arigan: Synthetic arabidopsis plants using generative adversarial network. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Pape, J.M.; Klukas, C. 3-d histogram-based segmentation and leaf detection for rosette plants. In Computer Vision—ECCV 2014 Workshops; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Pape, J.M.; Klukas, C. Utilizing machine learning approaches to improve the prediction of leaf counts and individual leaf segmentation of rosette plant images. In Proceedings of the Computer Vision Problems in Plant Phenotyping Workshop 2015, Swansea, UK, 10 September 2015. [Google Scholar]
- Ren, M.; Zemel, R. End-to-end instance segmentation with recurrent attention. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Paredes, B.R.; Torr, P.H.S. Recurrent instance segmentation. In Computer Vision ECCV (2016); Springer: Cham, Switzerland, 2016; pp. 312–329. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gené-Mola, J.; Vilaplana, V.; Rosell-Polo, J.R.; Morros, J.R.; Ruiz-Hidalgo, J.; Gregorio, E. Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities. Comput. Electron. Agric. 2019, 162, 689–698. [Google Scholar] [CrossRef]
- Yuncheng, Z.; Tongyu, X.; Wei, Z.; Hanbing, D. Classification and recognition approaches of tomato main organs based on DCNN. Trans. Chin. Soc. Agric. Eng. 2017, 33, 219–226. [Google Scholar]
- Yunong, T.; Guodong, Y.; Zhe, W.; Hao, W.; En, L.; Zize, L. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 2019, 157, 417–426. [Google Scholar]
- Kaiming, H.; Georgia, G.; Dollar, P.; Girshick, R. Mask rcnn. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 386–397. [Google Scholar]
- Christian, S.; Sergey, L.; Vincent, V.; Alex, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. arXiv 2016, arXiv:1602.07261. [Google Scholar]
- Dong, Y.X. An Improved Otsu Image Segmentation Algorithm. Adv. Mater. Res. 2014, 989–994, 3751–3754. [Google Scholar] [CrossRef]
- Siyang, H.; Ping, S. GrabCut color image segmentation based on region of interest. In Proceedings of the 2014 7th International Congress on Image and Signal Processing, Dalian, China, 14–16 October 2014. [Google Scholar]
Method | Average |
---|---|
The designed segmentation method | 1.15% |
Grabcut | 28.74% |
Otsu segmentation algorithm | 29.80% |
Species | Recognition Accuracy Rate (%) | ||
---|---|---|---|
VGG19 | VGG16 | Inception ResNetV2 | |
Gardenia jasminoides | 94.6% | 93.1% | 92.5% |
Callisia fragrans | 89.3% | 91.8% | 90.2% |
Psidium littorale | 75.3% | 85.3% | 83.1% |
Osmanthus fragrans | 84.4% | 88.4% | 85.8% |
Bixa orellana | 90.1% | 88.6% | 84.3% |
Ficus microcarpa | 91.9% | 87.2% | 89.8% |
Calathea makoyana | 100% | 99.2% | 98.6% |
Rauvolfia verticillata | 96.7% | 92.4% | 91.3% |
Ardisia quinquegona | 95.2% | 90.5% | 87.6% |
Baccaurea ramiflora | 86.5% | 85.5% | 80.1% |
Synesepalum dulcificum | 97.3% | 96.8% | 96.4% |
Hydnocarpus anthelminthicus | 98.2% | 94.5% | 92.7% |
Daphne odora | 96.5% | 93.3% | 91.6% |
Dracaena surculosa | 94.1% | 92.5% | 89.8% |
Mussaenda pubescens | 96.1% | 93.4% | 90.5% |
Average Value | 92.4% | 91.5% | 89.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Zhong, W.; Li, F. Leaf Segmentation and Classification with a Complicated Background Using Deep Learning. Agronomy 2020, 10, 1721. https://doi.org/10.3390/agronomy10111721
Yang K, Zhong W, Li F. Leaf Segmentation and Classification with a Complicated Background Using Deep Learning. Agronomy. 2020; 10(11):1721. https://doi.org/10.3390/agronomy10111721
Chicago/Turabian StyleYang, Kunlong, Weizhen Zhong, and Fengguo Li. 2020. "Leaf Segmentation and Classification with a Complicated Background Using Deep Learning" Agronomy 10, no. 11: 1721. https://doi.org/10.3390/agronomy10111721
APA StyleYang, K., Zhong, W., & Li, F. (2020). Leaf Segmentation and Classification with a Complicated Background Using Deep Learning. Agronomy, 10(11), 1721. https://doi.org/10.3390/agronomy10111721